Project Report: CUDoom

CSEE4840 Embedded System Design
Columbia University, Spring 2013

Alden Goldstein (ag3287)
Edward Garcia (ewg2115)
Minyun Gu (mg3295)
Wei Hao Yuan (wy2211)
Yiming Xu (yx2213)

Contents

59T 40 Yo 10 (od s o) s 5
SYSTEINI DVETVIEW ...oeeeeeeneemeeseesseessesssesssesssesssessssssse s s s s s e e 6
SOftWAre LOGIC OVEIVIEWcueciiiiieiieeie ettt eas 7
Hardware LOGIC OVEIVIBW........cuoiiiiiiiiiiiisiesiie ettt 7
V=0) g L 1 OO 8
LAY LT [10V - T PSS 8
Y O 1) 13T SO OS PSSRSO 9
C++ code for DDA (given BY LOUEV)ccooiiiiiiiiiecieseee e 11
Drawbacks OF DDAL........oo ottt 12
Other Modifications from LodeV’s algorithm..........ccccovviiiiiiiii e, 13
Y bbb bbb 14
MUILIPIE HEIGNES ... 14
TOXIUES. ..ttt ettt et et s bt e e st e e s R e e e nb b e e e bb e e e nbb e e e bb e e e be e e ennes 15
3 B2 A7 1 T 16
RAY FSM ..ottt araenn 16
Y [=] 04 [0 Y OPRTUPRPPRUPRTPI 19
FIFO & PLL.ciiiieee ettt sreeneenes 21
A N a1 (=] PP PR 22
TEXEUIE GENEIALIONecvviivieie ettt e et e e e e e sbeeaesreesreenee s 24
Critical TIMING Path.......coiiiiii s 25
Overall VGA Pipeling StIUCLUIEc.ccveiiieieiie st 25
SKY GENEIALION.ciuiiieiiieite ettt et e e sre e beeste e e e sreesreenne e 26
SDRAM L.ttt reenes 28
KEYDOAIA. ...t e nas 29
A (o o RSP SP 30
RSTo 10 [0 I O] 1 o] 1 - OSSR 31
FIASH MEIMOTY ...ttt re e nas 32
F AN (o 1) (=T (RSSO 32
Data CONVEISIONveiiiiiiie ettt ettt ettt e st e e saa e s beesbeeeseesaeesnbeesreeenseeas 32
| TR) 1 T3 <Y Ty 11T FO PO PP PPPUPR 34
RESPONSIDIIIEIES ...t 35
RETEIEICES ...ttt e e e e s s e e e e e e e s s s e bbb e e e e eeeeeseans 36
F N 08157 116 D RO SUP TP 36
A2 _PSZVAM c.ceeeeeeereesreiseinssisssissessssssssssss s bbb bbb bbb 36
AC2_STAM_CONETOIICT. VI ..o sss s st bbb s s bbbt 41

AC2_VGA_TASTEE.VAM .oveereeereeseresereeemsesemssssmssessssssssassssssssssssssss s sssssss s st st s ass st ssssssssssessssesssses 42

(o AR 1 Loy Ao D Ao 1 s L (oY £ L 48

JIOOTMOA VI ... eiseee e s sssssss s s s bbb bbb bbb bbb bbb bbb 52
JTAMETALE_CAIC. VA ..ot sess it sss bbb ss s ss bbb bbb bbb 54
IMEINCUSTOILVA ..ottt bbb bbb s s b bbb b bbbt 56
00Xy BT =2y o Lol 1 Lo TP 61
7 N L 8 1 o P 62
SKYGEOILVI. ... s s s s s s s s s s e 77
X017 1s I60) 1 1A 40 L L=] (A7 Lo [N 80
22 G (=11 T o 83
(020 A = 0] 11 Y/ ¢ Lo 88
70 11 Lo OO 89
RNCIIOWOTIALC oueeeesssseees st s s s bbb bbb bbb s bbb s b bbbt 101

=0 Lo Ao 1V £ P 107

Introduction

CUDoom is a project inspired by the Doom, one of the last video games to use
ray casting techniques to create a pseudo 3D environment. CUDoom creates a similar 3D
world and allows a player to freely move around it. Among the key features in CUDoom
is the fact that the entire world is fully texture mapped to the player’s perspective. Walls
can be set to two different heights, the floor consists of tiles of different textures and the
sky rotates to match the player’s frame of view.

The project is divided into software and hardware components. The software
keeps track of the player position and frame of view, accepts keyboard inputs and
generates music for the world. Hardware consists of a ray casting accelerator and the
logic needed to texture map the environment. Individual screen pixel calculations are
generated on the fly and the project runs smoothly at 60 frames per second for a 640x480
screen.

System Overview

A high level overview of the system is provided in figure 1. The system is designed to
update a 640x480 display at 60 frames per second using fixed point arithmetic. A phase

locked loop (PLL) generates the following timings needed by the rest of the system: 50
MHz, 50MHz phase delayed, and 25 MHz.

DE2WME731 KEYBOARD

NIOS Il ; § §

SOUND KEYBOARD
CONTROLLER CONTROLLER

§]

AVALON BUS

L 3

SDRAM TRISTATE NIOS
CONTROLLER MASTER INTERFACE

CLOCK 50 MHz
CLOCK 25 MHz
SDRAM CLOCK

SDRAM CFI FLASH RAY FSM

§

FIFO
J LEGEND

MEMORY

@ CLOCK 50 MHz
) CLOCK 25 MHz
(@ SDRAM CLOCK (50 MHz)
@8 ASYNCHRONOUS CLOCK

|

SKY TEXTURE
GENERATION GENERATION

L
TEXTURE
ROM

VGA RASTER

y
MONITOR

Figure 1. Overall System Architecture

Software Logic Overview

The NIOS |1 processor and the peripherals that it interacts with run at 50 MHz. The only
exception is the SDRAM which stores the program memory and runs on the 50 MHz
phase delayed clock. These components work together and are controlled by the software
portion of our project.

At a high level, the software performs the following tasks:

The NIOS initializes the system by calculating and storing the sine and cosine
tables necessary for future calculations.

Also part of the initialization, the NIOS downloads the sky texture from the
SDRAM into the SRAM on the board

The NIOS polls the keyboard looking for an input from the user. If a key is
detected, it will update the data concerning the player’s position and frame of
view.

The NIOS keeps track of calculating a frame. For each frame, it will cast 640 rays
for each column within the frame. The goal is to calculate the wall heights for
each of the columns on the screen based on the respective distance of the wall to
the player.

o Each individual column calculation is hardware accelerated. The software
passes the angle information of the respective ray to the Ray FSM
hardware module through a simple handshake protocol.

Throughout the software portion of the program, the sound controller sends
interrupts to the processor whenever it needs the next note to play. During an
interrupt, the next sample is fetched from flash memory and written to the sound
controller.

Hardware Logic Overview

The VGA Raster module drives the rest of the hardware components that do not interact
with the N1OS. Most of these components run at 25 MHz. At a high level the hardware
performs the following tasks:

The VGA Raster module signals the start of a new frame. This causes the VGA
Raster and Ray FSM modules to swap the memory buffer locations that they are
respectively reading and writing to.

o The Ray FSM module computes wall heights for individual columns based
on the player distance to the wall along the path of the ray specified by
software. This and other intermediate variables are safely stored through
the use of a FIFO and memory buffer.

o In parallel with the Ray FSM module, the VGA module begins to read
from its respective memory location. The memory outputs are
intermediate variables that are fed into the Sky Generation and Texture
Generation blocks.

= The sky is calculated for the respective pixel. The Sky Generation
module ensures the sky is mapped to match the x coordinate of the
walls. An address is generated to pull the respective sky pixel from
SRAM. The SRAM output is fed into the VGA raster component.
= |n concert with Sky Generation module the logic, the Texture
Generation module maps the wall and floor textures of the pixel
based on the vantage point of the player. An address is generated
to pull the respective texture pixel from Texture ROM, a lookup
table containing all the wall and floor textures. The Texture ROM
output is fed into the VGA raster component.
e The VGA raster component selects the appropriate pixel stream and converts it to
the representation needed by the monitor. Depending on the direction of the wall
to the user, it will shade it appropriately.

Algorithm

World Map

The world map is represented by a 32x32 array where each value represents a cube in the
world. Array entries that are 0 represent an empty space that the player can walk through.
Array entries larger than O represent a cube with a specific texture. Table 1 gives the
respective value of each texture.

