
COMS W4115
Programming Languages and Translators

Homework Assignment 2

Prof. Stephen A. Edwards Due October 23rd, 2013
Columbia University at 4:10 PM

Submit your solution on paper, e.g., print them out. Include
both your code and the results of tests.

Include your name and your Columbia ID (e.g., se2007).
Do this assignment alone. You may consult the instructor

or a TA, but not other students.

1. Scanners

(a) Using Ocamllex-like syntax, write a scanner for C’s
floating point numbers, as defined by Ritchie:

A floating constant consists of an integer
part, a decimal point, a fraction part, an
e, and an optionally signed integer expo-
nent. The integer and fraction parts both
consist of a sequence of digits. Either the
integer part or the fraction part (not both)
may be missing; either the decimal point
or the e and the exponent (not both) may
be missing.

Make sure your scanner accepts constants such as
1. 0.5e-15 .3e+3 .2 1e5 but not integer con-
stants such as 42

(b) Draw a DFA for a scanner that recognizes and dis-
tinguishes the following set of keywords. Draw ac-
cepting states with double lines and label them with
the name of the keyword they accept. Follow the
definition of a DFA given in class.

abs access type accept else elsif for
subtype abort

2. Construct nondeterministic finite automata for the fol-
lowing regular expressions using Algorithm 3.23 (p. 159,
shown in class), then use the subset construction algo-
rithm to construct DFAs for them using Algorithm 3.20
(p. 153, also shown in class).

(a) (ab | b)∗

(b) ((ε | a)b)∗

(c) (a | b)∗bab

Number the NFA states; use the numbers to label DFA
states while performing subset construction, e.g., like
Figure 3.35 (p. 155).

3. Using the grammar

S → (L) | a
L → L,S | S

(a) Construct a rightmost derivation for ((a), a, (a)) and
show the handle of each right-sentential form.

(b) Show the steps of a shift-reduce (bottom-up) parser
corresponding to this rightmost derivation.

(c) Show the concrete parse tree that would be con-
structed during this shift-reduce parse.

4. Build the LR(0) automaton for the following ambiguous
grammar. if, else, and null are terminals; the third rule
indicates T may be the empty string. Indicate the state in
which the shift/reduce conflict appears.

S′ → S
S → if S T
S → null
T →
T → else S

Check your work by running “ocamlyacc -v” on the gram-
mar below and looking through the “.output” file.

%token IF ELSE NULL
%start s
%type <int>s

%%

s : IF s t { 0 }
| NULL { 0 }

t : /* empty */ { 0 }
| ELSE s { 0 }


