CHIL - CSS HTML
Integrated Language

Programming Languages and Translators - Fall 2013

Authors:

Gil Chen-Zion - gc2466
Ami Kumar - ak3284
Annania Melaku - amm2324
Isaac White - iaw2105

Professor:
Prof. Stephen A. Edwards

CONTENTS

1. INTRODUCTION

2. LEXICAL CONVENTIONS
2.1 Comments
2.2 Primitive Types
2.3 Identifiers
2.4 Keywords

3. EXPRESSIONS
3.1 Operators
3.2 Increment Operators
3.3 Multiplicative Operators
3.4 Additive Operators
3.5 Inequality Operators
3.6 Comparison Operators
3.7 Logical Operators
3.8 Precedence

4. FUNCTIONS
4.1 Function Call
4.2 Recursion
4.3 Built-in Functions

5. DECLARATIONS
5.1 Variable Declaration
5.2 Function Declaration
5.3 Scoping

6. STATEMENTS
6.1 Conditional Statement
6.2 For Loop
6.3 Return Statements

7. TYPE CONVERSIONS

8. OUTPUT

1. INTRODUCTION

CHIL is an HTML and CSS combined website generator targeted specifically for the novel web
developer. Instead of learning both the complexities of HTML and the complexities of CSS, CHIL allows
the developer to create functional, stylistic, and dynamic web pages through the mastery of only one
language. This language will combine both content and styling in one language so that the user isn’t
constantly switching between files. Furthermore, it provides the ability to programmatically loop through
different types of element creation, or define more complex elements made up of basic types provided by

the language.
2. LEXICAL CONVENTIONS

2.1 Comments

Multi-line comments begin with @> and end with <@. A single-line comment is preceded by @. The

nesting of comments is allowed.

2.2 Primitive Types
Key Word Description
int non-decimal number
string sequence of characters
float decimal number
boolean true or false value
element fundamental container that can contain text or
images
style characteristics of an element
array list of primitives of a single type

2.2.1 Integers

A data type consisting of whole number values.

Examples:
x =5
y =0

z = =20

2.2.2 Strings

A constant representing character strings.

Examples:
x = “Hello World”
y — A\Y ab c ”

String Concatenation

Strings are combined using + operator.

Examples:

x = “Hello”

y = “World”

z = Xty (“Hello World”)
or

z = “Hello” + “World”

2.2.3 Floats

A numeric data type containing a decimal. Examples of floats are:
125.3

3.0

3.

2.2.4 Booleans

Booleans are incorporated in the use of boolean operators. The use of a boolean operator in comparison
expressions return one of two predefined constants: true or false.

Boolean operators used in comparisons:

=, =, =<, =>, <, >

Examples:

x =3

y = 3

z =1

X ==y (evaluates to true)
X >y (evaluates to false)
X > z (evaluates to true)

z =y (evaluates to true)
y = X

\%

(evaluates to true)
2.2.5 Elements

Elements are the fundamental container for any object which is intended to eventually be rendered as
HTML. An element's attributes determine which tag will eventually be associated with it.

Example:

someElementName = {
contents: “I'm an element.”,
style: ${

nameDeclaredByProgram: someValue

by

children:

@> children not provided here, since it often makes sense to
define them as another variable or add them on to defined
elements later via the someElementName.children[] = operator. <@

2.2.6 Styles

All elements have a property called style, which is provided without any allowed values. Page.addStyle()
can be used to add possible values to the list for allowed properties, which will tell the compiler that the
keywords are permitted.

Styles are processed by by the Page.toHtml() method, which the programmer is responsible for providing.
If no Page.toHtml() method is set, then the compiler will use a provided fallback that is not accessible to
the programmer. If Page.toHtml() produces invalid output, the compiler will also fallback to the built in,
inaccessible method. Style is defined at the time of Element declaration, but styles may be added by
referencing Element.style.someStyleName. Style elements are declared with ${} syntax, using the equals
operator.

Examples:

@>In this example, keywords have been previously provided by a
standard library<@

3pxBorderTop = ${
border: “top, 3px,solid”,
innerSpacing: “top, .257,
outerSpacing: “top , .25”

2.2.7 Arrays

An array is a list of objects or primitive types. All elements of an array must be of the same type. Arrays
can be concatenated by using the + operator. Any array that is used in an addition operation will take
precedence for returning the output as an array. However, since arrays may contain only a single type,
this operation may fail if not used with matching types. Values can also be added to the end of the array

using varName [] = someVal

Examples:

r = [] (initialize an empty array)
x = [Yhello”, “world”] (array of Strings)

y = [42,34,42] (array of type int)

r[] = 34 @add 34 to the end of the r array

s = [42] @make a new array called s

z =1 + S

@> z = [34,42] <A@

2.3 Identifiers

Identifiers consist of uppercase and lowercase letters, numbers, and underscore (). The first letter cannot
be a digit or an underscore (_). Two different identifiers cannot have the same name.