char worldMap [mapWidth] [mapHeight]=

{

p
9
8
0
0
0
0
8
7
0
0
0
0
7
2
0
0

O O WO WO O W W WL
N N N N N N N N SN N SN SN SN SN SN~
OJJINDINDNDDNDIJoodMNDOONDO W
N N N N N N N N SN N SN SN SN SN SN N
OQOONJOOOO~JIVIOWOWOoWw
N N N N N N N N SN N SN SN SN SN SN N
OONJOOOO~JOOVOWWWIWw
N N N N N N N N SN N SN SN SN SN SN N
eololololololololoNoNoNGNGNG NGORG]
N N N N N N N N SN N SN SN SN SN SN N
OQOONJOOOO~JIVIOIODODOOW
N N N N N N N N SN N SN SN SN SN SN N
ONDNJOOOOO~JIVDIODIOO O W
N N N N N N N N SN N SN SN SN SN SN N
KSR\ E\VENENNeoNeRN NN oo NoNoNeNoRNe]
N N N N N N N N SN N SN SN SN SN SN N
B DB OOOMOWO0O oW
N N N N N N N N SN N SN SN SN SN SN N
O OO VOO OO WO O O W
N N N N N N N N SN N SN SN SN SN SN~
OO NP OOVDON DO IO
N N N N N N N N SN N SN SN SN SN SN N
olololololoNoNeNo - NeoloNeNoRoRNe]
N N N N N N N N SN N SN SN SN SN SN N
QOO0 VOOOVWODMOODODODONW
N N N N N N N N SN N N SN SN SN SN~
OO VOOODOOPRODOOO I
N N N N N N N N SN N SN SN SN SN SN N
QOO DMMIVDOOOVDODMNOODODOONW
N N N N N N N N SN N SN SN SN SN SN N
B OYCO OO0 OO OO OO I
N N N N N N N N SN N SN SN SN SN SN N
WWWWwoaHhoOooOaO PO ODODOONW
N N N N N N N N N N SN SN SN SN SN N
OO O WPRhROODIOIOOOHOOO I
N N N N N N N N SN N N SN SN SN SN N
QOO WOHNO OO MO OO NV
N N N N N N N N SN N N SN SN SN SN N
[eolololololololololoNoNoNGNGRGRNC]
N N N N N N N N SN N SN SN SN SN SN N
QOO OWOIHONODOOOHODODOHNODODO O IV
N N N N N N N N SN N SN SN SN SN SN SN
OO OO O JOJOJOJOoO oW
N N N N N N N N SN N N SN SN SN SN N
O O WO WO O W W WL
N N N N N N N N SN N N SN SN SN SN~

NN N N N N N N N N N N N N NN

9,,0,0,0,0,0,0,1,4,4,4,4,4,6,0,6,3,3,0,0,0,6,9 ,
9.0¢0,09,0,0,0,0,2,2,2,1,2,2,2,6,6,0,0,5,0,5,0,9 ,
7,0,90,0,0,0,2,2,2,0,0,0,2,2,0,5,0,5,0,0,0,5,9 ,
90¢0,0,0,0,0,0,2,0,0,0,0,0,2,5,0,5,0,5,0,5,0,9 ,
s7,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9 ,
90¢0,0,0,0,0,0,2,0,0,0,0,0,2,5,0,5,0,5,0,5,0, 9,
9,2,7,2,7,2,7,2,2,2,0,7,0,8,8,0,5,0,5,0,7,0,5,9 ,
9,9
i
[Value [Texture]
0 Empty spaces
1-4 Textures 1 through 4 of normal height
5-8 textures 1 through 4 of taller height
9 fake wall, i.e. sky outlook.
Table 1. Texture Mappings
Ray Casting

The ray casting algorithm involves casting individual rays, only for each column. Due to
the fixed perspective, there is very little calculation that needs to be done afterward once
column parameters are calculated. Essentially, we determine the height of each wall by
finding out how far we are from it. The main equation for ray casting is...

constant

ieved column height =
percievea cotumn helg wall distance

Other features, such as textures and floors, can be determined from a few additional
calculations, but the fundamental algorithm remains as one of low complexity.

As a basis for our project, we drew majority of our resources from LodeV’s Ray Casting
tutorial [1]. We started with code from his website, which includes a C++ version with
textures, floors, and ceilings. While his code was a great starting point and gave us an
immediate working version to play around with, we had to make many modifications
before we could port anything to hardware. To explain the changes we made, we have to
explain the ray casting algorithm more in depth.

For ray casting, we need to increment a ray for each column to find a wall and determine
the appropriate distance. The larger the ray increments are, the more inexact the
measurements will be, and the more likely part of a wall will be missed. Reducing the
increments will give finer edges, but at the expense of being significantly slower.

Figure 2. Fixed increment wall search

Image Credit: Lode’s Computer Graphics Tutorial [1]

Pseudo-code for wall finding:

// initialize
ray position = current player position
distance = 0

while not hit wall
increment ray position
increment distance

This algorithm, while naive, will place the “light” ray relatively close to the correct
position.

LodeV uses a more sophisticated approach. Since the ray casting model we use only
involves orthogonal walls on a map, finding walls can be done by hitting every edge.
The algorithm used for this is called DDA, and is a modified version of Breshenham’s
line algorithm. Professor Edwards pretty quickly recognized that this approach could be
used for Ray Casting. The C++ code from LodeV’s website is given below.

Figure 3. DDA

Image Credit: Lode’s Computer Graphics Tutorial [1]

C++ code for DDA (given by LodeV)

//perform DDA
while (hit == 0)
{

//jump to next map square, OR in x-direction, OR in
y-direction
if (sideDistX < sideDistY)
{
sideDistX += deltaDistX;
mapX += stepX;
side = 0;

else

sideDistY += deltaDistY;
mapY += stepY;
side = 1;

}

//Check if ray has hit a wall
if (worldMap [mapX] [mapY] > 0)
hit = 1;

Drawbacks of DDA

In the normal iterative procedure, you are finding almost exactly where the ray hits the
wall. In DDA you are finding which side has been hit. In a sense, the iterative procedure
gives more information. If you reduce the bits for calculations on the iterative procedure,
you have a soft failure, i.e. the errors get predictably worse with less precision. For DDA
however, you are making a choice in each step of the loop. Essentially you are
comparing whether you are closer to an x-wall or a y-wall. You can either be right or
wrong, thus this carries a notion of hard failure, which can look erratic on the screen
when you starting removing precision.

So in a sense, we upgraded by downgrading. We used fixed wall increments instead for
more robustness and reliability. We wanted to make sure everything would work once
we took the time make the actual system. On top of the fixed increment approach, we
added another loop that back-traces in smaller increments. This helps makes the ray
position more exact, with larger initial search increments (better speed). Of course, wall
misses still occur at the same frequency.

Other Modifications from LodeV’s algorithm

Figure 4. LodeV’s camera plane method

Image Credit: Lode’s Computer Graphics Tutorial [1]

LodeV employs a camera plane and a direction plane to find the ray vectors. We use
fixed angles instead, which actually helps remove several multiplications, since we don’t
perform rotation matrix multiplication. Removing multiplications from the software step
actually increases precision, since we have more room to avoid overflow (on 32 bit
processor). We change direction by incrementing the index for lookup table. The cosine
lookup table is the x-direction, the sinusoid lookup table is for the y-direction. Of course

these could be combined into one lookup table, but there is no need to because we are
using SDRAM.

In addition, this method, combined the iterative procedure, simplifies fish-eye effect
correction calculations as well. By using fixed angles, we know our fish-eye angle
(perpendicular distance from player to wall) will directly align with the lookup tables,
and thus we can use cosine[fish_angle]/(increment factor) as our distance
increment in the loop (since the increment factor is a multiple of 2, we actually use a bit
shift).

Sky

We added a sky on top of the LodeV’s Ray Casting version. The sky is more than just a
fixed background picture. To give the illusion of movement, the sky’s x-coordinates
must change directly with those of the walls. In addition, the sky must appear circularly
looped with itself. Not many pictures fit this requirement. Thus we had to resort to
texture generation. Fortunately another portion (not ray casting) of LodeV’s website had
a random noise texture generation, that involves interpolation of finer and grainer random
noise values. This gives the illusion of clouds. We had to modify the texture so the
beginnings and ends were also interpolated with each other, to give the illusion of a
circular buffer. This also means the sinusoid lookup tables have to have a size that is a
multiple of the sky width (1024), so the beginning and end line up properly. All of this
together gives the illusion of a huge, full sky that fits into the (relatively small) SRAM.

Multiple Heights

Another thing we added was multiple heights (2 different heights to be exact). We made
this enhancement, since we knew it could be done easily in parallel with the original
single height wall. Essentially, we cast two rays in parallel, one that stops at walls of all
heights, and one that stops at walls of taller heights. Then we do very similar calculations
on each wall. The drawing parameters are as follows:

drawStart = top of tall walls
drawMid = top of normal wall
draw End = bottom of either tall or normal wall

drawStart = mid screen — 5 X column height/2
drawMid = mid screen — column height/2
drawEnd = mid screen + column height/2

We see that the height increase is a simply caused by multiplicative factor we add to the
column height. The factor of 5 gives the illusion of being three times the height of a

normal wall. At the texture generator, we use the values to multiplex whether to draw a
floor, a normal wall texture, or a tall wall texture. At the VGA, we use “drawStart” and

the fake walls to multiplex whether or not to draw a sky pixel or the texture pixel from
the texture generator.

Textures

We generate textures almost identically to LodeV’s code. LodeV actually uses a tangent
angle to find textures (since he uses DDA), however because the increment method yields
a nearly exact map position, we have more information than just a wall. We can easily
find the x-coordinate of the texture pixel with a modulo-64 operation (64 is the width of
the textures, as shown below). In additional little nuance to textures is that we must
know whether we hit and x or a y-wall. In DDA this is given as the output. We however
used a simple difference comparison. In other words, we did the following, shown in the
pseudo code below.

If abs(current x position - closest x-wall) < abs(current y
position - closest y-wall)

Choose x-wall
Else

Choose y-wall

Knowing whether we hit an x or y-wall, also allowed us to choose whether or not to
shade a wall. This gives a nice effect, when the x-walls are shaded and the y-walls are
not (and vice versa). The world has a total of four textures, copied from the Wolfenstein
3D game. Each texture consists of 64x64 pixels with each pixel color represented by 24
bits. The textures are shown below

Figure 5. Textures used in project

We didn’t really add or change much to the fundamentals of LodeV’s texture and floor
generation. We focused on small simplifications and how we would lay it out in
hardware. We explained calculation of the x-component of the wall texture above. This
can be done as a function of the ray position. The y-component is a little trickier.
Essentially the values are calculated through interpolation between the drawStart and
drawEnd. The floors use a slightly different algorithm, but nevertheless use interpolation
from drawEnd to the bottom of the screen.

