
	

1

Lorax Language Reference Manual

Doug Bienstock (dmb2168)

Chris D’Angelo (cd2665)
Zhaarn Maheswaran (zsm2103)

Tim Paine (tkp2108)
Kira Whitehouse (kbw2116)

Columbia University

October 28, 2013

“I am the Lorax. I speak for the trees.” – Dr. Seuss 1971

	

	

2

Table	
 of	
 Contents	

Introduction	
 ...	
 3	

Lexical	
 Conventions	
 ...	
 3	

Comments	
 ..	
 3	

Identifiers	
 ..	
 3	

Keywords	
 ...	
 3	

Constants	
 ...	
 3	

Integer	
 Constants	
 ..	
 3	

Character	
 Constants	
 ...	
 4	

Floating	
 Point	
 Constants	
 ..	
 4	

String	
 Constants	
 ...	
 4	

Boolean	
 Constants	
 ..	
 5	

Tree	
 Constant	
 ..	
 5	

Data	
 Types	
 ..	
 5	

Primitive	
 Data	
 Types	
 ...	
 5	

Integers	
 ..	
 5	

Floating	
 Point	
 Numbers	
 ...	
 5	

Booleans	
 ..	
 5	

Characters	
 ..	
 5	

Tree	
 Types	
 ..	
 6	

Declaring	
 Trees	
 ..	
 6	

Initializing	
 Trees	
 ..	
 6	

Accessing	
 Tree	
 Children	
 ...	
 6	

Accessing	
 Tree	
 Node	
 Values	
 ...	
 7	

Strings	
 ..	
 7	

Expressions	
 and	
 Operations	
 ...	
 7	

Assignment	
 Operators	
 ..	
 7	

Operator	
 Precedence	
 ..	
 10	

Statements	
 ..	
 10	

Expression	
 Statement	
 ...	
 10	

Compound	
 Statement	
 ..	
 10	

Conditional	
 Statement	
 ..	
 10	

Functions	
 ...	
 12	

main	
 Function	
 ..	
 12	

Built-­‐in	
 Functions	
 ...	
 12	

print	
 Function	
 ..	
 12	

root	
 Function	
 ..	
 13	

degree	
 Function	
 ..	
 13	

Scope	
 ...	
 13	

Sample	
 Programs	
 ...	
 13	

Depth	
 First	
 Search	
 ..	
 13	

Hello	
 World	
 ...	
 14	

Euclid’s	
 GCD	
 ..	
 14	

	

	

3

Introduction
This manual describes the Lorax programming language. The Lorax language provides a syntax
that enables the easy creation and manipulation of the tree abstract data type. Trees are a
native data type of the language. Each tree encloses a value of a Lorax primitive type. Tree’s
branching factor and value data type are strongly typed. Language operators allow you to insert
trees, traverse their structure, access their node contents, and compare data items within tree
nodes. The programmer can create and manipulate these trees while the Lorax language
handles memory management and tree structural consistency under the hood.

Lexical Conventions

Comments
In-line comments are preceded by //. Block comments are delimited by /* and */. Block
comments can be written on a single line or can span multiple lines. Nesting is not be allowed.

Identifiers
An identifier is a sequence of letters and digits. The first character must be a letter; the
underscore _ counts as a letter. Upper and lower case letters are different. Identifiers may not
have a length greater than 31 characters.

Keywords
The following identifiers are reserved for the use as keywords, and may not be used otherwise:

 int root char
 float mod degree
 string print while
 return if tree
 for else bool
 break true null
 continue false

Constants
A constant is a literal numeric or character value, such as 5 or ‘m’. All constants are of a
particular data type.

Integer Constants
An integer constant is a sequence of digits, starting with a non-zero digit. All integer constants
are assumed to be decimal (base 10). Decimals values may use digits from 0 to 9.

 459
 0
 8

	

4

 12

Character Constants
A character constant is a single ASCII character enclosed within a single quotation marks, such
as ‘Q’. Some characters, such as the single quotation mark character itself cannot be
represented using only one character. To represent such characters there are several “escape
sequences” that you can use:

 Sequence Definition

\n New line.
\’ Single quote.
\” Double quote.
\\ Backslash

Floating Point Constants
A floating point constant is a value that represents a fractional (floating point) number. It
consists of a sequence of digits which represents the integer (or “whole”) part of the number, a
decimal point, and a sequence of digits which represents the fractional part. Either the integer
part or the fractional part may be omitted, but not both. The decimal point may not be omitted.
Here are some examples:

 float a, b, c, d;
 a = 4.7;
 b = 4.;
 c = .7;
 d = 0.7;

String Constants
A string constant is a sequence of zero or more ASCII characters, or escape sequences
enclosed within double quotation marks. A string constant is of type “array of characters”.
Strings are stored as a 1 dimensional tree of characters. For more on the structure of the string
object see Tree Types section below. Here are some example of string constants:

