
1

Optical Mouse Scanner

Embedded System Design - Prof. Stephen Edwards

CSEE 4840, Spring 2013

Group Name: optical-mouse-scanner

David Calhoun (dmc2202)

Kishore Padmaraju (kp2362)

Serge Yegiazarov (sy2464)

2

I. Overview

In our project, ―Optical Mouse Scanner,‖ we will be implementing a system in which a user can create low

resolution scans of a document using an ordinary optical mouse. The mouse is operated using a normal

configuration, with the user running it over the portion of the document he is interested in scanning. The

aggregated results of the current scan will be displayed on a computer monitor. By observing the

aggregated scan on the monitor, the user can note which areas of the scan are missing or erroneous, and

rescan the document at those locations.

The user will be able to use the left-click and right-click functionality of the mouse to scan and reset the

scan, respectively. The current image being read by the optical mouse will always be displayed in a small

inset box on the monitor display, next to the larger image of the aggregate scan up to that point. The

position of the mouse will also be indicated on the aggregate scan. The figure below depicts the

described visual output.

 Figure 1: GUI

II. Description

To implement our low-resolution scanner, we will be interfacing with two main peripherals: the optical

mouse and the VGA monitor.

Input - Optical Mouse

A standard optical mouse transmits information about the location of the mouse in a serial, packetized

format. This information can be acquired using USB, PS/2, or direct connection to a serial pin on the

processor—for the purposes of this project, the serial pin will be used. We will acquire image data from

the optical mouse via the ADNS-2051 optical processor, which is one of a series of common optical

processors distributed by Agilent for use in optical mice. This processor includes a 16x16 pixel CCD; the

image data is acquired via a synchronous, half-duplex serial port on the processor. By soldering

3

connections to the optical processor’s clock, serial I/O, and power status pins, we can communicate and

exchange data with the optical processor. The ADNS-2051 data sheet outlines communication/request

protocols that we must establish to access the CCD and other information. All connections to the optical

processor will require soldering ribbon cables to the optical processor to establish custom GPIO (to

connect to the Altera DE2).

Output - VGA Monitor

The output will be an image on a VGA monitor as described in the figure on the previous page.

Hardware

Hardware components will consist of the serial pin interface of the optical mouse, a GPIO connection to

ADNS-2051 pins, and the interface of the VGA monitor. The parallel inputs and video processing (VGA)

capabilities of the FPGA will be leveraged.

Software & Algorithms

There are several aspects of this project that require hardware and software functionality. We will map the

serialized coordinate data to image data acquired from the mouse using our own custom ―sorting‖

algorithm. This algorithm will spatially position the scanned image onto an external VGA monitor based

on the coordinate data. Our first approach to this algorithm will be centering image data based on the

change of X and Y coordinates received over the serial port.

Other software will consist of additional bookkeeping and image processing needed to compose the scan

from the images retrieved from the optical mouse. The bookkeeping consists of making sure that the

coordinates of the moving mouse correspond with the coordinates on the monitor to generate a cohesive

image. Image processing will provide further refinement of the image, as necessary, from the raw data.

This can be done using simple filtering techniques, such as via a low- order moving average filter, or a

small median filter. Such filters work with the attenuation of high-frequency image noise and removal of

arbitrary incorrect pixels.

4

Optical Mouse Scanner

Project Design

Embedded System Design - Prof. Stephen Edwards

CSEE 4840, Spring 2013

Group Name: optical-mouse-scanner

David Calhoun (dmc2202)

Kishore Padmaraju (kp2362)

Serge Yegiazarov (sy2464)

5

Overview:

In our project, ―Optical Mouse Scanner,‖ we will be implementing a system in which a user can create low

resolution scans of a document using an ordinary optical mouse. The mouse is operated as per usual,

with the user running it over the portion of the document he/she is interested in scanning. The aggregated

results of the current scan will be displayed on a computer monitor. By observing the aggregated scan on

the monitor, the user will be able to note which areas of the scan are missing or erroneous, and rescan

the document at those locations.

The user will be able to use the left-click and right-click functionality of the mouse to begin and reset the

scan, respectively. The current image being read by the optical mouse will always be displayed in a small

inset box on the monitor display, next to the larger image of the aggregate scan up to that point. The

position of the mouse will also be indicated on the aggregate scan.

A standard optical mouse transmits information about the location of the mouse in a serial, packetized

format. This information can be acquired using USB, PS/2, or direct connection to a serial pin on the

processor—for the purposes of this project, the serial pin will be used. We will acquire image data from

the optical mouse via the ADNS-2051 optical processor, which is one of a series of common optical

processors distributed by Agilent for use in optical mice - this processor includes a 16x16 pixel CCD. The

image data and XY positional data is acquired via a synchronous, half-duplex serial port on the

processor. By soldering connections to the optical processor’s clock, serial I/O, and power status pins, we

can communicate with and exchange data with the optical processor. The ADNS-2051 data sheet

outlines communication/request protocols that we must establish to access CCD and other information.

All connections to the optical processor will require soldering ribbon cables to the optical processor to

establish custom GPIO (to connect to the Altera DE2).

The following image is a high-level block diagram of all the hardware components and how they interact:

Figure 2: System architecture and hardware interconnection.

6

 The VGA Ctrl. block contains a controller for storing image samples to the aggregate image. This

controller also handles the entire VGA raster scan. This raster scan includes 2 active regions, one

for the larger aggregate image, and one for the smaller active scan (the smaller active scan is a

live feed of the camera).

 The SRAM Ctrl. Block handles the interfacing with the SRAM. This is a key component because

the software is stored on the SRAM.

 JTAG/UART is the standard interface on the DE2 for using the USB Blaster to download software

onto the board.

 The GPIO Ctrl. Block is used to actually obtain the serialized data from the mouse.

 The internal memory stores all the image and location data of our samples. It contains the

aggregate RAM, which corresponds to the 128x128 screen in our UI. It also contains the buffer

RAM, which corresponds to the smaller 16x16 live feed samples. Other registers are responsible

for holding the x and y coordinate to which the sample will be written.

 The peripheral controller is the standard interface by which to communicate with the hex and

LED. We used these two in our project to keep some track of deltaX and deltaY

Interconnections within the DE2 block in Figure 2 indicate communication using the Avalon Bus (also

known as the Avalon Switch Fabric).

Critical Path

Potential timing failure might arise when communicating between the ADNS-2051 optical processor and

the DE2 board. Specifically, a polling FSM is required to communicate on the serial data line of the

ADNS-2051, which will control how registers on the ADNS-2051 are accessed. The timing of how

information is collected from these registers, how it is stored, and how it is used, is critical to this project

design.

Specifically, the gray scale values of each pixel in a complete 16x16 scanned image sample are

sequentially accessed and stored. When accessing registers that store the 6-bit gray scale values of each

pixel in the 16x16 CCD image matrix, it is necessary to store all 256 pixels of the image matrix to

associate with a given XY location. The given XY location itself must also be stored in a timely fashion,

corresponding with the image matrix. Both of these pieces of information are stored in SRAM and

accessed by software. The image and location information, stored in SRAM, is accessed via software for

sorting and aggregation. This sorting and aggregation consists of displaying the current image (256

pixels) according to the current location information on the VGA display.

The exact critical path comes into play when associating the timing between polling the ADNS-2051

registers, storing/updating that information in SRAM, and accessing that information to aggregate on the

VGA display. Concern rises when considering how quickly information will be collected from the mouse

and updated in SRAM on the DE2, because that limits how quickly this information can be accessed and

sent to the VGA display. These timing issues can be remedied with the use of buffers.

Memory Management:

Pixel Address Map

The 16x16 CCD image pixel mapping corresponds to how data is read from the ADNS-2051, and how it

physically corresponds to the captured image. The captured image is addressed from bottom right (first

7

pixel), proceeding upwards with increasing address, eventually ending at the top left (last pixel) of the

matrix shown below. Eight bits are required to represent all 256 pixels.

Figure 3: 16x16 CCD image, physical pixel map and addresses.

Registers

The Data_Out_Lower register holds the values associated with the current pixel address being read. The

most significant bit (MSB) of this register holds a flag that indicates whether the data is valid (meaning if

it’s currently being read or not) - it is high when invalid. Once a read is completed, the register is loaded

up with the next pixel value and the most significant bit is set back to low, indicating that the first six bits

are ready to be read once again. This cycle continues until the entire pixel map is handled:

Figure 4: Data_Out_Lower Register.

The Configuration_bits register allows us to trigger the pixel dump of the pixel array map:

8

Figure 5: Configuration_bits register.

Because we don’t want to waste buffer memory on pixel samples which match exactly previous pixel

samples (if the mouse has not moved since last polling), we will need to use the motion register to first

determine if any motion has occurred before reading:

Figure 6: Motion register.

The Delta_X register provides a signed representation of the amount of x-axis movement that the mouse

experienced since last polling:

Figure 7: Delta_X Register.

The Delta_Y register provides a signed representation of the amount of y-axis movement that the mouse

experienced since last polling:

9

Figure 8: Delta_Y Register.

Pixel Sample Buffer Queue

In order to deal with the timing issues inherent in continual dumping of the pixels (the rest of the system

may not be able to keep up), some sort of backlog or history of pixel samples will be necessary so that

they may be referenced later. For this purpose, we have designed the concept of a pixel sample buffer

queue. One can picture this by thinking of each pixel sample as a piece of a jigsaw puzzle, and the buffer

queue as being a constantly shifting collection of these jigsaw pieces placed one atop the other. As the

system continues to poll the mouse, additional jigsaw pieces are placed on top of this collection

(assuming the mouse has moved). Simultaneously, jigsaw pieces are being pulled from the bottom of the

collection and being placed one by one into the main puzzle, or the aggregate image of the scan. This is

basically a stack.

Numerical Analysis

Because the image being pulled from the CCD is in gray scale, we will only require 6 bits per pixel for

each of our pixel samples. The video frame buffer, or the aggregate image, is 128 by 128 pixels, meaning

it will support 98,304 bits and 12,288 bytes. Since we are also displaying a small inlet image

corresponding to the current pixel sample, we will need an additional 16 x 16 pixels = 1536 bits = 192

bytes. This comes out to a total of 12,288 + 192 = 12,480 bytes. We now need to add to this the memory

required by the pixel sample buffer queue. We intend for the queue to hold at most five pixel samples -

this corresponds to 192 x 5 = 960 bytes, plus one more for the 8 bits which correspond to the serial data

input from the mouse peripheral. Adding this to our previous total, we get a grand total of 13,441 bytes.

10

Figure 9: The polling state machine generates image samples, which are then processed into the image

aggregate.

Pixel Writing

Pixel dumps from the mouse hardware yield 6-bit gray scale, which does not match the 10-bit, 3-channel

(red, green, blue) VGA display driver. To remedy converting 6-bit gray scale to 10-bit RBG, it is possible

to write all 3 channels with the same gray scale information. To extend the 6-bit gray scale to 10-bits, we

consider which bits of the gray scale have the most control of the overall gray scale pixel. Considering

that the most-significant bits cause the greatest variation in the gray scale pixel, it is reasonable to

duplicate lower significant bits to extend 6-bit gray scale to 10-bit gray scale.

Figure 10: Gray scale operations

Aggregate and Inset Image Dynamics

There are essentially two groups of registers which handle all the imaging data required for display. The

first group of registers handles the 16 x 16 pixel inset screen which displays the current pixel dump of

whatever image the mouse is sitting on. The second group of registers handles the 128 x 128 pixel

accumulation of all these pixel dumps, which is built up as the user progresses over the to-be-scanned

image.

11

This procedure is handled with a relatively simple algorithm:

while (true){

 //we first fetch the front most pixel sample in the buffer queue

 pixelDump = fetchNewPixelDump();

 //we get the x coordinate corresponding to the center of the pixel sample

 pixelDumpCenterXCoordinate = getXCoordinatePixelDumpCenter(pixelDump);

 //we get the y coordinate corresponding to the center of the pixel sample

pixelDumpCenterYCoordinate = getYCoordinatePixelDumpCenter(pixelDump);

//we add the pixel sample to the aggregate in the location corresponding to the center of the

sample

aggregateImage.addToAggregateImage(pixelDumpCenterXCoordinate,

pixelDumpCenterYCoordinate, pixelDump);

}

The image below essentially graphically illustrates what the algorithm above does. The pixel doubling is

essentially a magnification of the 128 x 128 for a better UI experience.

Figure 11: Memory Mapping

Peripherals

Optical Mouse Input Peripheral and GPIO

To connect to the optical mouse hardware peripheral shown in Figure 11, we must use the general

purpose input output (GPIO) peripheral. The GPIO peripheral provides several configurable analog and

digital IO pins for use with external hardware. These pins are configurable as inputs, outputs, or inouts,

and can be mapped to memory. To connect the image, position, and set/reset information for capturing

12

and displaying images to the VGA display, we required connecting several pins from the optical mouse’s

ADNS-2051 processor to the Altera DE2 Board via GPIO.

Five GPIO pins are required to connect to SCLK, PD, and SDIO on the ADNS-2051, and the left and right

click buttons (L/R) of the mouse. These serial pins are addressed according to their physical location on a

40-pin connector on the DE2. The exact address mapping—which pins we will use—is still under

consideration.

Each pin is a serial connection—SCLK and SDIO are part of a serial peripheral interface (SPI) protocol

connection/communication, and PD, L, and R are enabled for the polling state machine. PD is a device

enable that is always set high—some optical mice can use this enable to enable low power mode. L and

R will be low/high depending on if the left and right mouse buttons are pressed/not pressed (active low).

The GPIO will communicate all values obtained/written to its pins via the Avalon Bus to/with other

peripherals. These communications include sending PD, L, and R to the polling state machine, and

writing/reading data to and from SRAM over SDIO. The typical operating frequency for the serial clock

port on the ADNS-2051 is 4.5 MHz, which means that a PLL will be used to communicate a 4.5MHz clock

over SCLK on the GPIO to the ADNS-2051. Figure 12 shows the interconnection of GPIO to the mouse

hardware.