Hardware

Ray FSM

v

\ Output Ray Casting Parameters

= Output Column Address
{Same as input, latched) 256-bit
FIFO data

Input Ray Casting Parameters |
>

R

Input Column Address

vy v

Vertical Blank Out

Output Column Address

WRREQ

v

Control Signal WRFULL

Ready

»

Vertical Blank In

CLX (50 MHz)

Figure 6. Ray FSM module

The motivation behind hardware acceleration for ray casting, mainly lies in the wall
finding process. Using 1/32 of a square side increments over a 32 X 32 map, we have a
worst case of:

32 x 32 x V2 = 1500 iterations per column

1500 iterations per column X 640 columns per screen
~ 1 million iterations per frame

If we use a software loop, this would have a wasteful, especially for calculations that are
so simple. The inside of loop is essentially just increments, a memory fetch, and a
comparison, all of which can be done easily within a 50MHz clock cycle. This is the
reason for the Ray FSM module. The name says it all; it is a finite state machine for each
column ray, i.e. it computes the common set of parameters for each column. Notice that
after the increment stage, there is also a division stage. In addition, there is
combinational logic that executes during the division stage, which yields the necessary
parameters for floor and textures.

Besides the calculations, which are all part of the ray casting algorithm, the Ray FSM is
important for its interaction with both the Nios Il processor, and its interaction with the
FIFO to feed the column memory. The diagram is shown in figure 6. When the Ray

FSM is in the ready state, it is basically telling software that it is ready for a new set of
parameters to calculate. The software preloads the inputs through the Avalon Bus before
the Ray FSM even asserts the ‘ready’ signal. However, these parameters don’t get
latched in until the software pulses a ‘control’ signal. This gives an efficient pipeline
between software and hardware. Software can calculate and load new parameters while
the Ray FSM is still working. Once the software sees the ‘ready’ signal, all it needs to do
IS pulse a single bit (in reality 32 bits, due to 32 bit Avalon Bus). Then the software can
resume computing parameters for the next column.

Frame Synchronization

We want to explain frame synchronization briefly since the next two sections are related
to this manner. Frame synchronization is achieved by using twice as much memory.

This allows writes to one column memory, while the VGA computes from the other
column memory. Only when a memory buffer is completely written to, the reads and
writes are toggled, and the VGA will compute values new set of complete data. Thus, the
VGA will always be reading complete data, and frame synchronization will be achieved.

Transition: when wall is Transition:
hit (ROM output is not zero)

. Action: Nothing

Transition: Rising Edge of
Control Signal from
Software

Action: Latch Inputs fro
software

READY STATE
—ASSERTS READY
SIGNAL HIGH FOR
SOFTWARE

—READY = 1"
< Ay TN

Transition: when

Transition: After 32 cycles ne longer on wall
(32 bit integer divlslon) ,.7 INCREMENT Action: Nothing

__ Action:Nothing £ : RAYS BY 1
N INITIALIZE INCREMENT

INTEGER DIVISION
ADDITIONAL LONG VALUES

CALCULATIONS DIVISION

—~COMBINATIONAL

Transition: Last Column? = false —EXECUTES DURING
Action: WRREQ = ‘1’ (to FIFO) DIVISION STATES

Transition: Always
Action: Nothing

< Transition: V_BLANK =1’
P Y B (from VGA)
é B CHECK IF Action: WRREQ =1’

e LAST (to FIFO)
A

CHECK IF FIFO CULUMN ON
IS FULL SCREEN

Transition: Last
Transition: FIFO is not full Column? = true
Action: Nothing Action: Nothing

Figure 7. Ray FSM Overall State Machine

Foregoing a Frame Buffer

If it isn’t clear by now, we reiterate the fact in ray casting; there are many parameters that
are common to all pixels in a given column. This is in contrast to ray tracing, which
traces a ray for every pixel on the screen (thus has unique parameters for every pixel).
After a common set of column parameters are calculated, we can use only few pipelined
calculations (RAM fetch + 2 cascaded multiplications + some additions + some MUXing
+ a ROM fetch) to give an appropriate texture pixel. Therefore a frame buffer is not
necessary, and VGA pixel calculations can be done on the fly, once the column parameter
set has been computed. Thus, for each column on the screen, a memory location was
created to hold the set of necessary column parameters. The bit addresses for the column
parameters are stored as follows

2 bit gap 2 1 0
texX 6 7 2
drawEnd 9 16 8
drawStart 9 25 17
invline 18 43 26
line_minus_h 18 61 44
isSide2 1 62 62
isSide 1 63 63
floorX 18 81 64
floorY 18 99 82
tmpPosX 18 117 | 100
tmpPosY 18 135 | 118
invdist_out 12 147 | 136
12bit Gap 12 159 | 148
data_out 10 169 | 160
2 bit gap 2 171 | 170
texX2 6 177 | 172
drawMid 9 186 | 178
invLine2 18 204 | 187
line_minus_h2 18 222 | 205
bool 1 223 | 223
texNum 4 227 | 224
texNum2 4 231 | 228
colAddress 10 241 | 232
VGA_Blank 1 242 | 242

Table 2. Bit positions for column parameters inside memory and FIFO. Note that items in red appear
in the FIFO and not the memory.

Memory

Output Ray Casting Parameters

Output Ray Casting Parameters

Output Column Address
256 bit {Same as input, latched)
Data from
FIFO

Vertical 8lank

RDEMPTY

MEMORY INTERFACE

drawMid

Vohmeriace

CLK (25 MHz)

drawEnd

Figure 8. Memory module

As we explain above, the memory module will take in data from the FIFO that includes
the column address. Thus the input port to the memory module we created does not even
take in a column address. In addition, it also does not take in a write enable. Instead it
uses the read request signal from the FIFO. As shown in the diagram above the RDREQ
is simply the inverted RDEMPTY signal. Thus the memory module takes data from the
FIFO whenever it is available. Notice that the vertical blank signal comes with the data
as well.

The bulk of our memory is contained in an M4K Ram, which takes up almost the entire
board. The pixel parameters require 212 bits. Since, we store memory in a column array,
we need a 256-bit width for each column. There are 640 columns. If we use an M4K, we
require block configurations in powers of two. Naively, we would have a 1024 by 256-
bit column buffer. To add frame synchronization, we must have two memories that are
toggled every time a VGA blank signal comes in.

1024 x 256 bits X 2 memories = 524,288 bits

To make this fit on the board, we have two options:

A. Reduce bits. Cut down bits to 192, and splice a 128 bit by 1024 memory, with a
64 bit by 1024 memory. Requires 96 M4K blocks according to Megafunction
Wizard.

B. Reduce number of addresses. Use a full 256 bits, but have a memory with 512
addresses and a memory with 128 addresses. Requires 74 M4K blocks according
to Megafunction Wizard.

We opted for option B. This is because it offers a smaller amount of memory and
requires no cutting of bits. Reducing the number bits to fit 192 bit memory size gives
degradation of the image when tested in software. While 96 M4K’s fit on the board
along with the processor, we used the extra space on the board for the FIFO between
clock domains.

Memory Issues

Option B, presented an interesting problem. We encountered strange error on the VGA
glitch that seemed to occur right where we switch from the 512-address memory to the
128-address memory. While, the switching of writes and outputs were combinational,
and timing requirements were well within acceptable range (approximately 5 ns setup
slack). Even with this, there were still timing issues on the VGA, where it seems that the
change between output buffers did not stabilize completely. To fix this, we used a
“patch” memory block. This is illustrated in the diagram below. The original scheme
switches reads and writes at the same location, i.e. the end of the 512-word memory, and
the beginning of the 128-word memory. This caused a line on the screen directly at the
memory switching point, no matter how much timing slack we had. Due to time
constraints we had to come up with a rather crude fix, which was the patch memory
block. As seen in Figure 9, writes for the patch block begin a few addresses from the
edges of the memory (for extra safety) and bridge the connection between the two larger
memory blocks.

The original scheme was to switch reads and writes at the same spot along the edges of
the memory. In order to smooth transitions, we simultaneously write to a patch memory
that overlaps with the other two memory blocks. We also see in the diagram, that we no
longer need to write at the edges in the memory. The reason for this is because at the
edge of the memory, the next address will give huge transition in bits (i.e. all 1’s to all 0’s
for the address). In addition, we see that reads switch in different places than from the
writes, thus when we switch read buffers, we are switching between two identical values.
All of this combined, keeps the transitions of inputs and outputs minimal, and
miraculously fixed our error!

256 bit words, 512 words 256 bit words, 128 words
Memory A Memory B

256 bit words, 64 words

Memory C
Old Scheme (Reads and Writes)
Memory A 512
o Memory B
New Scheme (Writes) Memory A 510 514 Memory B
482 Memory C 542
Memory C Full Address Span (for Diagram Reference)
480 544
New Scheme (Reads) Memory A 496
o Memory C 528
. Memory B

®0

Figure 9. Overlapping memory modules

FIFO & PLL

The D-Flip-Flop generated 25 MHz clock seemed to give us some very strange glitches
(we weren’t sure what they were caused by at the time). In addition we also had system
crashes that we believed were due to corruption of the M4K memory. First, with the help
of our great TA (Luis), we were able to switch the generation of the 25 MHz clock to a
PLL. This seemed to improve the screen glitches, but we still faced some occasional
system crashes. Because we suspected M4K corruption, it was apparent that this was
likely due to its interaction between two clocked domains (i.e. reads from 25 MHz
domain, writes from 50 MHz domain). Before we added a FIFO, only the VGA was
running on 25 MHz, and would feed read addresses directly to the M4K column memory
module that we mentioned above. To solve the issues, we decided to organize clock
domains and make everything from the memory module through to the VGA controller
as part of a single clocked domain (25 MHz). This meant making texture generation as
part of the 25 MHz domain as well (this actually works out nicely considering the critical
path in this module does not fit a 50 MHz domain). However, the Ray FSM was still
writing to memory. Since the Ray FSM runs at 50 MHz (this is necessary for speed), we

placed a FIFO between the Ray FSM and the memory module, essentially creating a safe
bridge between the 50 MHz domain and the 25 MHz domain.