 // this is a single string constant
 “tutti frutti ice cream”
 // this one uses two escape sequences
 “\”hello, world!\””
 /* to insert a newline character into a string, so that when the
 * string is printed it will on two different lines you can use
 * the newline escape sequence ‘\n’
 */
 print(“Hello\nGoodbye”);

	

5

Boolean Constants
There are only two boolean constants, true and false. They must be typed in all lowercase letters.
An example of declaring a boolean from a constant:

bool success;
success = true;

Tree Constant
A tree constant is expressed as a sequence of values of a consistent primitive data type (choice
of char, int, float, bool). A tree constant begins with the first value representing the root node
value, followed by square brackets containing the root’s children separated by commas. Trees
maintain a single data type in all of the tree node values. Lorax strictly enforces the type it first
recognizes in the root if no value has been explicitly declared.

/* a is a tree of depth 3, degree 2, of integer data type value of the
 * root node is int 1, and its children are of value 2 and 3
 * respectively. The child with value of 2 has no children.
 * The child of value 3 has two children of value 4 and 5 respectively.
 * The nodes of value 4 and 5 have no children

 */
1[2, 3[4, 5]]

/* b is a tree of depth 1, degree 1, of integer data type.
 * This tree has no children. Data type is inferred by root node value
 * in constant and branching factor is inferred.
 */
6[];

Data Types
Lorax promotes the use of tree structures as much as possible. There are four basic types that
escape this norm.

Primitive Data Types

Integers
Integers (int) are represented in 16-bit 2’s complement notation. The default value of an
integer variable is 0.

Floating Point Numbers
Single precision floating point (float) quantities have a magnitude in the range of
approximately 10^(+ or - 38) or 0; their precision is 24 bits or about seven decimal digits.

Booleans
Booleans can be either true or false. The default value of a boolean variable is false.

Characters

	

6

A character, or char, is any single ASCII character. The default value for a char is 0.

Tree Types
As stated previously, Lorax encourages the use of tree structures as much as possible. Trees
may contain any primitive data type as their tree node value. A string in Lorax is a tree of char
data type node values that has its own definition syntax as we shall see but can be expressed
as a tree constant as well.

Declaring Trees
You declare a tree using the tree keyword, followed by whitespace, followed by less than
symbol, followed by a primitive data type in Lorax representing the node values of this tree,
followed by the greater than symbol, followed by the identifier name being declared, followed by
open parentheses, expression resulting in integer representing the branching factor, and finally
closed parentheses. A tree can have a maximum degree of 64. Here is an example that
declares a tree that has a degree (a.k.a branching factor) of 4 of int type:

tree <int>e(4);

Initializing Trees
You can initialize the elements in a tree by listing the initialized values, separated by commas, in
a set of square braces. When declaring a tree without defining it, you must specify the type and
branching factor in the declaration. Here is an example declaration sans definition:

tree <int>a(2);
a = 1[2, 3[4, 5]];

Here is an example declaration and definition:
tree a = 1[2, 3[4, 5]];

Accessing Tree Children
You can access the child of a tree by specifying the tree name, followed by the percent symbol,
followed by the child index. The child index beings with zero. Here is an example statement of
accessing the 4th index (5th child) of tree a:

 a%4;

null is No-Child Indicator
null is a keyword without an explicit value. It cannot be assigned to any data type or tree in
Lorax. It is used only in order to answer the question: does a tree exist? In the below example
we test if this tree has a child:

 tree <int>a(1) = 42;
 bool b;

b = (a%0 == null); // b is true

	

7

Accessing Tree Node Values
You can access the node value of a tree by specifying the tree name, followed by the percent
symbol, followed by the @ symbol. This can be combined with child accessing facility presented
above. Here is an example statement of accessing the 4th index (5th child) of tree a and setting
the value stored in that child to integer 5:

 a%4@ = 5;

Strings
Strings are no different than a tree, but in Lorax a special keyword and syntax is provided to
make the use of strings easier. Strings are combinations of characters that are delimited by
double quotes. Strings are initialized as a tree structure branching factor of one terminated by
the end of the tree having no child (null). Each tree node encapsulates a single character and
has a single child for the next letter in the string. Below is an example of declaring and defining
a string using convenient syntax:

string simple;
simple = “Hello”;

// the above may also be represented this way
tree complicated;
complicated = ‘H’[‘e’[‘l’[‘l’[‘o’]]]];

Expressions and Operations
An expression consists of at least one operand and zero or more operators. Operands are typed
objects such as constants, variables, and function calls that return values. Here are some
examples:

 47
 2 + 2
 cosine(3.14159)

Parentheses group subexpressions. Innermost expressions are evaluated first:

 (2 * ((3 + 10) - (2 * 6)))

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left
expression is discarded. The type and value of the result are type and value of the right operand.