Left and right click controls three states of operation for the system: idle, scanning, and reset. When the

left button is pressed on the mouse, the mouse will enter a scanning state, where image and position

information is relayed through the GPIO to SRAM. When the right mouse button is pressed, the system

resets, clearing the VGA display—this takes precedence over left click. When neither button is pressed,

the system is in an idle state, where is does not poll the ADNS-2051 for new image or position data.

These states are shown in Figure 13.

Figure 12: Mouse peripheral with embedded ADNS-2051 optical processor.

13

Figure 13: Mouse peripheral hardware to GPIO interconnection.

Figure 14: FSM for left and right click.

Figure 15: Datasheet Waveform

Figure 16: Simulated Waveforms

Figure 17: Captured Waveforms using Logic Analyzer

14

The logic analyzer used to capture the above waveform is the Saleae Logic8 analyzer. While debugging,

to ensure that the FSM was operating as required, we needed to probe all connections with the logic

analyzer. The Saleae enabled real time sampling of all hardware connections. We used this sampling to

determine the function of our synthesized code and whether or not it was operating correctly. This

debugging was crucial in ensuring the proper operation of our FSM.

Polling State Machine

To interface with the mouse peripheral a polling state machine (PSM) is implemented in hardware on the

DE2 board. The details of the PSM are given in Figure 14. As described before, the PSM communicates

with the ADNS-2051 using the GPIO peripheral of the DE2. Implemented in hardware will be a serial

peripheral interface (SPI) protocol for writing to and reading the registers of the ADNS-2051. The

registers of interest have already been described in the prior text. As shown in Figure 14, the main loop of

the PSM continually polls the Motion register of the mouse. Within the Motion register, the MOT bit is

raised high to indicate that the mouse has moved. The PSM then reads the relative X and Y movement of

the mouse and transcribes the information to a new image sample stored in the SRAM. The PixDump bit

in the Pixel Dump register is then set high to initiate the Pixel Dump from the ADNS-2051. As described

before, the Data_Out_Lower register will continually feed the progressing pixel values for the pixel map

(Figure 3). These pixel values are stored in the appropriate location of the image sample in the SRAM.

Once the full pixel map has been read the PixDump bit is reset and the loop reiterates.

15

Figure 18: Algorithm for acquiring image samples from ADNS-2051

VGA Monitor Output

To display the image information on the VGA display, we require a VGA raster controller similar to the

one implemented in Lab 3. The controller will update pertinent VGA signals, including the clock (~25 MHz,

H_SYNC, V_SYNC, BLANK, SYNC, and the RGB level of the current VGA pixel. Once implemented in

hardware (via VHDL), this peripheral will be controlled with software that updates the VGA signals. The

VGA signals are stored and accessed as registers and/or counters. This peripheral communicates to the

SRAM peripheral via the Avalon Bus.

Input obtained from the SRAM includes XY location and the current gray scale pixel value. Software is

required to convert the gray scale pixel to 10-bit RGB (as required by the VGA hardware controller) and

associate this pixel with its XY location according to the VGA signals. XY location is translated to VGA

signals via counters for horizontal and vertical position. These counters, and other internal signals

required for translating XY position to VGA display position are internal to the VGA controller. The

following diagram outlines the basic VGA controller structure:

16

Figure 19: Block diagram of the VGA module.

Finite State Machines

The state diagrams for the FSM are detailed in the next figure. The first figure features a condensed

version of the full FSM. Subsequent images break up the sub-components into their full form. There are

75 states in total controlling the SCLK, SDIO, and PD lines interfacing with the optical processor, and

writing retrieved image data out to the main hardware controller.

17

Figure 20: Finite State Machine 1

18

Figure 21: Finite State Machine 2

19

Figure 22: Finite State Machine 3

20

Figure 23: Finite State Machine 4

21

Figure 24: Finite State Machine 5

22

Figure 25: Finite State Machine 6

23

Inside the FPGA: RTL Viewer

Figure 26: Top Level RTL View

VGA Controller

Figure 27: VGA Controller

24

JTAG Controller

Figure 28: JTAG Controller

GPIO Controller

Figure 29: GPIO Controller

25

Synchronization Clock Full Reset

Figure 30: Sync Clock Full Reset

CPU Instruction Master Arbitrator

Figure 31: CPU Instruction Master Arbitrator

CPU JTAG Debug

26

Figure 32: CPU JTAG Debug

CPU

27

Figure 33: CPU

VGA Arbitrator

Figure 34: VGA Arbitrator

GPIO Arbitrator

28

Figure 35: GPIO Arbitrator

CPU Data Master Arbitrator

29

Figure 36: CPU Data Master Arbitrator

SRAM Arbitrator

30

Figure 37: SRAM Arbitrator

SRAM Controller

Figure 38: SRAM Controller

JTAG Arbitrator

31

Figure 39: JTAG Arbitrator

Final Compilation Report:

Figure 40: Compilation Report

Image storage and aggregation memory:

● Internal to FPGA using ALTSYNCRAM megafunction

32

● Actual memory storage uses 128*128*6 + 16*16*6*4 = 104448 bits

● Compilation reports 115,712 bits, which means some other bits were used for other peripheral

registers

Final Software Implementation:

The software performs/assists with the following tasks:

 Coordinates the left/right click functionality.

 Ensures new samples are unique.

 Performs aggregation by telling hardware where to write the next samples.

 Coordinates the location/color of highlight box.

 Checks various boundary conditions and allows for/tracks out of bounds traversal.

Ensuring Uniqueness

 Read 16 bit ―select number‖ from hardware on every loop iteration.

 If this number is equivalent to the last such number, ignore and continue to next iteration.

 If it’s not equivalent, figure out which portion of the value differs, and write that to the hardware’s

―read select‖.

 This value determines the next sample.

The 16 bit register value consists of the four buffer entries – each entry contains the index of a particular

sample. The software first checks if the 16 bit value is different from the last 16 bit value, and if it is, it

breaks down the 16 bit value into its 4 subsections to determine which one is different. It then assigns that

different as the next sample to be read – this is essentially the main function of the buffer.

Aggregation

 Since deltaX and deltaY are relative movement coordinates, software needs to keep track of

absolute coordinates.

 Reads deltaX and deltaY, adds them to global position, checks boundaries, and writes back.

 The value written back is normalized to the following form for simplicity:

ycoordinate+(xcoordinate*128)

Boundary Checking

 Firstly, checks when user is about to leave boundaries and warns with red box.

 Secondly, allows out of bounds traversal.

 Thirdly, tracks the out of bounds movement by moving red box along edge.

 Prevents strange bugs (such as splitting and syncing) with some corner case handling.

Splitting refers to an issue we had where if the box approaches a corner of the 128x128 with its corner,

the box would display ―split‖, with half of it appearing in one corner, and half in another. Syncing refers to

an issue we had where the red box is occasionally not able to respond in time when the user moves

quickly off the in-bounds region – this would cause the box to remain static. To resolve this, we

implemented a small algorithm that assumes a straight line from where the box began moving, to the

edge where the user left the in-bounds region. We then just write the box to the position on the edge

where the straight line from where the box started would have touched that edge.

33

Figure 41: Software Glitchy Corner Cases

Tracking works as one would expect. As illustrated by the below picture, when the user is traversing the

out-bounds, the red box follows the movement of the mouse by riding along the edge closest to it:

Figure 42: Edge Out-of-Bounds Tracking

This makes it easier for the user to determine where exactly in the out bounds he is currently located.

Experiences:

Power of the ADNS-2051

 Or lack thereof…

 dx and dy are calculated based on an image gradient, but they are also rounded arbitrarily

o Consider dx of 0.425 => 1

 This skews the image, although it provides sensitivity for mouse movement.

 Image blurring adds skew

o Quick movements are not supported

128x128

Corner Case Corner Case

Corner Case Corner Case

34

 Slow Movement Fast Movement

 Figure 43: Slow and Fast Mouse Captures

 Hardware interfacing is simple using the DE2

o Several ways to approach this project

 Could have created our own microprocessor core

 Set up digital I/O pins (GPIO) with buffers, multiplexers,

etc. for communicating with the mouse

 Same memory on FPGA still required

 This would enable a ―fully software-defined‖

implementation

 Timing diagrams are a good aid, however…

o They do not always reflect what will happen in real time

o Simulation vs. synthesizable

o Heed the warnings given by Quartus II

 Jitter

 Latches

 Timing concerns, etc.

Issues:

• Timing and synchronization

– Image acquisition and software control are difficult to synchronize

• Need to remove bottlenecks in software to get smooth acquisition and
aggregation

– It’s hard to determine the response time of software with respect to our clock speed on
the FPGA (our queue system helped resolve any issues we would face from this issue)

• State machine

– Specification

• Need to consider all conditions outlined in ADNS-2051 datasheet

– Timing required between sending and receiving commands

– Timing required between different types of commands

– Layout of the state machine in an efficient way

35

– Toggling Power-Down pin in order to reset and synchronize the serial
communication

– Timing

• Data handling (outputs, changes) based on state changes vs. clock pulses

• Simulations showed perfect behavior, actual communication generated by FPGA
completely wrong [cannot trust simulation, had to use logic analyzer to verify
what was going on]

Furthermore, the main limitations of our setup were as follows: The biggest limitation was probably the

fidelity of the optical processor. Movements that are less than a pixel are converted to integers by the

processor, so a lot of information is lost. What this manifests itself as is a ―jagged‖ and ―shifting‖ scan

image, which changes a bit each time you scan over the same segment. Another limitation related to the

CCD is the shutter speed – this causes blurring when the mouse is moved too fast. This, however, is

understandable for a would be ―scanner‖. The final limitation was the intrinsic inaccuracy of the human

hand. Because of the aforementioned issue of fidelity, the slight gyrations and inaccuracies caused by the

movement of a human hand across a line of text can wreak major havoc on the quality of an image. The

fix for this, as is the case in real scanner, is to have the scanning be done by a motorized component that

moves slowly and a constant velocity.

Mentor Meeting Notes:

This section just serves to show several questions and concerns that were addressed during our

meetings with our mentor, Luis.

Questions for Luis:
1) In the context of PLLs, are you familiar with the following warning:

Warning (15064): PLL

"project_full:PROJECT|vga:the_vga|de2_vga_raster:vga|pll:pll_inst|altpll:altpll_component|pll" output port

clk[0] feeds output pin "VGA_CLK" via non-dedicated routing -- jitter performance depends on switching

rate of other design elements. Use PLL dedicated clock outputs to ensure jitter performance.

- If so, how do we fix it?

- Some sources say it is necessary to set up some pin to connect the PLL to, to which you may then

connect any other logic that needs that PLL.

- We currently have it set up where we just do a clock division in a process statement to create 25MHz

from the 50MHz drive clock. This seems to work fine.

There are 4 PLLs distributed around the FPGA - the closest one should be used. There are different

settings for the synchronization and that could be a problem as well (in the megawizard setup...)

2) Do the megawizard functions ALTSYNCRAM guarantee we are connected to external SRAM?

3) Is there any easy way to port text displaying to our design so that we can have a status area on our

VGA display?

36

- Looked through some of lab 2 source files, but not familiar enough with the design to extract this

information

Some other notes:

- We are using internal FPGA RAM for images

- We are using SRAM for software

- Be sure to reference the RTL viewer for component connections in the design

- Get to this by Tool > Netlist Viewers > RTL view (or something like that)

- Might need to fix PLL to make design less jittery

Who Did What and Lessons Learned:

Since our group consisted of only three people, we were able to have pretty clear cut delineations as far

as work goes. Dave served mainly the roles of system integrator and chief project designer. He did most

of the tasks regarding getting data communications actually flowing between the mouse and FPGA, as

well as providing the bigger picture of how the software and hardware would play together. Kishore

skirted the line between software and hardware, designing and implementing in VHDL a large portion of

the state diagrams, as well as assisting in translating portions of Arduino’s provided mouse driver to C (for

our purposes). I worked primarily on the software side, creating and implementing the mouse driver to get

along with the FPGA.

We learned many valuable lessons from our experiences. Firstly, and perhaps most obviously, we

learned a great deal more about the functionality of the FPGA as it relates to our project, especially with

the GPIO interface and working with the on board memory. We also learned a lot about the surprising

capabilities of the optical processors inside mice, and how to interface that mouse with the DE2. We

learned what it takes to make hardware, peripherals, and software all work together in sync, particularly in

regards to memory, drivers, and state machines. We learned better how to work together as a team, how

to apportion work and maximize each other’s strengths and weaknesses. We learned more about how to

debug complex systems, and in that same regard, gained a better understanding of the tools/languages

we used, like VHDL, GCC, C, and Quartus.

We managed to avoid many of the snags that have made victims out of past groups by heeding the

advice of TAs and Professor Edwards. We started our project early on, and enabled constant teamwork

and communication via shared Google Drive documents and files. We constructed careful state machines

for all our protocols, and thanks to the successful attempts of previous individuals, had a clear idea of

how our project would proceed. We stuck to the script set out in our initial proposal and project design

relatively closely, and this allowed us to stay on track and coordinated as the project grew increasingly

complicated. We also met twice a week just to make sure everybody was on the same page and to

concretize our synchronization efforts. Because all of the above, in part, probably led to the success of

our project, they would be on top of the list of our recommendations for future projects

37

Acknowledgements:

Firstly, a big thank you to our mentor Luis for his constant support and help throughout the lifetime of this
project. Another big thank you to Professor Edwards for making this project possible (and for lending us
his logic analyzer).

References:

[1] Avago ADNS-2051 Optical Mouse Sensor/Processor Data Sheet.

http://www.avagotech.com/docs/AV02-1364EN

Code:

RAM1, RAM2, RAM3, RAM4, and RAM5, were automatically generated using ALTSYNCRAM, which is a

MegaWizard megafunction. This megafunction implements a dual-port ram of any size you want. RAM1

was 128x128 with 6 bits at each address (128*128 addresses with 6bits of data at each) while the others

(RAM2-5) were 16x16 with 6 bits at each address (16*16 addresses with 6bits of data at each).