VGA Raster
. VGA_CLK Draw Start
B VGA_HS Draw Middle
€ Wall Position
o VGA_VS Draw End
- VGA_BLANK
VGA_BLANK_SI
B VGA_SYNC
- Texture Number
VGA_R
Side
VGA_G VGA RASTER

N AN A

VGA B

CLK (25 MHz) Current Row

. E{ Current COIum"
Reset

v v

v

Figure 10. VGA Raster module

VGA Raster is the component that outputs corresponding signals to VGA display to draw
colors pixel by pixel. The block interface is shown in Figure 10. It uses a 25 MHz clock
to match the one that is used by the VGA display. The component basically consists of
the following three parts (1) Row and Column Iterators, (2) Pixel Multiplexer and (3)
VGA Timings. Figure 11 shows the detailed structure of VGA raster.

Reset

Horizontal

v ——> ————> Current Column

—> ~——————> Current Row
Vertical
v l Current Row
—> €<—— Wall Position

VGA] vga_blank
Qutput

Texture Color
Sky Color

Figure 11. VGA raster internals

Row and Column Iterators. A base counter maintains two values in the
horizontal and vertical direction that represent the index of the current row and column
currently being output to the display. It will roll back and start again when is has iterated
through all pixels or reset signal is set. After accounting for the corresponding VGA
constant parameters, the indexes are parsed as iterators for the 640 * 480 display area,
which can be used to pull data from memory to calculate texture color information.
Further details of how the counter output interacts and controls the following texture
calculation will be covered in next section.

Pixel Multiplexer. For a single pixel at given column, the raster will decide to
use color data either from texture or sky depending on which range the current row index
belongs to. The decision is made from the multiplexer, which generates a logic signal
based on the comparison between the current row index and wall start position. Then an
asynchronous RGB generator will parse the selected color information into separated
RGB codes for monitor.

VGA Timings. The VGA signals, except RGB, are generated from state
machines based on horizontal and vertical counters. Also provided, is a reset signal to
restart the counter and refresh the screen. Combining the RGB data with other VGA
synchronous signals, the final output of VGA raster will be passed to the monitor.
Finally, the color output is also controlled by reset and vga_blank signals that can simply
refresh parts of the screen to black.

Texture Generation

Figure 12 illustrates the internal structure of texture generation which is included
inside the dashed block and its interaction with other modules as well. We give the floor
logic a bigger block because it actually takes longer time to finish and is the critical
timing path, which will be discussed in the following section.

Current Column

<
<

Texture Color
Texture |

Generation

Current Row

Combination
al Logie === —gy= = mm e m
K

Pixel

Figure 12. Texture Generation and Floor internals

At a high level, the Texture Generation module maps a 64x64 pixel texture to a
wall/floor from the vantage point of the player. It received as an input the index of the
pixel on a 640 by 480 screen. Its output is the address of this color data, and the actual
data will be fetched from the texture rom, where we pre-loaded four textures with 24 bits
of color data for each pixel. Since we have different logic paths to calculate the addresses
for the walls and floor, it keeps two combinational logic paths running in parallel. Before
outputting the pixel address, it uses a multiplexer to choose whether to draw the wall or
floor by checking which range the current row index belongs to. Although the calculation

logic is asynchronous, we still want to keep the texture address synchronous in order to
match the rate of the VGA raster pipeline structure.

Critical Timing Path

(nzowl—(om) () [t

O

| WallTexAddr

(o)
R A——

weight

[tmpPosv |
Figure 13. Critical Timing Path

As mentioned above, the texture generation mainly consists of two separate
combinational logic paths. The time to calculate wall and floor textures determines the
timing limitation of the display. Figure 13 shows the detailed logic diagram of the circuits
in texture generation. The highlighted red path in floor logic is our critical timing path.
Because of the three multiplications necessary for this step, floor texture generation takes
a longer time than generating a wall texture.

Overall VGA Pipeline Structure

I S

Memory output from M4K (using column address)

Memory output from M4K (using column address)

Figure 14. Overall pipeline structure for VGA raster

Figure 14 is the pipeline timing diagram for VGA raster, which illustrates this
working flow from a timing perspective. Since the different blocks in VGA raster are
performing their own work, and part of the output (column and row) actually decides the
value of input (color information from texture and sky) for other blocks, it must

guarantee all components are running at the same pace. Therefore, we clocked most of
the blocks to form a pipeline structure allowing different blocks to work in parallel at
their best efficiency.

The process starts with a new clock cycle by counting the column and row index
VGA is going to draw. Then the column number will be passed to memory block to get
essential data calculated from the Ray FSM. The row number will be delayed in the
same manner, before entering the texture generator. Afterwards, texture addresses for
both wall and floor are generated in the asynchronous logic, and the correct one will be
picked by the multiplexer. Since we clocked the output, the address is ready at the next
stage of the pipeline. Then the color of this pixel can be fetched and immediately
calculated from the asynchronous texture rom/SRAM model. Finally, the 24 bit color
value is passed to RGB generator block in the VGA Raster module which determines
appropriate shading and converts the value to the 30 bit format needed by the monitor.

Sky Generation

NIOS Il ey,

AVALON BUS

|

SDRAM
CON;ROL MEMORY
SKY Gen
II

VGA RASTER

Figure 15. Sky generator system diagram

Sky generator is a module that allows the NIOS to transfer data from SDRAM to
SRAM. It also allows the VGA raster module to fetch sky information through it to
generate the sky image. With sky generator, we can download various pictures as sky
during system initialization. In effect, it replaces the latency to access data from SDRAM
for the much faster SRAM.

cs =

addr :
write ’
data
r/w ’ -
angle data byte_en I
Row << 9 + read data
angle>>1 ‘
—

row information

Avalon bus

Figure 16. SKky generator design diagram

Figure 16 shows the block diagram of sky generator. The MUX is controlled by
NIOS system. When switching to the VGA interface, the sky generator will fetch sky
information according to row and angle information. The sky texture is 1024 * 480 * 8b,
which is 480KB and enough to fit in the SRAM (512 KB). Since the display range is
640x480, when we rotate to different direction, we will continuously update data from
SRAM. SRAM serves as a ring buffer, when runs to the boundary, it will ring back to the
beginning column. However, the sky information in SRAM is not enough to provide a
full 360 degree view angle. Therefore, we will generate a sky texture in software that will
give smooth transitions at boundary transitions.

1024

t VGA frame

-
640

A
Y

o

Figure 17. Sky generator access SRAM

AO-A17 I:> DECODER ;,> MEMORY ARRAY
vCC —»
GND —>»
1/O0-1/07 <:::> Vo
Lower Byte DATA <:> COLUMN I/O

O8-1/015 <::> CIRCUIT
Upper Byte A
)

CE —
FE_
WE —
UB —
LB —

Figure 18. SRAM diagram

CONTROL
CIRCUIT

It is because the SRAM is asynchronous module, which it dose not have a clock and
controlled by input address information, we can set up two different clock domain control
interface to access SRAM. The most important one is that maximum read data latency is
15 ns, so the design should be take care of the timing of accessing protocol.

|
| Address 0 | Mddress 0 | Address O [Address | Address 0 |
|

= »1 Read'data 0 | Read data 0 | Read data 0 | Read data 0 | Read data 0 |
|

o Deley

Latch address L]

Latch read data

Figure 19. Access SRAM timing

While switching the address, the read data would be valid after a specific latency;
the VGA raster must latch data in the next cycle. Since VGA raster only runs at 25MHz
clock domain, the timing of the design still get a lot of margin.

SDRAM

NIOS system puts its memory in DRAM and communicates with it with a SDRAM
controller. The protocol of DRAM is complicate that the memory controller is not easy to
design.

FUNCTIONAL BLOCK DIAGRAM

cu Clock
CKE>—p| Generator
d Bank D
Address ié”: Bank C
ress Bank B
* Buffer an
& o |
Mode Refresh » |5
Register Counter E
a Bank A L
j "' c% Hd
v | > Sense Amplifier | | | DQM
cso] Column — | Column Decoder & | [~
RASO————» § -§, =) Address el Latch Circui =
TAE——— k] - Bu:er j E _ s
WwWE B =
e - | oa onot et =0 & (6 2
ircuil o CR={e=pyrle}
g é Counter Data Control Circuit | 2 25
=3 g]
3 i Jil

Figure 20. SDRAM diagram
However, the SOPC provide us a well-designed memaory controller which also
support burst accessing mode that can improve the performance of system. The timing of
DRAM interface is also critical, there is a 3 ns timing phase shift from DRAM clock to

system clock. Hence, we need to set up a PLL to compensate the timing phase shift for
system stability.

System clock

-
%

PLL
Clock
|—- CLK
Clock Enable 4,
CKE
Address
ADDR[11:0]
Bank Address |
BAI
Bank Address 0
BAO
Chip Select =
SDRAM CS_N SDRAM
controller Column Address Strobe CAS N chip
Row Address Strobe
RAS_N
Write Enable "
WE_N
Data
DQ[15:0]
High-byte Data Mask
- UDQM
Low-byte Data Mask
- LDQM

Keyboard

We reused the keyboard controller from Lab3. The controller receives data
through PS2 serial interface. It was modified so that while receiving a data token from the

Figure 21. SDRAM interface

keyboard, it stores data information to a register. The NIOS system will update the player
position after polling from the keyboard.