Assignment Operators
Assignment operators store primitive values in variables, copy the reference of a tree to a tree
variable, or assign a value to a tree nodes value. The Lorax assignment operator is =. It’s a
binary operator and is right-associative. When assignment is taken, the value of the expression
on the right is assigned to the left value, and the new value of the left value is returned, which
allows chaining of assignments. Assignment can take some of these example forms:

	

8

 // where a is declared as int a;
 a = 4;

// where b is declared as tree b; and c is a previously declared
// and defined tree
b = c;
// where d is previously declared as a tree containing int value types

 d%0@ = 5;

In this section we describe the built-in operators for Lorax, and define what constitutes and
expression in our language. Operators are listed in order of precedence.

Arithmetic Operators / Tree Operators
Lorax provides operators for standard arithmetic operations: addition (+), subtraction (-),
multiplication (*), and division (/), along with modular division (mod) and negation (-) . Usage of
these operators is straightforward when using primitive types. Arithmetic operations are not valid
among boolean types. Here are some examples using arithmetic operators with primitives:

 x = 5 + 3; // where x is of type int
 y = 10.23 + 37.332; // where y is of type float
 z = ‘a’ + ‘c’; // where z of type char

You use the modulus operator mod to obtain the remainder produced by dividing its two
operands.

 x = 5 mod 3;

You use the negation operator on a float or int type.

 x = -4;

Trees may only use the addition operator. Like all arithmetic operators the binary operation must
contain the same type on either side. When the addition operator is used the tree on the right
hand side of the + symbol will be inserted at the lowest available child index of the parent tree
on the left hand side. If the tree on the left hand side contains a full set of children and even
grandchildren the right hand side tree will be inserted in the nearest depth down. This rule
allows for the easy concatenation of two trees representing strings. Performing an operation like
this requires that the left hand side and right hand side are of the same data type. The left hand
side tree must have a tree-degree greater than or equal to that of the tree on the right hand side.
If the right hand tree has a tree-degree less than that of the left hand side tree the right hand
side tree’s degree will be increased to equal the left hand side tree degree. Examples of this
operation below:

 tree <int>a(2);
 a = 1[2, 3[4, 5]]; // tree of degree 2, depth 3, int data type

	

9

 tree <int>b(2);
 /* Take the first child of tree a and insert as its first child
 * (which is it’s first available child index) a tree whose
 * root value is 6, with no children, degree 2, int data type
 */
 b = a%0 + <int>6[](2);

Trees may also use the unary postfix operator --. When this operator is written to the right of a
tree expression the tree is “popped” from the tree. This “popped” portion is “orphaned” and
cannot be retrieved after this operation if there is no tree reference variable to the child popped.
The return value of this operation is the former parent of the orphan tree.

 tree a;
 a = 1[2, 3[4, 5]]; // tree of degree 2, depth 3, int data type
 tree b;
 /* after the below right hand side expression is complete tree a will
 * reference to a tree resembling 1[2, 3]. b will reference the tree
 * resembling 3[](2)
 */
 b = a%1--;

Comparison Operators
You use the comparison operators to determine how two operand relate to each other: are they
equal to each other, is one larger than the other, is one smaller than the other, and so on. When
you use any of the comparison operators, the result is either true or false. Comparison
operators are all binary operators and are left-associative. The operators require that operands
me of the same type. Comparison operators may be used with all of the Lorax defined types. In
the case of comparing trees the the definition of this comparison is indicated below:

 Operator Primitive Types Definition Tree Type Definition
 > Greater than. LHS # of nodes > RHS # of nodes
 >= Greater than or equals. LHS # of nodes >= RHS # of nodes

== Equal to. LHS tree structure and data is equal to
RHS tree structure and data
Can also be used to compare to null

!= Not equal to. LHS tree structure and data is not equal to
RHS tree structure and data

 <= Less than or equals. LHS # of nodes <= RHS # of nodes
< Less than or equals. LHS # of nodes <= RHS # of nodes

Logical Operators
Logical operators test the truth value of a pair of operands. The following logical operators &&
(logical and) and || (logical or) are binary operators and left associative. They take two
operands of type boolean, and return a boolean value. The || operator supports short-circuit

	

10

evaluation. ! is a unary operator and appears on the left side of the operand. The type of the
operand must be of type boolean and return type is also a boolean value.

Operator Precedence
The following is a list of expressions, presented in order of highest precedence first. Sometimes
two or more operators have equal precedence; all those operators are applied from left to right.

 ()
 function calls % @
 * / mod
 + - --
 > < >= <=
 == !=
 !

&&
 ||
 =
 ,

Statements
Except as indicated, statements are executed in sequence.