DE2_FSM_controller.vhd

--

-- GPIO and FSM controller

--

-- Originally written by Kishore Padmaraju, kp2362@columbia.edu

--

-- Joint debugging and editing by David Calhoun, dmc2202@columbia.edu

-- and Kishore Padmaraju

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity de2_FSM_controller is

 port(

 reset : in std_logic;

 clk : in std_logic;

 --slowclock : in std_logic;

 --connection to SW

 read : in std_logic;

 write : in std_logic;

 chipselect : in std_logic;

 address : in std_logic_vector(3 downto 0);

http://www.avagotech.com/docs/AV02-1364EN

38

 readdata : out std_logic_vector(15 downto 0);

 writedata : in std_logic_vector(15 downto 0);

 --address to get pixel buffer data from

 read_address : in std_logic_vector(7 downto 0);

 --current pixel data

 display_pixel_out : out std_logic_vector(7 downto 0);

 -- selects which image sample (2-5) should be written to

 --wren_selects : in std_logic_vector(3 downto 0);

 -- selects which image sample (2-5) should be read from

 rden_selects : in std_logic_vector(3 downto 0);

 --physical IO

 gpio : inout std_logic_vector(35 downto 0);

 ledr : out std_logic_vector(7 downto 0);

 ledg : out std_logic_vector(7 downto 0)

);

end de2_FSM_controller;

architecture layout of de2_FSM_controller is

 component Mouse_FSM is

 port(

 CLOCK : in std_logic; -- 50

MHz clock

 --SLOWCLOCK : in std_logic;

 RESET : in std_logic;

 FSM_en : in std_logic;

 -- FSM_en is to enable or halt the FSM

 GPIO : inout std_logic_vector(35 downto 0); -- GPIO pin connections

 MEM_wr : out std_logic_vector(5 downto 0);

 data_out : out std_logic_vector(7 downto 0); -- data written out to

memory blocks

 wr_addr : out std_logic_vector(7 downto 0)

);

 end component;

 component RAM2 is

 port(

 clock : in std_logic :='1';

 data : in std_logic_vector (7 downto 0);

 rdaddress : in std_logic_vector (7 downto 0);

 wraddress : in std_logic_vector (7 downto 0);

 wren : in std_logic :='0';

 q : out std_logic_vector (7 downto 0)

);

 end component;

39

 component RAM3 is

 port(

 clock : in std_logic :='1';

 data : in std_logic_vector (7 downto 0);

 rdaddress : in std_logic_vector (7 downto 0);

 wraddress : in std_logic_vector (7 downto 0);

 wren : in std_logic :='0';

 q : out std_logic_vector (7 downto 0)

);

 end component;

 component RAM4 is

 port(

 clock : in std_logic :='1';

 data : in std_logic_vector (7 downto 0);

 rdaddress : in std_logic_vector (7 downto 0);

 wraddress : in std_logic_vector (7 downto 0);

 wren : in std_logic :='0';

 q : out std_logic_vector (7 downto 0)

);

 end component;

 component RAM5 is

 port(

 clock : in std_logic :='1';

 data : in std_logic_vector (7 downto 0);

 rdaddress : in std_logic_vector (7 downto 0);

 wraddress : in std_logic_vector (7 downto 0);

 wren : in std_logic :='0';

 q : out std_logic_vector (7 downto 0)

);

 end component;

 signal dx : std_logic_vector(7 downto 0);

 signal dx2 : std_logic_vector(7 downto 0);

 signal dx3 : std_logic_vector(7 downto 0);

 signal dx4 : std_logic_vector(7 downto 0);

 signal dx5 : std_logic_vector(7 downto 0);

 signal dy : std_logic_vector(7 downto 0);

 signal dy2 : std_logic_vector(7 downto 0);

 signal dy3 : std_logic_vector(7 downto 0);

 signal dy4 : std_logic_vector(7 downto 0);

 signal dy5 : std_logic_vector(7 downto 0);

 signal lc : std_logic_vector(7 downto 0);

 signal lc2 : std_logic_vector(7 downto 0);

 signal lc3 : std_logic_vector(7 downto 0);

40

 signal lc4 : std_logic_vector(7 downto 0);

 signal lc5 : std_logic_vector(7 downto 0);

 signal rc : std_logic_vector(7 downto 0);

 signal rc2 : std_logic_vector(7 downto 0);

 signal rc3 : std_logic_vector(7 downto 0);

 signal rc4 : std_logic_vector(7 downto 0);

 signal rc5 : std_logic_vector(7 downto 0);

 signal img_smp: std_logic_vector(15 downto 0) := (others => '0'); -- stores the sequence numbers

for all the image samples

 signal FSM_enable : std_logic :='1';

 signal mem_write : std_logic_vector(5 downto 0); -- specifies whether RAM, dx, dy,

lc, or rc registers should be written to

 signal wren_selects : std_logic_vector(3 downto 0) :="0001"; -- selects which image sample

(2-5) should be written to

 signal wren_RAM2, wren_RAM3, wren_RAM4, wren_RAM5: std_logic;

 signal data_line : std_logic_vector(7 downto 0);

 --signal read_address : std_logic_vector(7 downto 0) := (others => '0');

 signal write_address : std_logic_vector(7 downto 0);

 signal display_pixel2 : std_logic_vector(7 downto 0) := (others => '0');

 signal display_pixel3 : std_logic_vector(7 downto 0) := (others => '0');

 signal display_pixel4 : std_logic_vector(7 downto 0) := (others => '0');

 signal display_pixel5 : std_logic_vector(7 downto 0) := (others => '0');

begin

--

 SW_Access : process (clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 elsif chipselect = '1' then

 if read = '1' then

 --status of LC

 if address= "0000" then

 readdata <= "00000000" & lc;

 --status of RC

 elsif address= "0001" then

 readdata <= "00000000" & rc;

 --status of dx

 elsif address = "0010" then

 readdata <= "00000000" & dx;

41

 --status of dy

 elsif address = "0011" then

 readdata <= "00000000" & dy;

 elsif address = "0100" then

 readdata <= img_smp;

 end if;

 end if;

 if write = '1' then

-- if address = "0100" then

--

-- elsif address = "0101" then

--

-- else

--

--

-- end if;

 end if;

 end if;

 end if;

 end process SW_Access;

 process(clk)

 begin

 if(rising_edge(clk)) then

 case mem_write is

 when "000100" =>

 wren_RAM2 <= wren_selects(0);

 wren_RAM3 <= wren_selects(1);

 wren_RAM4 <= wren_selects(2);

 wren_RAM5 <= wren_selects(3);

 when others =>

 wren_RAM2 <= '0';

 wren_RAM3 <= '0';

 wren_RAM4 <= '0';

 wren_RAM5 <= '0';

 end case;

 case mem_write is

 when "000001" =>

 case wren_selects is

 when "0001" =>

42

 dx2 <= data_line;

 when "0010" =>

 dx3 <= data_line;

 when "0100" =>

 dx4 <= data_line;

 when "1000" =>

 dx5 <= data_line;

 when others =>

 null;

 end case;

 --dx <= data_line;

 when "000010" =>

 case wren_selects is

 when "0001" =>

 dy2 <= data_line;

 when "0010" =>

 dy3 <= data_line;

 when "0100" =>

 dy4 <= data_line;

 when "1000" =>

 dy5 <= data_line;

 when others =>

 null;

 end case;

 --dy <= data_line;

 when "001000" =>

 case wren_selects is

 when "0001" =>

 lc2 <= data_line;

 when "0010" =>

 lc3 <= data_line;

 when "0100" =>

 lc4 <= data_line;

 when "1000" =>

 lc5 <= data_line;

 when others =>

 null;

 end case;

 --lc <= data_line;

 when "010000" =>

 case wren_selects is

 when "0001" =>

 rc2 <= data_line;

 when "0010" =>

 rc3 <= data_line;

 when "0100" =>

 rc4 <= data_line;

 when "1000" =>

 rc5 <= data_line;

43

 when others =>

 null;

 end case;

 --rc <= data_line;

 when "100000" =>

 case wren_selects is

 when "0001" =>

 img_smp(3 downto 0) <= data_line(3 downto 0);

 wren_selects <= "0010";

 when "0010" =>

 img_smp(7 downto 4) <= data_line(3 downto 0);

 wren_selects <= "0100";

 when "0100" =>

 img_smp(11 downto 8) <= data_line(3 downto

0);

 wren_selects <= "1000";

 when "1000" =>

 img_smp(15 downto 12) <= data_line(3 downto

0);

 wren_selects <= "0001";

 when others =>

 null;

 end case;

 when others =>

 null;

 end case;

 end if;

 end process;

 Mouse_FSM_0: Mouse_FSM

 port map(

 CLOCK => clk,

 --SLOWCLOCK => slowclock,

 RESET => reset,

 FSM_en => FSM_enable,

 GPIO => gpio,

 MEM_wr => mem_write,

 data_out => data_line,

 wr_addr => write_address

);

 RAM2_inst: RAM2

 port map(

 clock => clk,

 data => data_line,

 rdaddress => read_address,

 wraddress => write_address,

 wren => wren_RAM2,

44

 q => display_pixel2

);

 RAM3_inst: RAM3

 port map(

 clock => clk,

 data => data_line,

 rdaddress => read_address,

 wraddress => write_address,

 wren => wren_RAM3,

 q => display_pixel3

);

 RAM4_inst: RAM4

 port map(

 clock => clk,

 data => data_line,

 rdaddress => read_address,

 wraddress => write_address,

 wren => wren_RAM4,

 q => display_pixel4

);

 RAM5_inst: RAM5

 port map(

 clock => clk,

 data => data_line,

 rdaddress => read_address,

 wraddress => write_address,

 wren => wren_RAM5,

 q => display_pixel5

);

 Select_mem : process(clk)

 -- this could also end up being on the 25 MHz clock pulse we use for VGA

 begin

 if rising_edge(clk) then

 case wren_selects is

 when "0010" =>

 display_pixel_out <= display_pixel2;

 dx <= dx2;

 dy <= dy2;

 lc <= lc2;

 rc <= rc2;

 when "0100" =>

 display_pixel_out <= display_pixel3;

 dx <= dx3;

 dy <= dy3;

45

 lc <= lc3;

 rc <= rc3;

 when "1000" =>

 display_pixel_out <= display_pixel4;

 dx <= dx4;

 dy <= dy4;

 lc <= lc4;

 rc <= rc4;

 when "0001" =>

 display_pixel_out <= display_pixel5;

 dx <= dx5;

 dy <= dy5;

 lc <= lc5;

 rc <= rc5;

 when others =>

 display_pixel_out <= "00000000";

 dx <= "10101010";

 dy <= "10101010";

 lc <= "00000000";

 rc <= "00000000";

 end case;

 end if;

 end process Select_mem;

 ledg <= dx;

 ledr <= dy;

end layout;

DE2_vga_raster.vhd

--

-- VGA raster display of abritrary memory

--

-- David Calhoun

-- dmc2202@columbia.edu

--

-- Adapted from code written by Stephen A. Edwards, sedwards@cs.columbia.edu

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity de2_vga_raster is

46

 port (

 reset : in std_logic;

 clk : in std_logic; -- Should be 25.125 MHz

 -- Read from memory to access position

 read : in std_logic;

 write : in std_logic;

 chipselect : in std_logic;

 address : in std_logic_vector(3 downto 0);

 readdata : out std_logic_vector(15 downto 0);

 writedata : in std_logic_vector(15 downto 0);

 -- address to write pixel obtained from external source

 read_address : out std_logic_vector(7 downto 0);

 -- pixel data from external source

 data_from : in std_logic_vector(7 downto 0);

 -- selects which image sample (2-5) should be read from

 rden_selects : out std_logic_vector(3 downto 0);

 -- VGA connectivity

 VGA_CLK, -- Clock

 VGA_HS, -- H_SYNC

 VGA_VS, -- V_SYNC

 VGA_BLANK, -- BLANK

 VGA_SYNC : out std_logic; -- SYNC

 VGA_R, -- Red[9:0]

 VGA_G, -- Green[9:0]

 VGA_B : out std_logic_vector(9 downto 0) -- Blue[9:0]

);

end de2_vga_raster;

architecture rtl of de2_vga_raster is

 component RAM1 is

 port(

 clock : in std_logic :='1';

 data : in std_logic_vector (7 downto 0);

 rdaddress : in std_logic_vector (13 downto 0);

 wraddress : in std_logic_vector (13 downto 0);

 wren : in std_logic :='0';

 q : out std_logic_vector (7 downto 0)

);

 end component;

 component map_memory is

 port(

 clock : in std_logic;

 addr_in : in unsigned(13 downto 0);

47

 wren : in std_logic;

 addr_aout : out unsigned(13 downto 0);

 addr_sout : out unsigned(7 downto 0)

);

 end component;

 component pll is

 port(

 inclk0 : in std_logic;

 c0 : out std_logic

);

 end component;

 -- Video parameters

 constant HTOTAL : integer := 800;

 constant HSYNC : integer := 96;

 constant HBACK_PORCH : integer := 48;

 constant HACTIVE : integer := 640;

 constant HFRONT_PORCH : integer := 16;

 constant VTOTAL : integer := 525;

 constant VSYNC : integer := 2;

 constant VBACK_PORCH : integer := 33;

 constant VACTIVE : integer := 480;

 constant VFRONT_PORCH : integer := 10;

 constant BOX_SET_XSTART : integer := 100;

 constant BOX_SET_XEND : integer := 356;

 constant BOX_SET_YSTART : integer := 100;

 constant BOX_SET_YEND : integer := 356;

 constant BOX_SET_XSTART2 : integer := 498;

 constant BOX_SET_XEND2 : integer := 530;

 constant BOX_SET_YSTART2 : integer := 220;

 constant BOX_SET_YEND2 : integer := 252;

 signal ram_address : unsigned(13 downto 0);

 signal ram_address2 : unsigned(7 downto 0);

 signal display_address11 : unsigned(13 downto 0) := "00000000000000";

 signal display_address21 : unsigned(7 downto 0) := "00000000";