KEYBOARD

NIOS 11 KEYBOARD
CONTROLLER

]

AVALON BUS

Figure 22. Keyboard sytem diagram

Audio

Figure 23 shows the critical components for playing the background music in our
architecture. All the music data has been sampled and programmed in CFI Flash in
advance and during the game, NIOS system can fetch new notes from the Flash memory
and play them out at the DAC component WM8731. The sound controller works as the
interrupt sender in response to the data request from WM8731 and the buffer to hold new
data.

DE2WM8731 KEYBOARD CFl FLASH

INTERRUPT

v

NIOS II SOUND KEYBOARD TRISTATE
- CONTROLLER MASTER

AVALON BUS

N

Figure 23. Sound controller interface

"N n

Sound Controller

The sound controller plays two roles: one is to get data from the Avalon bus and send the
interrupt signal, the other is to buffer the temporary data. Here is the diagram of this part:

Interrupt Sender

To complete data transmission at the interrupts, we first refer to how WM8731 works in
the timing diagram:

Address
AUD control signals

Readdata

Data_to_music (16 bit)

Writedata (8 bit)
Data_request WM8731
Control Signals M US I C
hipselect, read/write
CONTROLLER Audio_clock
irg
Reset_n
CLK (50 MH2) .
"s
LEFT CHANNEL ; RIGHT CHANNEL
ADCLRC

o UL JuUuuL JUuuL
|
socoar [1[2]3] [ma]m] =] [+]2]a] [m2]~t]n]

Data_request |_|

Figure 24 & 25. Audio controller and timing diagram

WMB8731 has two channels: the left and the right channel. In our VHDL implementation,
the right channel is free so in this period it can fetch data for the next cycle. The data
request is sent to tell that a left channel is over and at this time it wants a new note. In a
naive implementation, it can be directly connected to the storage interface and receive

data in the next location. Here we choose to make use of the Avalon bus, implementing a
sound controller with the state machine:

Flash Memory

We considered storing an entire music track or combine several into one track and play it
during the game. We tried different storage media for this target: ROM, SDRAM and the
Flash. After comparison, the Flash memory became the final choice due to the following
factors:

(1) ROM is the simplest non-volatile storage to use and it can be easily configured
with the help of MegaWizard. Moreover, hooking it up with WM8731 is easy as
exploring the ROM address space. It doesn't need any software but the most important
drawback is the limited storage. Through our attempts, ROM has enough capacity to last
6~7 seconds with the sampling rate 22kHz.

(2) SDRAM has 8MB size which is enough in capacity. The data can be loaded as
an array written in a header file in N1OS software and programmed automatically into
SDRAM when we start to run the program. However in our design, the sky generator
takes up some storage in SDRAM so we turn to use the Flash for audio data.

(3) The Flash memory on DE2 board has 4MB volume with 8-bit data width. It is
suitable in size since a piece of sound lasting for 90 seconds takes up 440KB in binary
file. The Flash also has other advantages that it is easy to transfer, erase and program data
to it. The speed is proper since audio does not require a rather high rate. Besides, with the
built-in components, we don't need much code to make it work.

Architecture

To use the Flash, the instructions in [3] were followed to build its interface in SOPC
builder. We need to add an Avalon-MM Tristate Bridge (under Bridges and Adaptors-
>Memory Mapped) and a CFl Flash Memory Interface (under Memories and Memory
Controllers->Flash). Follow the parameters there and note that the S29GL032N Flash
chip on board only supports 8-bit width. Finally connect the conduit signals in the top
level.

Data conversion

Audio files are sampled in Matlab. Matlab provides a useful sampling function wavread()
(in the lastest version the function audioread() can support more audio formats including
mp3). WAV format requires that the audio be sampled as 8-bit or 16-bit data at a fixed
frequency (usually 44kHz). If necessary, the data can be resampled at another frequency
with the function resample().

Audio
MP3 conversion WAV Matlab - binary
file [pplication| fjle | Progran— fi]e
bin2flash
\
. nios2-
Data in DEZ2 flash- . flash
Flash memory programmer file

Figure 26. Sound controller interface

Notice the raw results of the wavread() function. The original sampling frequency and the
data width are pointed out there. The number of samples is also important because it is
useful in the software when we want to retrieve data at the certain address range. In
addition, since the sampling data is in the range [-1,1], we need a simple conversion to
restore them to 8/16 bits.

As long as we obtain a binary file and have configured the Flash to Avalon-bus, the next
step is to use the NIOS flash programmer [2] to load data. You can choose to enter the
flash-programmer GUI in NIOS2 IDE or use the command prompt:
bin2flash --input=sound.bin --output=sound.flash --location=0
nios2-flash-programmer -b 0x400000 --program sound.flash
In the above example, the base address of the CFI Flash is assigned as 0x400000.

Writing to sound_controller
happens (write&chipselect);
Clear the irq

Keeps idle; wa Have set irq but wait
e WAITING to ensure the write

really happens

Data_request comes from
wm8731, set the irg and
starts waiting for the data

Figure 27. Sound controller interface

The transition between the two states is important as the irq signal is set and cleared. To
coordinate it, the interrupt handler note_isr in our software reads from CFI Flash and
writes to sound controller's buffer. Furthermore, as interrupts stops the main function and
makes the overall implementation slower, it is reasonable to establish a buffer with more
than one slot that we can reduce the number of interrupts and load more data in one
interrupt.

Lessons Learned

Plan/think ahead: Make a software model, and think out the design in hardware before
hand. For example, this helped us in foregoing SRAM for frame buffer, allowing us to
achieve 60 Hz frame synced frame rate, and also being able to free up the SRAM for the
sky.

Stay persistent: There were a few bugs that were beyond reach of TimeQuest Timing
Analyzer. Erratic (apparently timing) errors would appear on the screen, such as the line
glitch caused by memory buffer switching. However, after thinking and thinking, we
were able to get rid of the line using the “patch” memory

Pick a project that is interesting: | enjoyed my hours in the lab, since I enjoyed the
project. Working on something you like is much easier, and allows you to do more. For
example, many of my ideas came while in the shower or laying in bed. Sounds lame, yes,
but it allowed me to contribute more to the group and the project.

Don’t forget hardware debugging. The best way to debug the interrupts is making use
of the hardware, for instance, the LEDs. As we have mentioned, printing data on the
console caused problems. Thus displaying the information on LEDs or segment displays
iS a better way.

Use Interrupts wisely. Interrupts can make the main program slower so think twice
before using it and try to decrease the rate at which they happen. Moreover, it is wise to
disable the interrupts when initializing the program and enable them afterwards. The
interrupts can be an obstacle in speed when the main function has a large workload.

Don’t discount timing problems. ModelSim is a good way to check for logic errors, but
correct simulation results are just one part of the entire debugging process. Always
assuming logic and calculations to be the main reason for bugs ended up being a wrong
direction and wasted a lot of time. Learning the timings required by a certain peripherals
was the key to getting the project to work properly.

Build and test incrementally. It is important to go forward with your plan step by step
and test incrementally. When designing a new module, it may be beneficial to build a
local project environment. Even you are confident with the quality of your design, there

are many unexpected scenario would happen. Within your own local simulation
environment is much easier for you to localize the problem before and after integrating
the component.

Don’t use printf in interrupts. It is worth mentioning that the printf statement cannot be
used in the interrupt handler because it occupies the JTAG to communicate with the
console and may stop everything. Other unexpected problems tend to happen as well.

Pay attention to clock domains. Use one PLL to generate all clocks in your system. Use
a FIFO to transfer between clock domains. Read and know the specifications for your
component before you design. All these tips may save you a lot of trouble at the end of
the day.

Responsibilities

Alden

Adapting algorithm for hardware
Fixed point software versions
Hardware acceleration

Clock domain organization
Memory module control

VGA debugging

Eddy

High level system diagram

Remodeling state machine

VGA rastering and debugging

Group organization

System interconnection between components

Mingyun

All audio components

Flash programming

Integration of audio with software via interrupts
Weihow

Build system with SDRAM

SRAM control for sky generation
Keyboard integration

Yiming

Combinational logic for hardware acceleration
Floor and texture generation modules

References

[1] Lode Vandevenne, Lode’s Computer Graphics Tutorial, 2007
<http://lodev.org/ cgtutor/raycasting.html>.

[2] Brock J. LaMeres, Flash_Programming_the_Altera_ DE2_Board,
Montana State University, 2013.

[3] Nios Il Flash Programmer User Guide, Altera, Feb 2010.

Appendix

de2_ps2.vhd

-- Simple (receive-only) PS/2 controller for the Altera Avalon bus
-- Presents a two-word interface:

-- Byte 0: LSB is a status bit: 1 = data received, 0 = no new data
-- Byte 4: least significant byte is received data,

- reading it clears the input register

-- Make sure "Slave addressing” in the interfaces tab of SOPC Builder's
-- "New Component" dialog is set to "Register" mode.