Expression Statement
Most statements are expression statements, which have the form:

 expression;

Compound Statement
So that several statements can be used where one is expected, the compond statement is
provided:

 compond-statement:

{ statement-list }

statement-list:
 statement
 statement, statement-list

Conditional Statement
The two forms of the conditional statement are:

 if (expression) statement

if (expression) statement else statement

	

11

In both cases the expression is evaluated and if it is true the first substatement is executed. In
the second case the second substatement is executed if the expression is false. As usual
the “else” ambiguity is resolved by connecting an else with the last encountered elseless if.

While Statement
The while statement has the form:

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains true.
The test takes place before each execution of the statement.

For Statement
The for statement has the form:

for (expression_1 ; expression_2 ; expression_3) statement

This statement is equivalent to:

expression_1
while (expression_2) {

statement
expression;

}

Break Statement
The statement:

break;

causes termination of the smallest enclosing while or for statement; control passes to the
statement following the terminated statement.

Continue Statement
The statement:

continue;

causes control to pass to the loop-continuation portion of the smallest enclosing while or for
statement; that is to the end of the loop.

Return Statement

	

12

A function returns to its caller by means of the return statement, which has one of the forms:

return;
return (expression);

In the first case no value is returned. In the second case, the value of the expression is returned
to the caller of the function. If required the expression is converted, as if by assignment, to the
type of the function in which it appears. Flowing off the end of a function is equivalent to a return
with no returned value.

Functions
Function Definition
The Lorax language supports user defined functions. Every function declaration must be
followed immediately by the definition of that function. Every function declaration must begin by
specifying the return type of the function. The return type is followed by an identifier and
comma-separated formal parameters enclosed within parentheses. A function may have any
number of parameters, and all parameters are passed by value. The implementation details of
the function follow immediately within braces. Every function must have a single return
statement that returns a value consistent with its return type. A function is called using its
identifier followed by its parameters in parentheses separated by commas. If there are no
required parameters, the function is called using its identifier followed by empty parentheses.
Lorax does not support function overloading. Here is an example of a user-defined function in
Lorax:

int square(int x) {
 return x * x;
}

int main() {
 int x = 4;
 int s = square(x);
 return 0;
}

main Function
In Lorax there is an entry function where the program starts. There must be one main function
and should be defined like this:

 int main() {

statement-list
 }

Built-in Functions

print Function

	

13

The print function provided accepts one argument of any of the Lorax data types. Presenting
print with any of the primitive types will print the type in its most natural form. Presenting print
with a tree argument will print the tree in a kind of debug format unless the data type for the tree
is of 1-degree char type in which case it will print a string. Examples below:

 print(“hello, world”); // will print hello, world
 print(3); // will print 3
 print(3.14); // will print 3.14
 print(‘a’); // will print a
 tree <int>t(2);
 t = 1[2, 3];
 print(t); // will print 1[2, 3]

root Function
The root function takes a single tree argument. The return value of the function is the parent of
argument. Example below:

 tree <int>grandFather(2);
 grandFather = 1[2, 3[4, 5]];
 tree grandChild <int>(2);
 grandChild = (t%2)%0; // referencing the child with value 4
 tree middleChild <int>(2);

// middle refers to node with value 3
 middleChild = root(grandChild);

degree Function
The degree function takes a single tree argument. The return value of the function is int type.
The function returns the defined or inferred degree of the tree. Example below:

 print(degree(3[4, 5])); // prints 2

Scope
Lorax is closed and statically scoped. Local primitive types are passed to their functions by
value. Tree identifiers hold a reference to their tree structure and the tree reference may be
passed from function to function. Tree objects are allocated at run time and deallocated when
there is no tree identifier is in scope and referencing them.

Sample Programs

Depth First Search
bool dfs(tree <int>t, int val) {
 if (t == null) { return false; }

if (t@) { return true; }

int child;
bool match;

	

14

for (child = 0; child < degree(t); child = child + 1) {
 if (t%child != null) {
 match = match || (t%child@ == val) || dfs(t%child, val);

 if (match) { break; }
}

}

return match;

}

int main() {
 tree t = 1[2, 3[4, 5]];
 if (dfs(t, 3)) {
 print(“found it\n”);

} else {
 print(“it\’s not there\n”);
}

}

Hello World
int main() {
 string s = “Hello, “;
 tree t = ‘,’[‘ ‘[‘w’[‘o’[‘r’[‘l’[‘d’]]]]]];
 print(s + t + “\n”);
}

Euclid’s GCD
/*
 * As GCD does not involve trees, this
 * algorithm is almost identical to C.
 */
int gcd(int x, int y){
 int check;
 while (x != y){
 if (x < y){
 check = y-x;
 if (check > x)
 x = check;
 else
 y = check;
 } else {
 check = x-y;
 if (check > y)
 y = check;
 else
 x = check;
 }
 }

	

15

 return x;
}