 -- Signals for the video controller

 signal Hcount : unsigned(9 downto 0); -- Horizontal position (0-800)

 signal Vcount : unsigned(9 downto 0); -- Vertical position (0-524)

 signal EndOfLine, EndOfField : std_logic;

 signal vga_hblank, vga_hsync,

 vga_vblank, vga_vsync : std_logic; -- Sync. signals

 signal area : std_logic := '0'; -- flag for within writable area

 signal area_x : std_logic := '0'; -- flag for within writable area

48

 signal area_y : std_logic := '0'; -- flag for within writable area

 signal area2 : std_logic := '0'; -- flag for within writable area

 signal area_x2 : std_logic := '0'; -- flag for within writable area

 signal area_y2 : std_logic := '0'; -- flag for within writable area

 signal both_areas : std_logic:= '0';

 signal display_pixel : std_logic_vector(7 downto 0) := "00000000";

 signal pixel : unsigned(7 downto 0);

 signal waitx : std_logic := '1';

 signal waity : std_logic := '1';

 signal waitx2 : std_logic := '1';

 signal waity2 : std_logic := '1';

 signal display_pixel2 : std_logic_vector(7 downto 0) := "00000000";

 signal pixel2 : unsigned(7 downto 0);

 signal rdaddress : std_logic_vector(13 downto 0);

 --signal data : std_logic_vector(7 downto 0);

 --signal wren : std_logic := '1';

 signal rdaddress2 : std_logic_vector(7 downto 0);

 --signal data2 : std_logic_vector(7 downto 0);

 signal wren2 : std_logic := '1';

 -- need to clock at about 25 MHz for NTSC VGA

 signal clk_25 : std_logic;

 signal start_ram : unsigned (13 downto 0) := "00011100000000";

 signal q1, q2, q3, q4, q5 : std_logic_vector(7 downto 0);

 --signal data_from : std_logic_vector(7 downto 0);

 signal addr_aout : unsigned(13 downto 0);

 signal addr_sout : unsigned(7 downto 0);

 --signal rden_selects : std_logic_vector(3 downto 0) := "0001";

 signal init1 : std_logic := '0';

 signal init2 : std_logic := '0';

 signal aggr_en : std_logic := '0';

 signal check_selects : std_logic_vector(3 downto 0) := "0001";

 signal async_reset : std_logic := '0';

 signal data_to_aggr : std_logic_vector(7 downto 0) := "00000000";

 signal write_to_address : unsigned(13 downto 0);

 signal clear_address : unsigned(13 downto 0) := "00000000000000";

 signal async_count : unsigned(3 downto 0) := x"0";

 signal box_status : std_logic_vector(5 downto 0) := "000000";

begin

 RAM1_inst : RAM1 PORT MAP (

 clock => clk,

 data => data_to_aggr,

 rdaddress => rdaddress,

 wraddress => std_logic_vector(write_to_address),

49

 --wren => (not area),

 wren => (not area) and aggr_en,

 q => display_pixel

);

 -- Originally implemented PLL, but jitter issues were more prevalent using PLL vs. clock division

-- pll_inst : pll PORT MAP (

-- inclk0 => clk,

-- c0 => clk_25

--);

 MAP_inst : map_memory PORT MAP (

 clock => clk_25,

 wren => both_areas,

 addr_in => start_ram,

 addr_aout => addr_aout,

 addr_sout => addr_sout

);

 rden_selects <= check_selects;

 Mem_Wr : process (clk,async_reset)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 write_to_address <= addr_aout;

 data_to_aggr <= data_from;

 elsif async_reset = '1' then

 write_to_address <= clear_address;

 data_to_aggr <= (others => '0');

 else

 write_to_address <= addr_aout;

 data_to_aggr <= data_from;

 end if;

 end if;

 end process Mem_Wr;

 Clr_addr : process(clk)

 begin

 if rising_edge(clk) then

 clear_address <= clear_address+1;

 end if;

 end process Clr_addr;

50

-- -- set up 25 MHz clock

 process (clk)

 begin

 if rising_edge(clk) then

 clk_25 <= not clk_25;

 end if;

 end process;

 -- Write current location of writing area

 TL_Write : process (clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 readdata <= (others => '0');

 elsif chipselect = '1' then

 if read = '1' then

 -- for purposes of checking blank

 if address= "0000" then

 readdata <= "000000000000000" & (vga_vsync or

vga_hsync);

 -- return bottom-right location of writing area

 elsif address= "0001" then

 readdata <= "00" & std_logic_vector(start_RAM);

 -- check the image indices

 elsif address = "0010" then

 readdata <= "000000000000" & check_selects;

 else

 readdata <= "0000000000000000";

 end if;

 end if;

 if write = '1' then

 --write new bottom-right starting address

 if address = "0011" then

 start_ram <= unsigned(writedata(13 downto 0));

 --select memory buffer to read from

 elsif address = "0100" then

 check_selects <= std_logic_vector(unsigned(writedata(3

downto 0)));

 --enable for writing to aggregate memory

 elsif address = "0101" then

 aggr_en <= writedata(0);

 --box color

 elsif address = "0110" then

 box_status <= writedata(5 downto 0);

 --reset of aggregate image

 elsif address = "0111" then

 async_reset <= writedata(0);

51

 else

 start_RAM <= start_RAM;

 box_status <= box_status;

 end if;

 end if;

 end if;

 end if;

 end process TL_Write;

 -- Horizontal and vertical counters

 HCounter : process (clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 Hcount <= (others => '0');

 elsif EndOfLine = '1' then

 Hcount <= (others => '0');

 else

 Hcount <= Hcount + 1;

 end if;

 end if;

 end process HCounter;

 EndOfLine <= '1' when Hcount = HTOTAL - 1 else '0';

 VCounter: process (clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 Vcount <= (others => '0');

 elsif EndOfLine = '1' then

 if EndOfField = '1' then

 Vcount <= (others => '0');

 else

 Vcount <= Vcount + 1;

 end if;

 end if;

 end if;

 end process VCounter;

 EndOfField <= '1' when Vcount = VTOTAL - 1 else '0';

 -- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

 HSyncGen : process (clk_25)

 begin

 if rising_edge(clk_25) then

52

 if reset = '1' or EndOfLine = '1' then

 vga_hsync <= '1';

 elsif Hcount = HSYNC - 1 then

 vga_hsync <= '0';

 end if;

 end if;

 end process HSyncGen;

 HBlankGen : process (clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 vga_hblank <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH then

 vga_hblank <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then

 vga_hblank <= '1';

 end if;

 end if;

 end process HBlankGen;

 VSyncGen : process (clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 vga_vsync <= '1';

 elsif EndOfLine ='1' then

 if EndOfField = '1' then

 vga_vsync <= '1';

 elsif Vcount = VSYNC - 1 then

 vga_vsync <= '0';

 end if;

 end if;

 end if;

 end process VSyncGen;

 VBlankGen : process (clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 vga_vblank <= '1';

 elsif EndOfLine = '1' then

 if Vcount = VSYNC + VBACK_PORCH - 1 then

 vga_vblank <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then

 vga_vblank <= '1';

 end if;

 end if;

 end if;

53

 end process VBlankGen;

 Area_Check_X : process(clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' or Hcount = HSYNC + HBACK_PORCH + BOX_SET_XSTART-1

then

 area_x <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + BOX_SET_XEND-1 then

 area_x <= '0';

 end if;

 end if;

 end process Area_Check_X;

 Area_Check_Y : process(clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 area_y <= '0';

 elsif EndOfLine = '1' then

 if Vcount = VSYNC + VBACK_PORCH - 1 + BOX_SET_YSTART-1 then

 area_y <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + BOX_SET_YEND-1 then

 area_y <= '0';

 end if;

 end if;

 end if;

 end process Area_Check_Y;

 Area_Check_X2 : process(clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' or Hcount = HSYNC + HBACK_PORCH + BOX_SET_XSTART2-1

then

 area_x2 <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + BOX_SET_XEND2-1 then

 area_x2 <= '0';

 end if;

 end if;

 end process Area_Check_X2;

54

 Area_Check_Y2 : process(clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 area_y2 <= '0';

 elsif EndOfLine = '1' then

 if Vcount = VSYNC + VBACK_PORCH - 1 + BOX_SET_YSTART2-1

then

 area_y2 <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + BOX_SET_YEND2-1

then

 area_y2 <= '0';

 end if;

 end if;

 end if;

 end process Area_Check_Y2;

 -- Performs counting and pixel doubling for first active region

 Display_from_memory : process(clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 waitx <= '0';

 waity <= '0';

 display_address11 <= "11111111111111";

 init1 <= '0';

 elsif area = '1' then

 init1 <= '1';

 if waitx = '1' then

 if display_address11(13 downto 7) = "00000000" then

 if waity = '1' then

 if display_address11 =

"00000000000000" then

 display_address11 <=

display_address11 - 1;

 else

 display_address11 <=

display_address11 - "00000010000001";

 end if;

 else

 display_address11 <=

display_address11 - "00000010000000";

 end if;

 waity <= not waity;

 else

55

 if display_address11 = "00000000000000" then

 display_address11 <=

"11111111111111";

 else

 display_address11 <=

display_address11 - "00000010000000";

 end if;

 end if;

 end if;

 waitx <= not waitx;

 elsif area = '0' and init1 = '0' then

 waitx <= '0';

 waity <= '0';

 display_address11 <= "11111111111111";

 end if;

 end if;

 end process Display_from_memory;

 -- Performs counting and pixel doubling for second active region

 Display_from_memory2 : process(clk_25)

 begin

 if rising_edge(clk_25) then

 if reset = '1' then

 waitx2 <= '0';

 waity2 <= '0';

 display_address21 <= "11111111";

 init2 <= '0';

 elsif area2 = '1' then

 init2 <= '1';

 if waitx2 = '1' then

 if display_address21(7 downto 4) = "0000" then

 if waity2 = '1' then

 if display_address21 = "00000000" then

 display_address21 <=

display_address21 - 1;

 else

 display_address21 <=

display_address21 - "00010001";

 end if;

 else

 display_address21 <= display_address21 -

"00010000";

 end if;

56

 waity2 <= not waity2;

 else

 if display_address21 = "00000000" then

 display_address21 <= "11111111";

 else

 display_address21 <= display_address21 -

"00010000";

 end if;

 end if;

 end if;

 waitx2 <= not waitx2;

 elsif area2 = '0' and init2 = '0' then

 waitx2 <= '0';

 waity2 <= '0';

 display_address21 <= "11111111";

 end if;

 end if;

 end process Display_from_memory2;

 area <= area_x and area_y;

 area2 <= area_x2 and area_y2;

 both_areas <= area and area2;

 -- Maps full aggregate image to first active area

 Mem_map : process(clk)

 begin

 if area = '1' then

 rdaddress <= std_logic_vector(display_address11);

 else

 rdaddress <= "00000000000000";

 end if;

 end process Mem_map;

 -- Maps sample image to second active area

 Mem_map2 : process(clk)

 begin

 if area2 = '1' then

 read_address <= std_logic_vector(display_address21);

 elsif both_areas = '0' then

 read_address <= std_logic_vector(addr_sout);

 else

 read_address <= "00000000";

 end if;

57

 end process Mem_map2;

 display_pixel2 <= data_from;

 -- Registered video signals going to the video DAC

 VideoOut : process (clk_25, reset)

 begin

 if reset = '1' then

 VGA_R <= "0000000000";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 elsif clk_25'event and clk_25 = '1' then

 if area = '1' then

 -- Checks if the display address is within the stiching-sensitive boundary

 if ((display_address11 >= start_RAM+1920) and (display_address11 <=

start_RAM+1935)) or

 ((display_address11 >= start_RAM) and (display_address11 <=

start_RAM+15)) or

 (display_address11 = start_RAM+128) or

 (display_address11 = start_RAM+256) or

 (display_address11 = start_RAM+384) or

 (display_address11 = start_RAM+512) or

 (display_address11 = start_RAM+640) or

 (display_address11 = start_RAM+768) or

 (display_address11 = start_RAM+896) or

 (display_address11 = start_RAM+1024) or

 (display_address11 = start_RAM+1152) or

 (display_address11 = start_RAM+1280) or

 (display_address11 = start_RAM+1408) or

 (display_address11 = start_RAM+1536) or

 (display_address11 = start_RAM+1664) or

 (display_address11 = start_RAM+1792) or

 (display_address11 = start_RAM+128+15) or

 (display_address11 = start_RAM+256+15) or

 (display_address11 = start_RAM+384+15) or

 (display_address11 = start_RAM+512+15) or

 (display_address11 = start_RAM+640+15) or

 (display_address11 = start_RAM+768+15) or

 (display_address11 = start_RAM+896+15) or

 (display_address11 = start_RAM+1024+15) or

 (display_address11 = start_RAM+1152+15) or

 (display_address11 = start_RAM+1280+15) or

 (display_address11 = start_RAM+1408+15) or

 (display_address11 = start_RAM+1536+15) or

 (display_address11 = start_RAM+1664+15) or

 (display_address11 = start_RAM+1792+15) then

 case box_status is

58

 -- Yellow display box

 when "000000" =>

 VGA_R <= "1111111111";

 VGA_G <= "1111111111";

 VGA_B <= "0000000000";

 -- Green display box

 when "000001" =>

 VGA_R <= "0000000000";

 VGA_G <= "1111111111";

 VGA_B <= "0000000000";

 -- Red display box

 when others =>

 VGA_R <= "1111111111";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 end case;

 elsif async_reset = '1' then

 VGA_R <= "0000000000";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 else

 VGA_R <= display_pixel(5 downto 0) & display_pixel(3 downto

0);

 VGA_G <= display_pixel(5 downto 0) & display_pixel(3 downto

0);

 VGA_B <= display_pixel(5 downto 0) & display_pixel(3 downto

0);

 end if;

 elsif area2 = '1' then

 VGA_R <= display_pixel2(5 downto 0) & display_pixel2(3 downto 0);

 VGA_G <= display_pixel2(5 downto 0) & display_pixel2(3 downto 0);

 VGA_B <= display_pixel2(5 downto 0) & display_pixel2(3 downto 0);

 elsif vga_hblank = '0' and vga_vblank = '0' then

 VGA_R <= "1111111111";

 VGA_G <= "1111111111";

 VGA_B <= "1111111111";

 else

 VGA_R <= "0000000000";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 end if;

 end if;

 end process VideoOut;

 VGA_CLK <= clk_25;

 VGA_HS <= not vga_hsync;

59

 VGA_VS <= not vga_vsync;

 VGA_SYNC <= '0';

 VGA_BLANK <= not (vga_hsync or vga_vsync);

end rtl;

full_project.vhd

--

-- DE2 top-level module

--

-- David Calhoun

-- dmc2202@columbia.edu

--

-- Adapted from an original by Terasic Technology, Inc.