-- From an original by Bert Cuzeau

-- (c¢) ALSE. http://www.alse-fr.com

—-- Possible improvement : add TIMEOUT on PS2 Clk while shifting

-- Note: PS2 Data is resynchronized though this should not be

-- necessary (qualified by Fall Clk and does not change at that time).
-- Note the tricks to correctly interpret 'H' as 'l' in RTL simulation.

library ieee;
use ieee.std logic 1164.all;
use leee.numeric_ std.all;

entity PS2 Ctrl is
port (
Clk : in std logic; -- System Clock
Reset : in std logic; -- System Reset

pPs2 Clk : in

PS2 Data : in

DoRead : in
code

Scan Err : out
error

Scan DAV : out
arrived

Scan Code : out

);
end PS2 Ctrl;

architecture rtl of

signal PS2 Datr

std logic; -- Keyboard Clock Line

std logic; -- Keyboard Data Line

std logic; -- From outside when reading the scan
std logic; -- To outside : Parity or Overflow
std logic; -- To outside when a scan code has
unsigned (7 downto 0) -- Eight bits Data Out

PsS2 Ctrl is

std logic;

subtype Filter t is unsigned(7 downto 0);

signal Filter
signal Fall Clk
signal Bit Cnt
signal Parity
signal Scan DAVi

signal S Reg
signal PS2 Clk f

Type State t is

Filter t;
std logic;
unsigned (3 downto 0);
std logic;
std logic;

unsigned (8 downto 0);
std logic;

(Idle, Shifting);

signal State : State t;

begin

Scan DAV <= Scan_ DAVi;

-- This filters digi

-- * Eight consecut
-- * Eight consecut
-- Implies a (Filter
-- Also in charge of

process (Clk)

begin
if rising edge(C
if Reset = '1'
PS2 Datr <=
PsS2 Clk f <=
Filter <=
Fall Clk <=
else

PS2 Datr <=

Fall Clk <=
Filter <=

1);

if Filter =

Ps2 Clk f

elsif Filter

tally the raw clock signal coming from the keyboard

ive PS2 Clk=1 makes the filtered clock go high
ive PS2 Clk=0 makes the filtered clock go low
Size+l) x Tsys clock delay on Fall Clk wrt Data
the re-synchronization of PS2 Data

1k) then

then

'O".

'O".

(others => '0");
IOI;

PS2 Data and PS2 Data; -- also turns 'H' into '1'
IOI;
(PS2_Clk and PS2 CLK) & Filter(Filter'high downto

Filter t' (others=>'1') then
<= 1117
= Filter t' (others=>'0") then

Ps2 Clk £ <= '0';
if PS2 Clk £ = '1' then
Fall Clk <= '1';
end if;
end if;
end if;
end if;
end process;

-- This simple State Machine reads in the Serial Data
-- coming from the PS/2 peripheral.

process (Clk)

begin
if rising edge(Clk) then
if Reset = 'l' then
State <= Idle;
Bit Cnt <= (others => '0'");
S_Reg <= (others => '0');
Scan Code <= (others => '0'");
Parity <= '0"';
Scan DAVi <= '0';
Scan Err <= '0';
else
if DoRead = 'l1l' then
Scan DAVi <= '0O'; -- note: this assgnmnt can be overriden
end if;
case State is
when Idle =>
Parity <= '0';
Bit Cnt <= (others => '0'");
-- note that we do not need to clear the Shift Register
if Fall Clk='l' and PS2 Datr='0' then -- Start bit
Scan Err <= '0';
State <= Shifting;
end if;
when Shifting =>
if Bit Cnt >= 9 then
if Fall Clk = '1l' then -- Stop Bit
-- Error is (wrong Parity) or (Stop='0') or Overflow
Scan Err <= (not Parity) or (not PS2 Datr) or
Scan DAVi;
Scan Davi <= '1"';
Scan_Code <= S Reg (7 downto 0);
State <= Idle;
end if;
elsif Fall Clk = '1l' then
Bit Cnt <= Bit Cnt + 1;
S Reg <= PS2 Datr & S Reg (S Reg'high downto 1); -- Shift
right

Parity <= Parity xor PS2 Datr;
end 1f;

when others => -- never reached
State <= Idle;

end case;
--Scan_Err <= '0'; -- to create a deliberate error
end if;
end 1if;
end process;
end rtl;

library ieee;
use leee.std logic 1164.all;
use ileee.numeric std.all;

entity de2 ps2 is

port (

clk : in std logic;

reset : in std logic;

address : in std logic;

read : in std logic;

chipselect : in std logic;

readdata : out std logic vector (7 downto O0);
Ps2 Clk : in std logic;

PS2 Data : in std logic

)7
end de2 ps2;

architecture rtl of de2 ps2 is

signal Data : unsigned (7 downto 0);

signal Data_ in : unsigned (7 downto 0);

signal Datalock : unsigned(7 downto 0) := "00000000";

signal DataAvailable : std logic ;

signal DataAvailable in : std logic;

signal reg : std logic := '0';

signal DoRead : std logic;

type state type is (A, B, C, D, E);

signal state : state _type := A;

signal inc : unsigned (7 downto 0) := "11111111";
begin

Ul: entity work.PS2 CTRL port map (
Clk => clk,
Reset => reset,
DoRead => DoRead,

pPs2 Clk => Ps2 Clk,
PS2 Data => PS2 Data,
Scan Code => Data in,
Scan DAV => DataAvailable in);

process (clk)
begin

if rising edge(clk)

then

DoRead <= read and chipselect and address;
DataAvailable <= DataAvailable in;

case state is

'l'" then

'l'" then

data hasn't changed

end case;

end if;
end process;

when A=>
Data <= Data in;
if Data in = x"FO" and DataAvailable in =

state <= B;

else
state <= A;
end if;
DataLock <= Data in;
reg <= '0';
when B=>

Data <= Data in;
if Data in = x"FO" and DataAvailable in =

state <= B;

else
state <= C;
end if;
DataLock <= Data in;
reg <= '0';
when C=>

Data <= Data in - 32;
--hold state if value doesn't change
if (DataAvailable in = 'l1') then
reg <= '1"';
end if;

DatalLock <= Data in;
-- if data hasn't become available or

if (DataLock = Data in or reg = '0') then
state <= C;

else
state <= A;

end if;

when others =>
state <= A;

process (Data, DataAvailable, address, chipselect)

begin

if chipselect = '1l' then

if address = 'l1l' then
readdata <= std logic_ vector (Data);
else
readdata <= "0000000" & DataAvailable;
end if;
else
readdata <= "00000000";
end if;

end process;

library ieee;
use leee.std logic 1164.all;

entity de2 sram controller is

port (
signal chipselect : in std logic;
signal write, read : in std logic;
signal address : in std logic_vector (17 downto O0);
signal readdata : out std logic_vector (15 downto 0);
signal writedata : in std logic_vector (15 downto 0);
signal byteenable : in std logic vector (1l downto 0);

signal SRAM DQ : inout std logic vector (15 downto 0);
signal SRAM ADDR : out std logic vector (17 downto 0);
signal SRAM UB N, SRAM LB N : out std logic;

signal SRAM WE N, SRAM CE N : out std logic;

signal SRAM OE N : out std logic

)7

end deZ2 sram controller;

architecture dp of de2 sram controller is
begin

SRAM DQ <= writedata when write = '1'
else (others => 'Z");

readdata <= SRAM DQ;

SRAM ADDR <= address;

SRAM UB N <= not byteenable(1l);

SRAM LB N <= not byteenable (0);

SRAM WE N <= not write;

SRAM CE N <= not chipselect;

SRAM OE N <= not read;

de2_vga_raster.vhd

library ieee;
use leee.std logic 1164.all;
use leee.numeric std.all;

entity de2 vga raster is

port (

reset in std logic;

clk in std logic; —-— Should be 25.125 MHz
bool in std logic;

VGA CLK, -— Clock

VGA HS, -- H SYNC

VGA VS, -- V_SYNC

VGA BLANK, -—- BLANK
VGA BLANK_SIG,

VGA SYNC out std logic; -- SYNC

VGA R, -— Red[9:0]

VGA G, -— Green[9:0]

VGA B out unsigned (9 downto 0); -- Blue[9:0]
is_Side in std logic;

line height in unsigned (8 downto 0);
Col Color : in unsigned (23 downto 0);
Flr Color : in unsigned (7 downto 0);

Col Color_ sky

in unsigned (7 downto 0);

Row_Start in unsigned (8 downto 0);
Row Mid in unsigned (8 downto 0);
Row_End in unsigned (8 downto 0);
texNum in unsigned (3 downto 0);
texNum?2 in unsigned (3 downto 0);
Cur_ Row out unsigned(9 downto 0);

Cur_ Col out unsigned (9 downto 0)

)7

end deZ2 vga raster;

architecture rtl of de2 vga raster is

-- Video parameters

constant HTOTAL integer := 800;
constant HSYNC integer := 96;

constant HBACK PORCH integer := 48;

constant HACTIVE integer := 640;
constant HFRONT_ PORCH integer := 16;
constant VTOTAL integer := 525;
constant VSYNC integer := 2;

constant
constant
constant

VBACK_PORCH
VACTIVE
VFRONT PORCH

constant
constant
constant
constant

TEXTURE HSTART
TEXTURE HEND
TEXTURE VSTART
TEXTURE VEND

integer
integer
integer

integer
integer
integer
integer

= 33;
480;
10;

0;

0;
64

-- Signals for the video controller

Hcount
Vcount
EndOfLine,

signal
signal
signal EndOfField
signal
signal
signal
signal

write pixel :std logic;
tex Col
col draw prev
col draw sky prev

signal vga hblank, wvga hsync,
vga_vblank, vga vsync

signal Col Draw std logic;
signal Col Draw_sky
signal R, G, B
--signal R _sky,
signal ROM OUT

G _sky, B sky

signal Cur_Row_local

signal Texture h, Texture v,

signal Floor Draw
--signal Rf, Gf, Bf

std logic;

begin

std logic;

unsigned (9 downto 0);
unsigned (9 downto 0);

std logi

unsigned (5 downto 0);
std logic;
std logic;

-- Co

64;

-— Sync.

’

I

-- Horizontal position (0-800)
-— Vertical position (0-524)
Cy

signals

-- Column Signals area
std logic;
unsigned (9 downto 0);

lumn Signals area

unsigned (9 downto O0);

unsigned (7 downto O0);

Texture

-— Horizontal and vertical counters

HCounter process (clk)
begin
if rising edge(clk) then
if reset = 'l' then
Hcount <= (others =>
elsif EndOfLine = '1l' then
Hcount <= (others =>
else
Hcount <= Hcount + 1;
end if;
end if;

end process HCounter;

EndOfLine <= '1l' when Hcount

VCounter: (clk)

begin

process

'O')’.