2.4 Keywords

element
style
page
if
endif
else
elseif
for
endfor
rtn

fn
endfn
page

3. EXPRESSIONS

3.1 Operators

Function Name

Description

assignment operator

increment and decrement

basic arithmetic operators

comparison operators, by value

inequality operators, by value

modulus

A\W74

denotes a string

contains an expression

logical operators

3.2 Increment Operators

Increment and decrement are unary operators that work on a single integer. The increment operators

follow an integer value expression, as follows:

expr++

++

increment

decrement

3.3 Multiplicative Operators

The multiplicative operators are * and /. Both can be used on integer or float value expressions.
Multiplication and division operators are formatted as follows:

expr * expr
expr / expr

multiplicaton

/ divison

3.4 Additive Operators

The additive operators are + and -, and are also used on integer or float value expressions. The format of

addition and subtraction is similar to that of multiplication and division.

expr + expr
expr - expr

+ addition

- subtraction

3.5 Inequality Operators

Inequality operators compare two integer or two float expressions. The inequality operators are <,
<=, and >=. An expression with an equality has the following format:

expr < expr

< less than

> greater than

<= less than or equal to
>= greater than or equal to

3.6 Comparison Operators
Two integer or float operands can be compared by the operators == and ! =. For example:

expr == expr

== equal to

I= not equal to

3.7 Logical Operators

The two logical operators are && and | | . Two boolean value expressions can be combined by either
AND or OR as follows:

(3 < 4) && (4 < 5) evaluates to true
(3 >5) || (6 !'=17) evaluates to false
&& and
| or

3.8 Precedence
The following list shows the precedence of all the operators, from highest to lowest precedence:

Parenthesis

Increment operators
Multiplicative operators
Additive operators
Inequality operators
Comparison operators
Logical operators

4. FUNCTIONS

4.1 Function Call

Functions will be called by their identifier, with arguments specified in parenthesis and separated by
commas. Member functions will be called after an object and separated by a period. For example, for the

function “func’:

func (1, 2)
a.func (1, 2)

4.2 Recursion
Recursive functions cannot be defined. No function can call itself recursively.
4.3 Built-in Functions

toHtml () converts the program into HTML. If no toHtm1 () is defined, a default toHtm1 () is
used. Otherwise, the new toHtml () is used for the conversion.

*for functions to convert types see Section 7. Type Conversions
5. DECLARATIONS
5.1 Variable Declaration

Variables are declared by their identifier and assigned values using =. Integers just include digits and floats
contain a single decimal point. Strings are identified by opening and closing quotes and arrays are denoted
by opening and closing square brackets. The following are examples of variable declarations:

= “Hello World”

= 42

[“hello”, “world”]
[42,34,42]

[a]

O QO Q O W
|

5.2 Function Declaration

Functions are declared by the keyword fn and an identifier, which is used to refer to the function
throughout the program. Parameters are passed to the function in parenthesis and separated by commas.
The body of a function is closed by the endfn keyword. The format of a function declaration is as
follows:

fn identifier (parameter list)
@ body of function
endfn

5.3 Scoping
Variables declared within the program scope can be accessed by all functions in the file. Variables

declared within a statement (1 £ or for) or function have a scope that lasts within the body of the
statement or function, starting at the variable declaration and ending at endif, endfor, or endfn.

6. STATEMENTS
6.1 Conditional Statement

An if statement begins with the if keyword and ends with endi £. If is followed by a condition contained
in parenthesis. The body of the if statement is followed by endif, as follows:

if (condition)
@ body of if
endif

10

6.2 For Loop

A for loop starts with for and ends in endfor. For is followed by three expressions enclosed in
parenthesis and separated by semicolons. The first expression is evaluated before the body of the for loop.
The body of the loop is executed whenever the second expression evaluates to true. The last expression is
evaluated after each iteration of the loop. The format of the for loop is as follows:

for (expr; expr; expr)
@ body of loop
endfor

6.3 Return Statements

All functions return a data type using the rtn keyword. If the keyword is not included the function will
return undefined.

fn identifier (parameter list)
@ body of function
@ optional return statement
rtn type

endfn

7. TYPE CONVERSIONS

The following functions take one argument of the type they are converting from and return a value of the
type they are converting to:

stf string to float

itf int to float

fti float to int

sti string to int

its int to string

fts float to string
8. OUTPUT

11

Once compiled, each program will output both an HTML and a CSS file.

Example:
http://www.columbia.edu/~iaw2105/plt

12

http://www.google.com/url?q=http%3A%2F%2Fwww.columbia.edu%2F~iaw2105%2Fplt%2F&sa=D&sntz=1&usg=AFQjCNEhgZj7tm2ahoe1GlJ17c1QAweJeA