-- (DE2_TOP.v, part of the DE2 system board CD supplied by Altera)

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity full_project is

 port (

 -- Clocks

 CLOCK_27, -- 27 MHz

 CLOCK_50, -- 50 MHz

 EXT_CLOCK : in std_logic; -- External Clock

 -- Buttons and switches

 KEY : in std_logic_vector(3 downto 0); -- Push buttons

 SW : in std_logic_vector(17 downto 0); -- DPDT switches

 -- LED displays

 HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7 -- 7-segment displays

 : out std_logic_vector(6 downto 0);

 LEDG : out std_logic_vector(8 downto 0); -- Green LEDs

 LEDR : out std_logic_vector(17 downto 0); -- Red LEDs

 -- RS-232 interface

 UART_TXD : out std_logic; -- UART transmitter

 UART_RXD : in std_logic; -- UART receiver

60

 -- IRDA interface

 -- IRDA_TXD : out std_logic; -- IRDA Transmitter

 IRDA_RXD : in std_logic; -- IRDA Receiver

 -- SDRAM

 DRAM_DQ : inout std_logic_vector(15 downto 0); -- Data Bus

 DRAM_ADDR : out std_logic_vector(11 downto 0); -- Address Bus

 DRAM_LDQM, -- Low-byte Data Mask

 DRAM_UDQM, -- High-byte Data Mask

 DRAM_WE_N, -- Write Enable

 DRAM_CAS_N, -- Column Address Strobe

 DRAM_RAS_N, -- Row Address Strobe

 DRAM_CS_N, -- Chip Select

 DRAM_BA_0, -- Bank Address 0

 DRAM_BA_1, -- Bank Address 0

 DRAM_CLK, -- Clock

 DRAM_CKE : out std_logic; -- Clock Enable

 -- FLASH

 FL_DQ : inout std_logic_vector(7 downto 0); -- Data bus

 FL_ADDR : out std_logic_vector(21 downto 0); -- Address bus

 FL_WE_N, -- Write Enable

 FL_RST_N, -- Reset

 FL_OE_N, -- Output Enable

 FL_CE_N : out std_logic; -- Chip Enable

 -- SRAM

 SRAM_DQ : inout std_logic_vector(15 downto 0); -- Data bus 16 Bits

 SRAM_ADDR : out std_logic_vector(17 downto 0); -- Address bus 18 Bits

 SRAM_UB_N, -- High-byte Data Mask

 SRAM_LB_N, -- Low-byte Data Mask

 SRAM_WE_N, -- Write Enable

 SRAM_CE_N, -- Chip Enable

 SRAM_OE_N : out std_logic; -- Output Enable

 -- USB controller

 OTG_DATA : inout std_logic_vector(15 downto 0); -- Data bus

 OTG_ADDR : out std_logic_vector(1 downto 0); -- Address

 OTG_CS_N, -- Chip Select

 OTG_RD_N, -- Write

 OTG_WR_N, -- Read

 OTG_RST_N, -- Reset

 OTG_FSPEED, -- USB Full Speed, 0 = Enable, Z = Disable

61

 OTG_LSPEED : out std_logic; -- USB Low Speed, 0 = Enable, Z = Disable

 OTG_INT0, -- Interrupt 0

 OTG_INT1, -- Interrupt 1

 OTG_DREQ0, -- DMA Request 0

 OTG_DREQ1 : in std_logic; -- DMA Request 1

 OTG_DACK0_N, -- DMA Acknowledge 0

 OTG_DACK1_N : out std_logic; -- DMA Acknowledge 1

 -- 16 X 2 LCD Module

 LCD_ON, -- Power ON/OFF

 LCD_BLON, -- Back Light ON/OFF

 LCD_RW, -- Read/Write Select, 0 = Write, 1 = Read

 LCD_EN, -- Enable

 LCD_RS : out std_logic; -- Command/Data Select, 0 = Command, 1 = Data

 LCD_DATA : inout std_logic_vector(7 downto 0); -- Data bus 8 bits

 -- SD card interface

 SD_DAT, -- SD Card Data

 SD_DAT3, -- SD Card Data 3

 SD_CMD : inout std_logic; -- SD Card Command Signal

 SD_CLK : out std_logic; -- SD Card Clock

 -- USB JTAG link

 TDI, -- CPLD -> FPGA (data in)

 TCK, -- CPLD -> FPGA (clk)

 TCS : in std_logic; -- CPLD -> FPGA (CS)

 TDO : out std_logic; -- FPGA -> CPLD (data out)

 -- I2C bus

 I2C_SDAT : inout std_logic; -- I2C Data

 I2C_SCLK : out std_logic; -- I2C Clock

 -- PS/2 port

 PS2_DAT, -- Data

 PS2_CLK : in std_logic; -- Clock

 -- VGA output

 VGA_CLK, -- Clock

 VGA_HS, -- H_SYNC

 VGA_VS, -- V_SYNC

 VGA_BLANK, -- BLANK

 VGA_SYNC : out std_logic; -- SYNC

 VGA_R, -- Red[9:0]

62

 VGA_G, -- Green[9:0]

 VGA_B : out std_logic_vector(9 downto 0); -- Blue[9:0]

 -- Ethernet Interface

 ENET_DATA : inout std_logic_vector(15 downto 0); -- DATA bus 16Bits

 ENET_CMD, -- Command/Data Select, 0 = Command, 1 = Data

 ENET_CS_N, -- Chip Select

 ENET_WR_N, -- Write

 ENET_RD_N, -- Read

 ENET_RST_N, -- Reset

 ENET_CLK : out std_logic; -- Clock 25 MHz

 ENET_INT : in std_logic; -- Interrupt

 -- Audio CODEC

 AUD_ADCLRCK : inout std_logic; -- ADC LR Clock

 AUD_ADCDAT : in std_logic; -- ADC Data

 AUD_DACLRCK : inout std_logic; -- DAC LR Clock

 AUD_DACDAT : out std_logic; -- DAC Data

 AUD_BCLK : inout std_logic; -- Bit-Stream Clock

 AUD_XCK : out std_logic; -- Chip Clock

 -- Video Decoder

 TD_DATA : in std_logic_vector(7 downto 0); -- Data bus 8 bits

 TD_HS, -- H_SYNC

 TD_VS : in std_logic; -- V_SYNC

 TD_RESET : out std_logic; -- Reset

 -- General-purpose I/O

 GPIO_0, -- GPIO Connection 0

 GPIO_1 : inout std_logic_vector(35 downto 0) -- GPIO Connection 1

);

end full_project;

architecture datapath of full_project is

 component seven_seg is

 port(

 inbits : in std_logic_vector(3 downto 0);

 outseg : out std_logic_vector(6 downto 0)

);

 end component;

 -- signal clk25 : std_logic := '0';

63

 signal reset_n : std_logic;

 signal counter : unsigned(15 downto 0);

 signal read_address : std_logic_vector(7 downto 0);

 signal data_from : std_logic_vector(7 downto 0);

 signal rden_selects : std_logic_vector(3 downto 0);

 signal delx : std_logic_vector(7 downto 0);

 signal dely : std_logic_vector(7 downto 0);

 --signal wren_selects : std_logic_vector(3 downto 0);

begin

 process (CLOCK_50)

 begin

 if rising_edge(CLOCK_50) then

 if counter = x"FFFF" then

 reset_n <= '1';

 else

 reset_n <= '0';

 counter <= counter + 1;

 end if;

 end if;

 end process;

 PROJECT : entity work.project_full port map(

 clk_0 => CLOCK_50,

 reset_n => reset_n,

 SRAM_ADDR_from_the_sram => SRAM_ADDR,

 SRAM_CE_N_from_the_sram => SRAM_CE_N,

 SRAM_DQ_to_and_from_the_sram => SRAM_DQ,

 SRAM_LB_N_from_the_sram => SRAM_LB_N,

 SRAM_OE_N_from_the_sram => SRAM_OE_N,

 SRAM_UB_N_from_the_sram => SRAM_UB_N,

 SRAM_WE_N_from_the_sram => SRAM_WE_N,

 VGA_BLANK_from_the_vga => VGA_BLANK,

 VGA_B_from_the_vga => VGA_B,

 VGA_CLK_from_the_vga => VGA_CLK,

 VGA_G_from_the_vga => VGA_G,

 VGA_HS_from_the_vga => VGA_HS,

 VGA_R_from_the_vga => VGA_R,

 VGA_SYNC_from_the_vga => VGA_SYNC,

 VGA_VS_from_the_vga => VGA_VS,

 gpio_to_and_from_the_gpio => GPIO_0,

 ledg_from_the_gpio => delx,

 ledr_from_the_gpio => dely,

64

 display_pixel_out_from_the_gpio => data_from,

 read_address_to_the_gpio => read_address,

 rden_selects_to_the_gpio => rden_selects,

 --wren_selects_to_the_gpio => wren_selects,

 data_from_to_the_vga => data_from,

 read_address_from_the_vga => read_address,

 rden_selects_from_the_vga => rden_selects

 --wren_selects_from_the_vga => wren_selects

);

 seg0 : seven_seg

 port map(

 inbits => delx(3 downto 0),

 outseg => HEX0

);

 seg1 : seven_seg

 port map(

 inbits => delx(7 downto 4),

 outseg => HEX1

);

 seg4 : seven_seg

 port map(

 inbits => dely(3 downto 0),

 outseg => HEX4

);

 seg5 : seven_seg

 port map(

 inbits => dely(7 downto 4),

 outseg => HEX5

);

 HEX7 <= (others => '1'); -- Leftmost

 HEX6 <= (others => '1');

 --HEX5 <= "1000111";

 --HEX4 <= "1000111";

 HEX3 <= (others => '1');

 HEX2 <= (others => '1');

 --HEX1 <= (others => '1');

 --HEX0 <= (others => '1'); -- Rightmost

 LEDG <= (others => '1');

 LEDR <= (others => '1');

 LCD_ON <= '1';

 LCD_BLON <= '1';

65

 LCD_RW <= '1';

 LCD_EN <= '0';

 LCD_RS <= '0';

 SD_DAT3 <= '1';

 SD_CMD <= '1';

 SD_CLK <= '1';

 -- SRAM_DQ <= (others => 'Z');

 -- SRAM_ADDR <= (others => '0');

 -- SRAM_UB_N <= '1';

 -- SRAM_LB_N <= '1';

 -- SRAM_CE_N <= '1';

 -- SRAM_WE_N <= '1';

 -- SRAM_OE_N <= '1';

 UART_TXD <= '0';

 DRAM_ADDR <= (others => '0');

 DRAM_LDQM <= '0';

 DRAM_UDQM <= '0';

 DRAM_WE_N <= '1';

 DRAM_CAS_N <= '1';

 DRAM_RAS_N <= '1';

 DRAM_CS_N <= '1';

 DRAM_BA_0 <= '0';

 DRAM_BA_1 <= '0';

 DRAM_CLK <= '0';

 DRAM_CKE <= '0';

 FL_ADDR <= (others => '0');

 FL_WE_N <= '1';

 FL_RST_N <= '0';

 FL_OE_N <= '1';

 FL_CE_N <= '1';

 OTG_ADDR <= (others => '0');

 OTG_CS_N <= '1';

 OTG_RD_N <= '1';

 OTG_RD_N <= '1';

 OTG_WR_N <= '1';

 OTG_RST_N <= '1';

 OTG_FSPEED <= '1';

 OTG_LSPEED <= '1';

 OTG_DACK0_N <= '1';

 OTG_DACK1_N <= '1';

 TDO <= '0';

 ENET_CMD <= '0';

 ENET_CS_N <= '1';

 ENET_WR_N <= '1';

66

 ENET_RD_N <= '1';

 ENET_RST_N <= '1';

 ENET_CLK <= '0';

 TD_RESET <= '0';

 I2C_SCLK <= '1';

 AUD_DACDAT <= '1';

 AUD_XCK <= '1';

 -- Set all bidirectional ports to tri-state

 DRAM_DQ <= (others => 'Z');

 FL_DQ <= (others => 'Z');

 SRAM_DQ <= (others => 'Z');

 OTG_DATA <= (others => 'Z');

 LCD_DATA <= (others => 'Z');

 SD_DAT <= 'Z';

 I2C_SDAT <= 'Z';

 ENET_DATA <= (others => 'Z');

 AUD_ADCLRCK <= 'Z';

 AUD_DACLRCK <= 'Z';

 AUD_BCLK <= 'Z';

 --GPIO_0 <= (others => 'Z');

 GPIO_1 <= (others => 'Z');

end datapath;

map_memory.vhd

--

-- Memory mapper

--

-- Currently configured for mapping a 16x16 block to an arbitrary location in

-- a 128x128 block

--

-- David Calhoun

-- dmc2202@columbia.edu

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity map_memory is

67

 port(

 clock : in std_logic;

 addr_in : in unsigned(13 downto 0);

 wren : in std_logic;

 addr_aout : out unsigned(13 downto 0);

 addr_sout : out unsigned(7 downto 0)