'0');

HTOTAL -

unsigned (9 downto O0);

std logic; -- texture area

unsigned (9 downto O0);

1 else

if rising edge(clk) then

if reset = 'l' then
Vcount <= (others => '0'");
elsif EndOfLine = '1l' then
if EndOfField = '1l' then
Vcount <= (others => '0"'");
else
Vcount <= Vcount + 1;
end if;
end if;
end if;

end process VCounter;
EndOfField <= '1l' when Vcount = VTOTAL - 1 else '0';
-- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

HSyncGen : process (clk)
begin
if rising edge(clk) then
if reset = 'l' or EndOfLine = '1l' then
vga_hsync <= '1"';
elsif Hcount = HSYNC - 1 then
vga_hsync <= '0';
end 1if;
end 1if;
end process HSyncGen;

HBlankGen : process (clk)
begin
if rising edge(clk) then
if reset = 'l' then
vga_hblank <= '1';
elsif Hcount = HSYNC + HBACK PORCH then
vga_hblank <= '0';
elsif Hcount = HSYNC + HBACK_ PORCH + HACTIVE then
vga_hblank <= '1';
end if;
end if;
end process HBlankGen;

VSyncGen : process (clk)

begin
if rising edge(clk) then
if reset = 'l' then
vga_vsync <= '1';
elsif EndOfLine ='1l' then
if EndOfField = '1' then
vga_vsync <= '1';
elsif Vcount = VSYNC - 1 then
vga_vsync <= '0';
end if;
end if;
end if;

end process VSyncGen;

VBlankGen : process (clk)

begin
if rising edge(clk) then

if reset = 'l' then
vga_vblank <= '1';
elsif EndOfLine = '1l' then

if Vcount = VSYNC + VBACK PORCH - 1 then
vga_vblank <= '0';

elsif Vcount = VSYNC + VBACK PORCH + VACTIVE - 1 then
vga_vblank <= '1';

end 1if;

end 1if;
end 1if;
end process VBlankGen;

-- Rectangle generator

ColumnHGen : process (clk)
begin
if rising edge(clk) then
-= if reset = 'l' or Hcount = HSYNC + HBACK PORCH +
RECTANGLE HSTART then
-- rectangle h <= '1';
-= elsif Hcount = HSYNC + HBACK PORCH + RECTANGLE HEND then
- rectangle h <= '0';
-— end if;
if Hcount - HSYNC - HBACK PORCH < 640 then
Cur Col <= Hcount - HSYNC - HBACK PORCH;

tex Col <= Hcount (5 downto 0) - HSYNC - HBACK PORCH;
else

Cur Col <= (others => '0");

tex Col <= (others => '0");
end if;

end if;
end process ColumnHGen;

CurRowGen : process (clk)
begin
if rising edge(clk) then
if Vcount - VSYNC - VBACK PORCH -1 < 480 then
Cur Row <= Vcount - VSYNC - VBACK PORCH - 1;
Cur Row local <= Vcount - VSYNC - VBACK PORCH - 1;
else
Cur_ Row <= (others => '0');
Cur Row _local <= (others => '0');
end if;
end if;
end process CurRowGen;

ColumnVGen : process (clk)
begin
if rising edge(clk) then
--col draw prev <= col draw;
if reset = '1l' then
Col Draw <= '0';
elsif (Cur Row local > Row Start or Cur Row local >
Row Mid) then
Col Draw <= '1';

if
Floor Draw <=

else
Floor Draw <=
end if;
else
Col Draw <= '0';
end if;

end if;
end process ColumnVGen;

ColumnVGen_ sky process (clk)
begin
if rising edge(clk) then

(Cur_Row_local >= Row_End)

then
lll,.

'O';

-—-col draw sky prev <= col draw_ sky;

if reset = 'l' then

Col Draw sky <= '0';
(Cur Row_local <= Row_Start and Cur Row local <=

elsif
Row Mid) then
Col Draw sky <= 'l1';
else
Col Draw sky <= '0';
end if;
end if;

end process ColumnVGen sky;

-- FloorVGen process (clk)
-- begin

-— if rising edge(clk) then
-= if reset = 'l' then

Floor Draw <= '0';

- elsif (Cur Row local >= Row_End)
-- Floor Draw <= '1';

- else

-= Floor Draw <= '0';

- end if;

-— end if;

end process FloorVGen;

then

col draw,

& Col Color (7 downto 5)

& Col Color (4 downto 2) &

ColorGen process (Col _Color,Col Color sky,col draw sky,

is_Side, bool, texNum, texNum2)
variable R temp unsigned (9 downto 0);
variable G _temp unsigned (9 downto 0);
variable B temp unsigned (9 downto 0);
variable R _sky unsigned (9 downto 0);
variable G_sky unsigned (9 downto O0);
variable B _sky unsigned (9 downto O0);
begin

-- R temp := Col Color (7 downto 5)

Col Color (7 downto 5) & Col Color(7);

-— G _temp := Col Color (4 downto 2)

Col Color (4 downto 2) & Col Color(4);

-- B temp := Col Color (1l downto 0)

Col Color (1l downto 0)

& Col Color (1l downto 0)

& Col Color(l downto 0) &
& Col Color (1l downto 0);

-- R sky := Col Color sky(7 downto 5) & Col Color sky(7
downto 5) & Col Color sky (7 downto 5) & Col Color sky(7);

-- G sky := Col Color sky(4 downto 2) & Col Color sky (4 downto
2) & Col Color sky(4 downto 2) & Col Color sky(4);
-- B sky := Col Color sky(l downto 0) & Col Color_ sky(l downto

0) & Col Color_ sky(l downto 0) & Col Color sky(l downto 0) &
Col Color_ sky(l downto O0);

R sky := Col Color sky(7 downto 0) & "00";
G sky := Col Color sky(7 downto 0) & "00";
B sky := Col Color_ sky (7 downto 0) & "00" ;
R temp := Col Color (23 downto 16) & "00" ;
G _temp := Col Color(l5 downto 8) & "00";
B temp := Col Color (7 downto 0) & "00";
if (Col Draw sky = '1l' or (bool = 'l' and texNum = x"4") or
(bool = '0' and texNum2 = x"4")) then
R <= R sky;
G <= G_sky;
B <= B sky;
elsif (col draw = 'l') then
if (is_Side = '0') then
R <= R temp;
G <= G_temp;
B <= B temp;
else
R <= (R _temp srl 1);
G <= (G_temp srl 1);
B <= (B_temp srl 1);
end if;
else
R <= "0000000000";
G <= "0000000000Q";
B <= "0000000000";
end if;

end process ColorGen;

BlankGen : process(vga_hblank,vga vblank)

begin
if (vga_hblank = '0' and vga vblank = '0') then
write pixel <= '1';
else
write pixel <= '0';
end if;

end process BlankGen;

-— ColorGen sky : process(Col Color_ sky)

-- begin

-- R sky <= Col Color_ sky (7 downto 5) & Col Color sky(7
downto 5) & Col Color sky (7 downto 5) & Col Color sky(7);

-- G sky <= Col Color sky(4 downto 2) & Col Color sky(4 downto
2) & Col Color sky(4 downto 2) & Col Color sky(4);

-- B sky <= Col Color sky(l downto 0) & Col Color_ sky(l downto
0) & Col Color_ sky(l downto 0) & Col Color sky(l downto 0) &

Col Color_ sky(l downto 0);

-- end process ColorGen sky;

-— FloorGen : process (Flr Color)

-- begin

- Rf <= Flr Color (7 downto 5) & Flr Color(7 downto 5) &
Flr Color (7 downto 5) & Flr Color(7);

- Gf <= Flr Color (4 downto 2) & Flr Color (4 downto 2) &

Flr Color (4 downto 2) & Flr Color(4);

-— Bf <= Flr Color(l downto 0) & Flr Color(l downto 0) &

Flr Color(l downto 0) & Flr Color(l downto 0) & Flr Color(l downto 0);
-- end process FloorGen;

-- Registered video signals going to the video DAC

VideoOut: process (clk, reset)
begin
if reset = 'l' then
VGA R <= "0000000000";
VGA G <= "0000000000";
VGA B <= "0000000000";

elsif clk'event and clk = '1l' then
if write pixel = '1' then
VGA R <= R;
VGA G <= G;
VGA B <= B;
else

VGA R <= "0000000000";
VGA G <= "0000000000";
VGA B <= "0000000000";
end if;
end if;
end process VideoOut;

VGA CLK <= clk;
VGA HS <= not vga hsync;
VGA VS <= not vga_vsync;
VGA SYNC <= '0';
VGA BLANK <= not (vga hsync or vga vsync);
VGA BLANK SIG <= vga_ vblank;
end rtl;

library ieee;
use leee.std logic 1164.all;
use leee.numeric_ std.all;

entity de2 wm8731 audio is
port (

clk : in std logic; -— Audio CODEC Chip Clock AUD XCK (18.43

MHz)

reset n in std logic;

test mode in std logic; -- Audio CODEC controller test
mode

audio_request : out std logic; -- Audio controller request new
data

data in unsigned (15 downto 0);

