Team Name: Shoot Bubble Video Game

Team Members: Jun Dai jd2968
Shuo-Shu Tsai st2786
Weichia Chen wgc2111
Michael Shone yh2567

Professor: Stephen A. Edwards
Content

1. Overview & Objectives
2. Architecture & Timing Design
3. Experience and Issues in Implementation
4. Summary & Lessons Learned
Overview & Objectives

- Implementing an “Shoot Bubble” game that communicated between a computer and an Altera DE2 board
Overview & Objectives

- The game split in two mode: one player mode or two player mode
Overview & Objectives

- Start: Bubbles on the top of the screen will be downward
- End: Bubbles touch the ground, game over
- Game Play: Using Keyboard to blast 3 or more consecutive bubbles with the same color lined up. Meanwhile, bubbles floating beside will also be blasted
- The more you pop, the higher your score is. High score will be recorded
Architecture & Timing Design

- Major components: SRAM, SDRAM, JTAG/UART, PS2 keyboard, VGA, and Audio
Architecture & Timing Design

- PLL
- SDRAM (CPU Memory)
- CPU
- Audio
 - Audio Controller
 - Buffer
- AVALON BUS
- VGA/SRAM Switch Controller
 - SRAM Controller
 - SRAM
- VGA
- PS2 Controller
- Keyboard
- IRQ@200kHz
We have a VGA/SRAM switch controller, which can decide the mode:

- Mode 1: Write the data to SRAM
- Mode 2: VGA read the data from SRAM
Architecture & Timing Design

VGA

```
VGA/SRAM Switch Controller

SRAM Controller  VGA
```
Architecture & Timing Design

VGA

Switch
Command

VGA/SRAM Switch Controller

SRAM Controller → VGA
Architecture & Timing Design

VGA

![Diagram showing VGA, SRAM, and Switch Controller connections.](image-url)
We use the MATLAB to read the picture to get RGB values.

RGB format:

- **R** 3Bits
- **G** 3Bits
- **B** 2Bits
Background
640*480*8Bits

Tube Img.
64*64*8Bits*30

Score Img.
40*32*8Bits*10
We use SDRAM as the memory of CPU. We use the PLL to generate a clock which is 3ns slower than the original 50MHZ clock.
We have a buffer in the audio controller which can store 128*16bits data

Whenever finished playing the data in the buffer, the music controller will send the interrupt signal to the CPU and it will fill up the buffer with new data
Architecture & Timing Design

Audio

![Diagram showing the connection between CPU, AVALON BUS, SDRAM, and Audio Controller with a data flow of 16Bits * 128.]
Architecture & Timing Design

Audio

Diagram:
- CPU
- AVALON BUS
- SDRAM
- Audio Controller
- 16 Bits
- 128 Times
Architecture & Timing Design

Audio
Architecture & Timing Design

Audio
Architecture & Timing Design

Audio

[Diagram showing the connection between CPU, SDRAM, Audio Controller, and AVALON BUS with a data flow of 16 Bits * 128]
Architecture & Timing Design
PS2/Keyboard
Every mode have a special image
Divide the play-region into 180 ball regions and updating ball regions data by NIOS
We use this model to do the stop ball, shot ball and clean ball functions.
Experience and Issues in Implementation

- Timing issue
- Effective use the hardware source
- Software architecture
Summary & Lessons Learned

- Communication between hardware and software
- Team work
Thanks for your attention!!!