 --rden_selects : in std_logic_vector(3 downto 0)

 --addr_out : out unsigned(13 downto 0)

);

end map_memory;

architecture rtl of map_memory is

 --constant COL_HOP : unsigned := "00000000000001";

 --constant LIN_HOP : unsigned := "00000010000000";

 signal addr_map : unsigned(13 downto 0) := "11111111111111";

 signal addr_start : unsigned(13 downto 0);

 signal addr_cnt : unsigned(7 downto 0) := "11111110";

 signal counter : unsigned(3 downto 0) := "0000";

begin

 process(clock)

 begin

 if(rising_edge(clock)) then

 if addr_cnt = "11111111" then

 addr_start <= addr_in;

 addr_map <= addr_in;

 addr_cnt <= addr_cnt + 1;

 counter <= "0001";

 elsif addr_cnt(3 downto 0) = "1111" then

 -- move by 128

 addr_start <= addr_start + "00000010000000";

 addr_map <= addr_start + "00000010000000";

 addr_cnt <= addr_cnt + 1;

 counter <= "0001";

 else

 addr_map <= addr_start + counter;

 addr_cnt <= addr_cnt + 1;

 counter <= counter + 1;

 end if;

 end if;

 end process;

68

 addr_aout <= addr_map;

 addr_sout <= addr_cnt+1;

end rtl;

Mouse_FSM.vhd

--

-- Finite state machine instantiation for mouse communications

--

-- Originally written by Kishore Padmaraju, kp2362@columbia.edu

--

-- Joint debugging and and editing by David Calhoun, dmc2202@columbia.edu

-- and Kishore Padmaraju

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_unsigned.all;

entity Mouse_FSM is

 port(

 CLOCK, RESET : in std_logic;

 -- 50 MHz clock

 FSM_en : in std_logic; --

FSM_en is to enable or halt the FSM

 GPIO : inout std_logic_vector(35 downto 0); -- GPIO pin connections

 MEM_wr : out std_logic_vector(5 downto 0); -- indicates

whether data is being written to RAM, dx, dy, lc, or rc registers

 data_out : out std_logic_vector(7 downto 0); -- data written out to memory

blocks

 wr_addr : out std_logic_vector(7 downto 0)

);

end Mouse_FSM;

architecture FSM of Mouse_FSM is

 type STATE_TYPE is (INIT, W10, W11, W12, W13, W14, W15,

 IDLE, CF0, CF1, CF2, CF3, CF4, CF5, CF6, CF7, CF8, CF9, CF10,

 M0, M1, M2, M3, M4, M5, M6, M7, M8, M9,

 DX0, DX1, DX2, DX3, DX4, DX5, DX6, DX7, DX8, DX9,

 DY0, DY1, DY2, DY3, DY4, DY5, DY6, DY7, DY8, DY9,

69

 PxD0, PxD1, PxD2, PxD3, PxD4, PxD5, PxD6, PxD7, PxD8, PxD9, PxD10, PxD11, PxD12,

 W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, LC, RC, N1);

 signal Y: STATE_TYPE := INIT;

 signal SDIO_en: std_logic := '1'; -- sets GPIO pin to read/write (set 0/1) for SDIO

 signal SCLK_en: std_logic := '1'; -- sets GPIO pin to read/write (set 0/1) for SCLK

 signal PD_en: std_logic := '1'; -- sets GPIO pin to read/write (set 0/1) for PD

 signal SDIO: std_logic := '0';

 signal SCLK: std_logic := '0'; -- SCLK is clock driving communication with Optical processor

 signal PD: std_logic := '0'; -- PD is power-down pin, set to 0 to keep Optical

processor constantly on

 constant counter_size_CLK: integer := 7; -- 8 bits, counter will stop at "10000000",

yielding a clock rate of 97.65 kHz

 constant counter_size_100us: integer := 13; -- 5 bits, counter will stop at "10000", yielding a

wait of 163.8 us (> 100 us)

 signal CLK: std_logic := '1'; -- Slow clock driving state

transitions (has to be < 4 MHz to work with optical processor chip)

 signal counter_CLK: unsigned(counter_size_CLK downto 0) := (others => '0');

-- counter to generate slow clock from 50 MHz clock

 signal counter_approx5ms: unsigned(19 downto 0) := (others => '0');

 -- counter to wait 4 ms

 signal counter_100us: unsigned(counter_size_100us downto 0) := (others =>

'0'); -- counter to wait at least 100us

 signal counter_mem: unsigned(counter_size_CLK downto 0) :=

(others => '0'); -- counter for waiting between memory writes

 constant CF_reg_addr: std_logic_vector(7 downto 0) := X"0A"; -- address of configuration

register

 constant MOT_reg_addr: std_logic_vector(7 downto 0) := X"02"; -- address of motion

register

 constant DX_reg_addr: std_logic_vector(7 downto 0) := X"03"; -- address of dx coordinate

register

 constant DY_reg_addr: std_logic_vector(7 downto 0) := X"04"; -- address of dy coordinate

register

 constant DATA_reg_addr: std_logic_vector(7 downto 0) := X"0C"; -- address of data_lower

register (register that holds the pixel value)

 constant CF_reg_dft: std_logic_vector(7 downto 0) := X"01"; -- configuration register default

setting, sleep mode turned off

 constant CF_reg_pxd: std_logic_vector(7 downto 0) := X"09"; -- configuration register pixel-

dump setting

 signal pxd_en: std_logic := '0';

-- flag indicating pixel dump

 signal px_val: std_logic_vector(7 downto 0) := (others => '0');

 signal px_addr: unsigned(7 downto 0) := (others => '0');

 signal MOT_reg_val: std_logic_vector(7 downto 0) := (others => '0'); -- holds the value of the read

motion register, the MSB indicates motion occured

70

 signal DX_reg_val: std_logic_vector(7 downto 0) := (others => '0'); -- holds the value of the

read dx coordinate register

 signal DY_reg_val: std_logic_vector(7 downto 0) := (others => '0'); -- holds the value of the

read dy coordinate register

 signal bit_num: unsigned(3 downto 0);

-- keeps track of bit numbers when reading or writing registers

 signal bit_num_prev: unsigned(3 downto 0);

 signal LC_val: std_logic := '0';

-- high-value indicates left-click during image sample

 signal RC_val: std_logic := '0';

-- high-value indicates right-click during image sample

 signal img_smp: unsigned(3 downto 0) := "0000"; -- keeps track of image sequences

 signal mem_write: std_logic_vector(5 downto 0) := "000000"; -- flags indicating memory

writes, "00001":dx coordinate, "010":dy coordinate, "100":pixel value

 signal mem_ff1 : std_logic_vector(5 downto 0) := "000000"; -- flip-flops for detecting

changes in memory write conditions

 signal mem_ff2 : std_logic_vector(5 downto 0) := "000000";

 --signal counter_approx5ms_test : unsigned(8 downto 0) := (others => '0');

 signal clk_ff : std_logic_vector(1 downto 0); -- flip flop to detect clock transitions

 signal pxd_en_ff : std_logic_vector(1 downto 0);

 signal pxd_addr_ff : std_logic_vector(1 downto 0);

 signal gpio_ff: std_logic_vector(1 downto 0);

 signal img_smp_ff: std_logic_vector(1 downto 0);

 signal click_ff: std_logic_vector(1 downto 0);

 signal mem_write_ff: std_logic_vector(1 downto 0);

 signal dump_skip : std_logic :='1';

 signal DX_reg_temp : std_logic_vector(7 downto 0) := (others => '0');

 signal DY_reg_temp : std_logic_vector(7 downto 0) := (others => '0');

begin

 process(CLOCK)

 begin

 if reset = '1' then

 GPIO(0) <= 'Z';

 GPIO(1) <= 'Z';

 GPIO(2) <= 'Z';

 elsif rising_edge(CLOCK) then

 if SDIO_en='1' then

 GPIO(0) <= SDIO;

 else

 GPIO(0) <= 'Z';

 end if;

 if SCLK_en='1' then

 GPIO(1) <= SCLK;

 else

71

 GPIO(1) <= 'Z';

 end if;

 if PD_en='1' then

 GPIO(2) <= PD;

 else

 GPIO(2) <= 'Z';

 end if;

 end if;

 end process;

 GPIO(3) <= 'Z'; -- left-click

 GPIO(4) <= 'Z'; -- right-click

 GPIO(5) <= CLK;

 GPIO(7) <= reset;

 Write_to_Memory: process(CLOCK)

 begin

 if(rising_edge(CLOCK)) then

 mem_ff1 <= mem_write;

 mem_ff2 <= mem_ff1;

 MEM_wr <= mem_ff1 and (not mem_ff2);

 case mem_write is

 when "000001" =>

 wr_addr <= x"00";

 -- convert 8-bit 2's complement to 16-bit 2's complement by

repeating the MSB

-- data_out <= std_logic_vector(signed(DX_reg_val) +

signed(DX_reg_temp));

-- DX_reg_temp <= DX_reg_val;

 data_out <= DX_reg_val;

 when "000010" =>

 wr_addr <= x"00";

 -- convert 8-bit 2's complement to 16-bit 2's complement by

repeating the MSB

-- data_out <= std_logic_vector(signed(DY_reg_val) +

signed(DY_reg_temp));

-- DY_reg_temp <= DY_reg_val;

 data_out <= DY_reg_val;

 when "000100" =>

 wr_addr <= std_logic_vector(px_addr);

-- if px_addr = "10001000" then

-- data_out <= "11111111";

-- else

-- data_out <= "00000000";

-- end if;

72

 data_out <= px_val;

 when "001000" =>

 wr_addr <= x"00";

 data_out <= (7 downto 1 => '0') & LC_val;

 when "010000" =>

 wr_addr <= x"00";

 data_out <= (7 downto 1 => '0') & RC_val;

 when "100000" =>

 wr_addr <= x"00";

 data_out <= (7 downto 4 => '0') & std_logic_vector(img_smp);

 when others =>

 wr_addr <= x"00";

 data_out <= (others => '0');

 end case;

 end if;

 end process Write_to_Memory;

 Slow_Clock: process(CLOCK)

 begin

 if reset = '1' then

 CLK <= '0';

 counter_CLK <= (others => '0');

 elsif(rising_edge(CLOCK)) then

 if(counter_CLK=x"20") then

 CLK <= NOT CLK;

 counter_CLK <= (others => '0');

 else

 counter_CLK <= counter_CLK + 1;

 end if;

 end if;

 end process Slow_Clock;

 process(CLOCK)

 begin

 if reset = '1' then

 Y <= INIT;

 elsif(rising_edge(CLOCK)) then

 case Y is

 when INIT =>

 if(CLK='1') then

 Y <= W10;

 end if;

 when W10 =>

 if(CLK='0') then

 if (counter_approx5ms(18)='1') then

 Y <= W11;

 end if;

 end if;

 when W11 =>

73

 if(CLK='1') then

 Y <= W12;

 end if;

 when W12 =>

 if(CLK='0') then

 if counter_100us(13) = '1' then

 Y <= W13;

 end if;

 end if;

 when W13 =>

 if(CLK='1') then

 Y <= W14;

 end if;

 when W14 =>

 if(CLK='0') then

 if (counter_approx5ms(18)='1') then

 Y <= W15;

 end if;

 end if;

 when W15 =>

 if(CLK='1') then

 Y <= IDLE;

 end if;

 when IDLE =>

 if(CLK='0' AND FSM_en='1') then

 Y <= CF0;

 end if;

 when CF0 =>

 if(CLK='1') then

 Y <= CF1;

 end if;

 when CF1 =>

 if(CLK='0') then

 Y <= CF2;

 end if;

 when CF2 =>

 if(CLK='1') then

 Y <= CF3;

 end if;

 when CF3 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= CF5;

 else

 Y <= CF4;

 end if;

 end if;

74

 when CF4 =>

 if(CLK='1') then

 Y <= CF3;

 end if;

 when CF5 =>

 if(CLK='1') then

 if(pxd_en='0') then

 Y <= CF6;

 elsif(pxd_en='1' and (DX_reg_val /= "00000000" or DY_reg_val

/= "00000000")) then

 --and (DX_reg_val /= "00000000" or DY_reg_val /= "00000000")

 Y <= CF8;

 end if;

 end if;

 when CF6 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= CF10;

 else

 Y <= CF7;

 end if;

 end if;

 when CF7 =>

 if(CLK='1') then

 Y <= CF6;

 end if;

 when CF8 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= CF10;

 else

 Y <= CF9;

 end if;

 end if;

 when CF9 =>

 if(CLK='1') then

 Y <= CF8;

 end if;

 when CF10 =>

 if(CLK='1') then

 Y <= W0;

 end if;

 when W0 =>

 if(CLK='0') then

 Y <= W1;

 end if;

 when W1 =>

 if(CLK='1') then

75

 if(counter_100us(13)='1') then

 if(pxd_en='0') then

 Y <= M0;

 elsif(pxd_en='1' and (DX_reg_val /= "00000000" or

DY_reg_val /= "00000000")) then

 Y <= PxD0;

 end if;

 else

 Y <= W0;

 end if;

 end if;

 when M0 =>

 if(CLK='0') then

 Y <= M1;

 end if;

 when M1 =>

 if(CLK='1') then

 Y <= M2;

 end if;

 when M2 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= M4;

 else

 Y <= M3;

 end if;

 end if;

 when M3 =>

 if(CLK='1') then

 Y <= M2;

 end if;

 when M4 =>

 if(CLK='1') then

 Y <= M5;

 end if;

 when M5 =>

 if(CLK='0') then

 Y <= W2;

 end if;

 when W2 =>

 if(CLK='1') then

 Y <= W3;

 end if;

 when W3 =>

 if(CLK='0') then

 if(counter_100us(13)='1') then

 Y <= M6;

 else

76

 Y <= W2;

 end if;

 end if;

 when M6 =>

 if(CLK='1') then

 Y <= M7;

 end if;

 when M7 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= M9;

 else

 Y <= M8;

 end if;

 end if;

 when M8 =>

 if(CLK='1') then

 Y <= M7;

 end if;

 when M9 =>

 if(CLK='1') then

 if(MOT_reg_val(7)='0') then

 Y <= IDLE;

 elsif(MOT_reg_val(7)='1') then

 Y <= DX0;

 --Y <= IDLE;

 end if;

 end if;

 when DX0 =>

 if(CLK='0') then

 Y <= DX1;

 end if;

 when DX1 =>

 if(CLK='1') then

 Y <= DX2;

 end if;

 when DX2 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= DX4;

 else

 Y <= DX3;

 end if;

 end if;

 when DX3 =>

 if(CLK='1') then

 Y <= DX2;

 end if;

 when DX4 =>

77

 if(CLK='1') then

 Y <= DX5;

 end if;

 when DX5 =>

 if(CLK='0') then

 Y <= W4;

 end if;

 when W4 =>

 if(CLK='1') then

 Y <= W5;

 end if;

 when W5 =>

 if(CLK='0') then

 if(counter_100us(13)='1') then

 Y <= DX6;

 else

 Y <= W4;

 end if;

 end if;

 when DX6 =>

 if(CLK='1') then

 Y <= DX7;

 end if;

 when DX7 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= DX9;

 else

 Y <= DX8;

 end if;

 end if;

 when DX8 =>

 if(CLK='1') then

 Y <= DX7;

 end if;

 when DX9 =>

 if(CLK='1') then

 Y <= DY0;

 end if;

 when DY0 =>

 if(CLK='0') then

 Y <= DY1;

 end if;

 when DY1 =>

 if(CLK='1') then

 Y <= DY2;

 end if;

 when DY2 =>

78

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= DY4;

 else

 Y <= DY3;

 end if;

 end if;

 when DY3 =>

 if(CLK='1') then

 Y <= DY2;

 end if;

 when DY4 =>

 if(CLK='1') then

 Y <= DY5;

 end if;

 when DY5 =>

 if(CLK='0') then

 Y <= W6;

 end if;

 when W6 =>

 if(CLK='1') then

 Y <= W7;

 end if;

 when W7 =>

 if(CLK='0') then

 if(counter_100us(13)='1') then

 Y <= DY6;

 else

 Y <= W6;

 end if;

 end if;

 when DY6 =>

 if(CLK='1') then

 Y <= DY7;

 end if;

 when DY7 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= DY9;

 else

 Y <= DY8;

 end if;

 end if;

 when DY8 =>

 if(CLK='1') then

 Y <= DY7;

 end if;

 when DY9 =>

79

 if(CLK='1') then

 Y <= CF0;

 end if;

 when PxD0 =>

 if(CLK='0') then

 Y <= PxD1;

 end if;

 when PxD1 =>

 if(CLK='1') then

 Y <= PxD2;

 end if;

 when PxD2 =>

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= PxD4;

 else

 Y <= PxD3;

 end if;

 end if;

 when PxD3 =>

 if(CLK='1') then

 Y <= PxD2;

 end if;

 when PxD4 =>

 if(CLK='1') then

 Y <= PxD5;

 end if;

 when PxD5 =>

 if(CLK='0') then

 Y <= W8;

 end if;

 when W8 =>

 if(CLK='1') then

 Y <= W9;

 end if;

 when W9 =>

 if(CLK='0') then

 if(counter_100us(13)='1') then

 Y <= PxD6;

 else

 Y <= W8;

 end if;

 end if;

 when PxD6 =>

 if(CLK='1') then

 Y <= PxD7;

 end if;

 when PxD7 =>

80

 if(CLK='0') then

 if(bit_num=X"0") then

 Y <= PxD9;

 else

 Y <= PxD8;

 end if;

 end if;

 when PxD8 =>

 if(CLK='1') then

 Y <= PxD7;

 end if;

 when PxD9 =>

 if(CLK='1') then

 if(px_val(7)='1') then

 --Y <= PxD1;

 Y <= PxD12;

 elsif(px_val(7)='0') then

 if(px_addr=X"FF") then

 Y <= PxD11;

 else

 Y <= PxD10;

 end if;

 end if;

 end if;

 when PxD10 =>

 if(CLK='0') then

 Y <= PxD1;

 end if;

 when PxD12 =>

 if(CLK='0') then

 Y <= PxD1;

 end if;

 when PxD11 =>

 if(CLK='0') then

 Y <= LC;

 end if;

 when LC =>

 if(CLK='1') then

 Y <= RC;

 end if;

 when RC =>

 if(CLK='0') then

 Y <= N1;

 end if;

 when N1 =>

 if(CLK='1') then

 Y <= IDLE;

 end if;

81

 end case;

 end if;

 end process;

 -- Handle setting SDIO pin to write or read

 process(Y)

 begin

 case Y is

 when

M5|W2|W3|M6|M7|M8|DX5|W4|W5|DX6|DX7|DX8|DY5|W6|W7|DY6|DY7|DY8|PxD5|W8|W9|PxD6|PxD7|

PxD8 =>

 SDIO_en <= '0';

 when others =>

 SDIO_en <= '1';

 end case;

 end process;

 -- Handle SCLK generation, writing of SDIO pin

 process(Y)

 begin

 case Y is

 when INIT =>

 SCLK <= '0';

 SDIO <= '0';

 when W10 =>

 SCLK <= '0';

 SDIO <= '0';

 WHEN W11 =>

 SCLK <= '0';

 SDIO <= '0';

 WHEN W12 =>

 SCLK <= '1';

 SDIO <= '1';

 WHEN W13 =>

 SCLK <= '1';

 SDIO <= '1';

-- WHEN W16 =>

-- SCLK <= '1';

-- SDIO <= '1';

-- WHEN W17 =>

-- SCLK <= '1';

-- SDIO <= '1';

 WHEN W14 =>

 SCLK <= '1';

 SDIO <= '1';

 WHEN W15 =>

 SCLK <= '1';

 SDIO <= '1';

 when IDLE =>

82

 SCLK <= '1';

 SDIO <= '1';

 when CF0 =>

 SCLK <= '1';

 SDIO <= '1';

 when CF1 =>

 SCLK <= '0';

 SDIO <= '1';

 when CF2 =>

 SCLK <= '1';

 SDIO <= '1';

 when CF3 =>

 SCLK <= '0';

 SDIO <= CF_reg_addr(to_integer(bit_num));

 when CF4 =>

 SCLK <= '1';

 SDIO <= CF_reg_addr(to_integer(bit_num_prev));

 when CF5 =>

 SCLK <= '1';

 SDIO <= CF_reg_addr(to_integer(bit_num_prev));

 when CF6 =>

 SCLK <= '0';

 SDIO <= CF_reg_dft(to_integer(bit_num));

 when CF7 =>

 SCLK <= '1';

 SDIO <= CF_reg_dft(to_integer(bit_num_prev));

 when CF8 =>

 SCLK <= '0';

 SDIO <= CF_reg_pxd(to_integer(bit_num));

 when CF9 =>

 SCLK <= '1';

 SDIO <= CF_reg_pxd(to_integer(bit_num_prev));

 when CF10 =>

 SCLK <= '1';

 SDIO <= '1';

 when W0 =>

 SCLK <= '1';

 SDIO <= '1'; -- SDIO: Don't Care

 when W1 =>

 SCLK <= '1';

 SDIO <= '1'; -- SDIO: Don't Care

 when M0 =>

 SCLK <= '0';

 SDIO <= '0';

 when M1 =>

 SCLK <= '1';

 SDIO <= '0';

 when M2 =>

 SCLK <= '0';

83

 SDIO <= MOT_reg_addr(to_integer(bit_num));

 when M3 =>

 SCLK <= '1';

 SDIO <= MOT_reg_addr(to_integer(bit_num_prev));

 when M4 =>

 SCLK <= '1';

 SDIO <= MOT_reg_addr(to_integer(bit_num));

 when M5 =>

 SCLK <= '1';

 SDIO <= '1'; -- SDIO: Don't Care

 when W2 =>

 SCLK <= '1';

 SDIO <= '1'; -- SDIO: Don't Care

 when W3 =>

 SCLK <= '1';

 SDIO <= '1'; -- SDIO: Don't Care

 when M6 =>

 SCLK <= '0';

 SDIO <= '1'; -- SDIO: Don't Care

 when M7 =>

 SCLK <= '1';

 SDIO <= '1'; -- SDIO: Don't Care

 when M8 =>

 SCLK <= '0';

 SDIO <= '1'; -- SDIO: Don't Care

 when M9 =>

 SCLK <= '1';

 SDIO <= '1'; -- SDIO: Don't Care

 when DX0 =>

 SCLK <= '0';

 SDIO <= '0';

 when DX1 =>

 SCLK <= '1';

 SDIO <= '0';

 when DX2 =>

 SCLK <= '0';

 SDIO <= DX_reg_addr(to_integer(bit_num));

 when DX3 =>

 SCLK <= '1';

 SDIO <= DX_reg_addr(to_integer(bit_num_prev));

 when DX4 =>

 SCLK <= '1';

 SDIO <= DX_reg_addr(to_integer(bit_num));

 when DX5 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when W4 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

84

 when W5 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when DX6 =>

 SCLK <= '0';

 SDIO <= '0'; -- SDIO: Don't Care

 when DX7 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when DX8 =>

 SCLK <= '0';

 SDIO <= '0'; -- SDIO: Don't Care

 when DX9 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when DY0 =>

 SCLK <= '0';

 SDIO <= '0';

 when DY1 =>

 SCLK <= '1';

 SDIO <= '0';

 when DY2 =>

 SCLK <= '0';

 SDIO <= DY_reg_addr(to_integer(bit_num));

 when DY3 =>

 SCLK <= '1';

 SDIO <= DY_reg_addr(to_integer(bit_num_prev));

 when DY4 =>

 SCLK <= '1';

 SDIO <= DY_reg_addr(to_integer(bit_num));

 when DY5 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when W6 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when W7 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when DY6 =>

 SCLK <= '0';

 SDIO <= '0'; -- SDIO: Don't Care

 when DY7 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when DY8 =>

 SCLK <= '0';

 SDIO <= '0'; -- SDIO: Don't Care

 when DY9 =>

85

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when PxD0 =>

 SCLK <= '0';

 SDIO <= '0';

 when PxD1 =>

 SCLK <= '1';

 SDIO <= '0';

 when PxD2 =>

 SCLK <= '0';

 SDIO <= DATA_reg_addr(to_integer(bit_num));

 when PxD3 =>

 SCLK <= '1';

 SDIO <= DATA_reg_addr(to_integer(bit_num_prev));

 when PxD4 =>

 SCLK <= '1';

 SDIO <= DATA_reg_addr(to_integer(bit_num));

 when PxD5 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when W8 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when W9 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when PxD6 =>

 SCLK <= '0';

 SDIO <= '0'; -- SDIO: Don't Care

 when PxD7 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when PxD8 =>

 SCLK <= '0';

 SDIO <= '0'; -- SDIO: Don't Care

 when PxD9 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when PxD10 =>

 SCLK <= '0';

 SDIO <= '0';

 when PxD11 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when PxD12 =>

 SCLK <= '0';

 SDIO <= '0';

 when LC =>

 SCLK <= '1';

86

 SDIO <= '0'; -- SDIO: Don't Care

 when RC =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 when N1 =>

 SCLK <= '1';

 SDIO <= '0'; -- SDIO: Don't Care

 end case;

 end process;

 -- Handle reading of GPIO(2) [SDIO} pin

 process(CLOCK)

 begin

 if(rising_edge(CLOCK)) then

 gpio_ff(0) <= CLK;

 gpio_ff(1) <= gpio_ff(0);

 if(gpio_ff(0) /= gpio_ff(1)) then

 case Y is

 when M7 =>

 MOT_reg_val(to_integer(bit_num)) <= GPIO(0);

 when DX7 =>

 DX_reg_val(to_integer(bit_num)) <= GPIO(0);

 when DY7 =>

 DY_reg_val(to_integer(bit_num)) <= GPIO(0);

 when PxD7 =>

 px_val(to_integer(bit_num)) <= GPIO(0);

 when others =>

 null;

 end case;

 end if;

 end if;

 end process;

 -- Handle incrementing and resetting of 4 ms counter

-- process(Y,CLK)

-- begin

--

-- case Y is

-- when W10|W14 =>

-- counter_approx5ms <= counter_approx5ms + 1;

--

-- when W16 =>

-- counter_approx5ms <= (others => '0');

-- when others =>

-- counter_approx5ms_test <= counter_approx5ms;

-- end case;

--

87

-- end process;

 --counter_approx5ms_test <= counter_approx5ms;

 -- Handle decrementing and resetting of bit_num

 process(CLOCK)

 begin

 if(rising_edge(CLOCK)) then

 clk_ff(0) <= CLK;

 clk_ff(1) <= clk_ff(0);

 if(clk_ff(0) /= clk_ff(1)) then

 case Y is

 when

CF4|CF7|CF9|M3|M8|DX3|DX8|DY3|DY8|PxD3|PxD8 =>

 bit_num <= bit_num - 1;

 when CF2|M1|DX1|DY1|PxD1 =>

 bit_num <= x"6"; -- start at 7th bit-position

 when CF5|M6|DX6|DY6|PxD6 =>

 bit_num <= x"7"; -- start at 8th bit-position

 when CF6|CF8|CF3|M2|DX2|DY2|PxD2 =>

 bit_num_prev <= bit_num;

 when others =>

 null;

 end case;

 end if;

 end if;

 end process;

-- process(Y)

-- begin

-- case Y is

-- when CF4|CF7|CF9|M3|M8|DX3|DX8|DY3|DY8|PxD3|PxD8 =>

-- bit_num <= bit_num - 1;

-- when CF2|M1|DX1|DY1|PxD1 =>

-- bit_num <= x"6"; -- start at 7th bit-position

-- when CF5|M6|DX6|DY6|PxD6 =>

-- bit_num <= x"7"; -- start at 8th bit-position

-- when others =>

-- null;

-- end case;

-- end process;

 -- Handle flags for indicating memory write

 process(Y)

 begin

88

-- if rising_edge(CLOCK) then

-- mem_write_ff(0) <= CLK;

-- mem_write_ff(1) <= mem_write_ff(0);

-- if (mem_write_ff(0) /= mem_write_ff(1)) then

 case Y is

 when DX9 =>

 mem_write <= "000001";

 when DY9 =>

 mem_write <= "000010";

 when PxD9 =>

 mem_write <= "000100";

 when LC =>

 mem_write <= "001000";

 when RC =>

 mem_write <= "010000";

 when PxD11 =>

 mem_write <= "100000";

 when others =>

 mem_write <= "000000";

 end case;

-- end if;

-- end if;

 end process;

 -- Handle flags for indicated left and right clicks

 process(CLOCK)

 begin

 if rising_edge(CLOCK) then

 click_ff(0) <= CLK;

 click_ff(1) <= click_ff(0);

 if click_ff(0) /= click_ff(1) then

 case Y is

 when LC =>

 lc_val <= GPIO(3);

 when RC =>

 rc_val <= GPIO(4);

 when others =>

 null;

 end case;

 end if;

 end if;

 end process;

 -- Handle pixel dump flag

 process(CLOCK)

 begin

 if rising_edge(CLOCK) then

 pxd_en_ff(0) <= CLK;

 pxd_en_ff(1) <= pxd_en_ff(0);

89

 if pxd_en_ff(0) /= pxd_en_ff(1) then

 case Y is

 when PxD11 =>

 pxd_en <= '0';

 when Dx0 =>

-- if dump_skip = '0' then

 pxd_en <= '1';

-- dump_skip <= '1';

-- else

-- dump_skip <= '0';

-- end if;

 when others =>

 null;

 end case;

 end if;

 end if;

 end process;

 -- Handle flags for px_addr incrementing

 process(CLOCK)

 begin

 if rising_edge(CLOCK) then

 pxd_addr_ff(0) <= CLK;

 pxd_addr_ff(1) <= pxd_addr_ff(0);

 if pxd_addr_ff(0) /= pxd_addr_ff(1) then

 case Y is

 when PxD0 =>

 px_addr <= X"00";

 when PxD10 =>

 px_addr <= px_addr + 1;

 when others =>

 null;

 end case;

 end if;

 end if;

 end process;

 --Change state of PD output

 process(Y)

 begin

 case Y is

 when W12|W13 =>

 PD <= '1';

 when others =>

 PD <= '0';

 end case;

 end process;

90

 -- Handle incrementing and resetting of 100 us counter

 process(CLOCK)

 begin

 if reset = '1' then

 counter_100us <= (others => '0');

 elsif rising_edge(CLOCK) then

 case Y is

 when W12|W0|W2|W4|W6|W8 =>

 counter_100us <= counter_100us + 1;

 when N1|CF10|M5|DX5|DY5|PxD5 =>

 counter_100us <= (others => '0');

 when others =>

 counter_100us <= counter_100us;

 end case;

 end if;

 end process;

 -- Handle incrementing and resetting of 4 ms counter

 process(CLOCK)

 begin

 if reset = '1' then

 counter_approx5ms <= (others => '0');

 elsif rising_edge(CLOCK) then

 case Y is

 when W10|W14 =>

 counter_approx5ms <= counter_approx5ms + 1;

 GPIO(6) <= counter_approx5ms(4);

 when others =>

 counter_approx5ms <= (others => '0');

 GPIO(6) <= '0';

 end case;

 end if;

 end process;

 -- Handle incrementing of image sample

 process(CLOCK)

 begin

 if rising_edge(CLOCK) then

 img_smp_ff(0) <= CLK;

 img_smp_ff(1) <= img_smp_ff(0);

 if img_smp_ff(0) /= img_smp_ff(1) then

 case Y is

 when N1 =>

 img_smp <= img_smp + 1;

 when others =>

 img_smp <= img_smp;

 end case;

 end if;

91

 end if;

 end process;

end FSM;

seven_seg.vhd

--

-- Seven segment display driver

--

-- David Calhoun

-- dmc2202@columbia.edu

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity seven_seg is

port(

 inbits : in std_logic_vector(3 downto 0);

 outseg : out std_logic_vector(6 downto 0)

);

end seven_seg;

architecture conv of seven_seg is

signal outsig : std_logic_vector(6 downto 0);

begin

 process (inbits)

 begin

 case inbits is

 when x"1" =>

 outsig <= "1111001";

 when x"2" =>

 outsig <= "0100100";

 when x"3" =>

 outsig <= "0110000";

 when x"4" =>

 outsig <= "0011001";

 when x"5" =>

 outsig <= "0010010";

92

 when x"6" =>

 outsig <= "0000010";

 when x"7" =>

 outsig <= "1111000";

 when x"8" =>

 outsig <= "0000000";

 when x"9" =>

 outsig <= "0011000";

 when x"a" =>

 outsig <= "0001000";

 when x"b" =>

 outsig <= "0000011";

 when x"c" =>

 outsig <= "1000110";

 when x"d" =>

 outsig <= "0100001";

 when x"e" =>

 outsig <= "0000110";

 when x"f" =>

 outsig <= "0001110";

 when x"0" =>

 outsig <= "1000000";

 end case;

 end process;

 outseg <= outsig;

end conv;

hello_world.c
#include <io.h>

#include <system.h>

#include <stdio.h>

//write data

#define IOWR_DATA(base, offset, data) \

 IOWR_16DIRECT(base, (offset) * 2, data)

//read data

#define IORD_DATA(base, offset) \

 IORD_16DIRECT(base, (offset) * 2)

#define RD_SYNC 0

#define RD_start 1

#define RD_readselects 2

#define WR_start 3

#define WR_readselects 4

#define WR_aggr 5

#define WR_box 6

#define WR_reset 7

93

#define RD_leftclick 0

#define RD_rightclick 1

#define RD_dx 2

#define RD_dy 3

#define RD_snum 4

/*void delay(int input){

 int i, j;

 for (i=0;i<input;i++){

 j=0;

 }

}*/

int main()

{

 //alt_u8 blank = 0;

 int i = 0;

 //bottom right corner of pixel dump

 alt_u16 xcoordinate = 0;

 alt_u16 ycoordinate = 0;

 int outOfBoundsX = 0;

 int outOfBoundsY= 0;

 alt_8 deltaX;

 alt_8 deltaY;

 int isOutOfBounds=0;

 //alt_8 lastDeltaX = IORD_DATA(GPIO_BASE, RD_dx);

 //alt_8 lastDeltaY = IORD_DATA(GPIO_BASE, RD_dy);

 //alt_u16 last_sample = IORD(GPIO_BASE, RD_snum);

 //alt_u16 this_sample;

 //alt_u16 writeable = 1;

 alt_u16 leftclick = 1;

 int xcoordinate_temp = 0;

 int ycoordinate_temp = 0;

 //alt_u16 start_RAM = 0;

 IOWR_DATA(VGA_BASE, WR_readselects, 1);

 IOWR_DATA(VGA_BASE,WR_start,0);

 IOWR_DATA(VGA_BASE, WR_reset, 0);

 IOWR_DATA(VGA_BASE, WR_box, 0);

 alt_u16 lastcurrentAllRAMS=0x0;

 for(;;){

94

 //reset

 if(IORD_DATA(GPIO_BASE, RD_rightclick)==0){

 IOWR_DATA(VGA_BASE, WR_aggr, 0);

 IOWR_DATA(VGA_BASE, WR_start, 0);

 xcoordinate = 0;

 ycoordinate = 0;

 outOfBoundsX = 0;

 outOfBoundsY = 0;

 isOutOfBounds=0;

 IOWR_DATA(VGA_BASE, WR_aggr, 1);

 for(i=0; i<15; i++){

 IOWR_DATA(VGA_BASE, WR_reset, 1);

 }

 IOWR_DATA(VGA_BASE, WR_aggr, 0);

 continue;

 }

 else {

 IOWR_DATA(VGA_BASE, WR_reset, 0);

 //read from address 1 for x position of sample

 deltaX = IORD_DATA(GPIO_BASE, RD_dx);

 //read from address 2 for y position of sample

 deltaY = IORD_DATA(GPIO_BASE, RD_dy);

 leftclick = IORD_DATA(GPIO_BASE, RD_leftclick);

 //IOWR_DATA(VGA_BASE, WR_reset, 0);

 alt_u16 currentAllRAMS = IORD_DATA(GPIO_BASE,RD_snum);

 //printf("%x\n",currentAllRAMS);

 if (currentAllRAMS == lastcurrentAllRAMS){

 continue;

 }

 alt_u16 currentRAM1 = currentAllRAMS & 0xF;

 alt_u16 currentRAM2 = (currentAllRAMS>>4) & 0xF;

 alt_u16 currentRAM3 = (currentAllRAMS>>8) & 0xF;

 alt_u16 currentRAM4 = (currentAllRAMS>>12) & 0xF;

 alt_u16 lastRAM1 = lastcurrentAllRAMS & 0xF;

 alt_u16 lastRAM2 = (lastcurrentAllRAMS>>4) & 0xF;

 alt_u16 lastRAM3 = (lastcurrentAllRAMS>>8) & 0xF;

 alt_u16 lastRAM4 = (lastcurrentAllRAMS>>12) & 0xF;

 alt_u16 ramWhichIsDifferent;

 if(currentRAM1!=lastRAM1){

 //printf("%x\n",currentAllRAMS);

95

 ramWhichIsDifferent = 0x1;

 }

 else if(currentRAM2!=lastRAM2){

 //printf("%x\n",currentAllRAMS);

 ramWhichIsDifferent=0x2;

 }

 else if(currentRAM3!=lastRAM3){

 //printf("%x\n",currentAllRAMS);

 ramWhichIsDifferent=0x4;

 }

 else{

 //printf("%x\n",currentAllRAMS);

 ramWhichIsDifferent=0x8;

 }

 IOWR(VGA_BASE, WR_readselects, ramWhichIsDifferent);

 lastcurrentAllRAMS = currentAllRAMS;

 if (!isOutOfBounds){

 xcoordinate_temp=xcoordinate-deltaX;

 ycoordinate_temp=ycoordinate+deltaY;

 }else{

 xcoordinate_temp=outOfBoundsX-deltaX;

 ycoordinate_temp=outOfBoundsY+deltaY;

 }

 //Boundary conditions

 //printf("xcoordinate_temp is %d\n", xcoordinate_temp);

 //printf("ycoordinate_temp is %d\n", ycoordinate_temp);

 //IOWR_DATA(VGA_BASE, WR_box, 0);

 //IOWR_DATA(VGA_BASE, WR_aggr, 0);

 if(xcoordinate_temp>=0 && ycoordinate_temp>=0 && xcoordinate_temp<=112

&& ycoordinate_temp<=112){

 xcoordinate-=deltaX;

 ycoordinate+=deltaY;

 outOfBoundsX = xcoordinate;

 outOfBoundsY = ycoordinate;

 if ((deltaX == 0) && (deltaY == 0)){

 printf("er\n");

 }

 //write back new position

 IOWR_DATA(VGA_BASE, WR_start, ycoordinate+xcoordinate*128);

 if((!leftclick)){

96

 //green if writing

 IOWR_DATA(VGA_BASE, WR_box, 1);

 for(i=0; i<15; i++){

 IOWR_DATA(VGA_BASE, WR_aggr, 1);

 }

 //printf("ag\n");

 IOWR_DATA(VGA_BASE, WR_aggr, 0);

 }else{

 //yellow if not writing

 IOWR_DATA(VGA_BASE, WR_box, 0);

 IOWR_DATA(VGA_BASE, WR_aggr, 0);

 }

 isOutOfBounds=0;

 }else{

 //printf("got here");

 outOfBoundsX-=deltaX;

 outOfBoundsY+=deltaY;

 //red if out of bounds

 IOWR_DATA(VGA_BASE, WR_box, 2);

 isOutOfBounds=1;

 if(xcoordinate_temp<0){

 //bottom right corner

 if(ycoordinate_temp<0){

 IOWR_DATA(VGA_BASE, WR_start, 0);

 //top right corner

 }else if(ycoordinate_temp>112){

 IOWR_DATA(VGA_BASE, WR_start, 112);

 }else{

 ycoordinate=ycoordinate_temp;

 IOWR_DATA(VGA_BASE, WR_start,

ycoordinate_temp);

 }

 }

 else if(ycoordinate_temp<0){

 //bottom right corner

 if(xcoordinate_temp<0){

 IOWR_DATA(VGA_BASE, WR_start, 0);

 //bottom left corner

 }else if(xcoordinate_temp>112){

 IOWR_DATA(VGA_BASE, WR_start, 112*128);

 }else{

 xcoordinate=xcoordinate_temp;

 IOWR_DATA(VGA_BASE, WR_start,

xcoordinate_temp*128);

 }

97

 }

 else if(xcoordinate_temp>112){

 //bottom left corner

 if(ycoordinate_temp<0){

 IOWR_DATA(VGA_BASE, WR_start, 112*128);

 //top left corner

 }else if(ycoordinate_temp>112){

 IOWR_DATA(VGA_BASE, WR_start, 112+112*128);

 }else{

 ycoordinate=ycoordinate_temp;

 IOWR_DATA(VGA_BASE, WR_start, 112*128 +

ycoordinate_temp);

 }

 }

 else if(ycoordinate_temp>112){

 //top right corner

 if(xcoordinate_temp<0){

 IOWR_DATA(VGA_BASE, WR_start, 112);

 //top left corner

 }else if(xcoordinate_temp>112){

 IOWR_DATA(VGA_BASE, WR_start, 112+112*128);

 }else{

 xcoordinate=xcoordinate_temp;

 IOWR_DATA(VGA_BASE, WR_start,

xcoordinate_temp*128 + 112);

 }

 }

 }

 }

 }

}