-- Audio interface signals

AUD ADCLRCK : out std logic; -- Audio CODEC ADC LR Clock

AUD ADCDAT : in std logic; -- Audio CODEC ADC Data

AUD DACLRCK : out std logic; -= Audio CODEC DAC LR Clock

AUD DACDAT : out std logic; -= Audio CODEC DAC Data

AUD BCLK : inout std logic -- Audio CODEC Bit-Stream Clock

);

end de2 wm8731 audio;

architecture rtl of de2 wm8731 audio is

signal
signal
signal

signal
signal

signal
signal
signal
signal

signal

signal
signal

begin

lrck : std_
bclk : std
xck ¢ std

lrck divide
bclk divide

set bclk
set lrck
clr bclk
lrck lat

shift out

sin out
sin counter

-- LRCK divider
-— Audio chip main clock is 18.432MHz / Sample rate 48KHz
-- Divider is 18.432 MHz / 48KHz = 192 (X"CO")
-- Left justify mode set by I2C controller

process (clk)

begin

logic;
logic;
logic;

r : unsigned(ll downto 0);
r : unsigned (7 downto 0);

std logic;
std logic;
std logic;
std logic;

unsigned (15 downto 0);

unsigned (15 downto O0);
unsigned (5 downto O0);

if rising edge(clk) then
if reset n = '0' then
lrck divider <= (others => '0');
elsif lrck divider = X"1Al" then -
lrck divider <= X"000";

else

lrck divider <= lrck divider + 1;
end if;

end if;

end process;

"CO" minus 1

process (clk)
begin
if rising edge(clk) then
if reset n = '0' then
bclk divider <= (others => '0'");
elsif bclk divider = X"1A" or set lrck =
bclk divider <= X"00";
else
bclk divider <= bclk divider + 1;
end if;
end if;
end process;

lll

then

set lrck <= 'l' when lrck divider = X"1Al" else '0';

process (clk)

begin
if rising edge(clk) then
if reset n = '0' then
lrck <= '0"';
elsif set lrck = 'l' then
lrck <= not 1lrck;
end if;
end if;

end process;

-- BCLK divider
set bclk <= '1l' when bclk divider (7 downto 0)
clr bclk <= 'l' when bclk divider (7 downto 0)

process (clk)
begin
if rising edge(clk) then
if reset n = '0' then
bclk <= '0';

elsif set lrck = 'l' or clr bclk = '1l' then
bclk <= '0';
elsif set bclk = '"1l' then

bclk <= '1";
end 1if;
end 1if;
end process;

-- Audio data shift output
process (clk)

begin
if rising edge(clk) then
if reset n = '0' then
shift out <= (others => '0");
elsif set lrck = 'l' then

if test mode 'l' then
shift out <= sin out;

else
shift out <= data;
end if;
elsif clr bclk = '1l' then

shift out <= shift out (14 downto 0) &

"00001100"
"00011001"

'O';

else
else

'O';
'O';

end 1if;
end 1if;
end process;

-- Audio outputs

AUD ADCLRCK <= lrck;

AUD DACLRCK <= lrck;

AUD DACDAT <= shift out(15);
AUD_BCLK <= bclk;

-— Self test with Sin wave

process (clk)

begin
if rising edge(clk) then
if reset n = '0' then
sin counter <= (others => '0');
elsif lrck lat = '1' and lrck = '0'
if sin counter = "101111" then
sin counter <= "000000";
else
sin counter <= sin counter + 1;
end if;
end if;
end if;
end process;
process (clk)
begin
if rising edge(clk) then
lrck lat <= lrck;
end if;
end process;
process (clk)
begin
if rising edge(clk) then
if lrck lat = 'l' and lrck = '0' then
audio request <= '1l';
else
audio request <= '0';
end if;
end if;

end process;

with sin counter select sin out <
X"0000" when "000000",
X"10b4" when "000001",
X"2120" when "000010",
X"30fb" when "000011",
X"3fff" when "000100",
X"4deb" when "000101",
X"5a81" when "000110",
X"658b" when "000111",
X"6ed9" when "001000",
X"7640" when "001001",

then

X"7ba2" when "001010",
X"7ee6" when "001011",
X"7fff" when "001100",
X"7ee6" when "001101",
X"7ba2" when "001110",
X"7640" when "001111",
X"6ed9" when "010000",
X"658b" when "010001",
X"5a81" when "010010",
X"4deb" when "010011",
X"3fff" when "010100",
X"30fb" when "010101",
X"2120" when "010110",
X"10b4" when "010111",
X"0000"™ when "011000",
X"ef4b" when "011001",
X"deeO" when "011010",
X"cf05" when "011011",
X"c001" when "011100",
X"b215" when "011101",
X"a57e" when "011110",
X"9a74" when "011111",
X"9127" when "100000",
X"89pf" when "100001",
X"845d" when "100010",
X"8119" when "100011",
X"8000" when "100100",
X"8119" when "100101",
X"845d" when "100110",
X"89bf" when "100111",
X"9127" when "101000",
X"9a74" when "101001",
X"a57e" when "101010",
X"pb215" when "101011",
X"c000" when "101100",
X"cf05" when "101101",
X"deeO" when "101110",
X"efdb" when "101111",
X"0000"™ when others;

end architecture;

library ieee;
use leee.std logic 1164.all;
use leee.numeric_std.all;

entity floorMod 1is
port (clk : in std logic;
floorX : in unsigned (17 downto 0);
floorY : in unsigned (17 downto 0);

tmpPosX : in unsigned (17 downto 0);

tmpPosY : in unsigned (17 downto 0);
invDistWall : in unsigned (11 downto O0);

% : in unsigned (8 downto 0);
textureIndexOut: out unsigned (11 downto 0)

);
end floorMod;

architecture imp of floorMod is
signal y local : unsigned (8 downto 0);

type rom type is array(0 to 239) of unsigned (15 downto 0);
constant DIVTABLE: rom type := (
x"1000",x"1011",x"1022",x"1033",x"1045",x"1057",x"1069",x"107b", x
"108d",x"109f",x"10b2",x"10c4",x"10d7",x"10ea",x"10fd", x"1111",x"1124",
x"1138",x"114c",x"1160",x"1174",x"1188",x"119d",x"11b2",x"11c7",x"11dc"
,x"11£1", x"1207",x"121c",x"1232",x"1249",x"125€f",x"1276",x"128c",x"12a4
", x"12bb",x"12d2",x"12ea",x"1302",x"131a",x"1333",x"134b",x"1364",x"137
e",x"1397",x"13b1",x"13cb",x"13e5",x"1400",x"141a",x"1435",x"1451",x"14
oc",x"1488",x"14a5",x"14c1",x"14de",x"14fb",x"1519",x"1537",x"1555",x"1
573",x"1592",x"15b1",x"15d1",x"15f1",x"1611",x"1632",x"1653",x"1674",x"
1696",x"16b8",x"16db",x"16fe",x"1721",x"1745",x"176a",x"178e",x"17b4", x
"17d9",x"1800",x"1826",x"184d",x"1875",x"189d",x"18c6",x"18ef",x"1919",
x"1943",x"196e",x"1999",x"19c5",x"19f2",x"1alf",x"1add",x"1a7b",x"1laaa"
,x"lada",x"1b0a",x"1b3b",x"1b6d",x"1bal0",x"1bd3",x"1c07",x"1c3c",x"1c71
",x"1lca8",x"lcdf",x"1d17",x"1d50",x"1d89",x"1dc4d4",x"1e00",x"1e3c",x"1le’7
9", x"1eb8",x"1lef7",x"1£38",x"1£79",x"1fbc",x"2000",x"2044",x"208a",x"20
dz2",x"211la",x"2164",x"21laf",x"21fb",x"2249",x"2298",x"22e8",x"233a",x"2
38e",x"23e3",x"2439",x"2492" ,x"24ec",x"2548",x"25a5",x"2605",x"2666",x"
26c9",x"272f",x"2796",x"2800",x"286b",x"28d9",x"294a",x"29%d",x"2a32",x
"2aaa",x"2b25",x"2ba2",x"2c23",x"2ca6",x"2d2d",x"2db6", x"2e43" ,x"2ed4",
x"2f68",x"3000",x"309p",x"313b",x"31de",x"3286",x"3333",x"33e4",x"349a"
,x"3555",x"3615",x"36db",x"37a6",x"3878",x"3950",x"3a2e",x"3b13",x"3c00
", x"3cf3",x"3def",x"3ef3",x"4000",x"4115",x"4234",x"435e",x"4492",x"45d
1", x"471c",x"4873",x"49d8", x"4b4b",x"4ccc",x"4eb5e", x"5000", x"51b3",x"53
7a",x"5555",x"5745",x"5944d", x"5b6d", x"5da8",x"6000",x"6276",x"650d",x"6
7c8",x"6aaa",x"6dbo",x"70£f0",x"745d",x"7800",x" 7Tbde", x"8000",x"8469", x"
8924",x"8e38",x"93b1",x"9999",x"al000",x"a6fd",x"ae8b",x"bodb",x"c000", x
"cala",x"d555",x"elel",x"£000",x"0000",x"1249",x"2762",x"4000",x"5d17",
x"8000",x"aaaa",x"e000",x"2492",x"8000",x"0000",x"c0O0O0",x"0000",x"8000"
,x"0000"
) ;

begin
process (floorX, floorY, tmpPosX, tmpPosY, invDistWall, y local)

variable currentDist : unsigned (15 downto 0);
variable weight: unsigned (27 downto 0);
variable tmp : unsigned (12 downto O0);

variable currentFloorX : unsigned (30 downto O0);
variable currentFloorY : unsigned (30 downto 0);

variable floorTexX : unsigned (5 downto 0);
variable floorTexY : unsigned (5 downto 0);

begin

currentDist := DIVTABLE (to integer (480 - y local));

weight := currentDist * invDistWall;

tmp := "1000000000000" - weight (23 downto 12);

currentFloorX := (weight (23 downto 12) * floorX + tmp *
tmpPosX) ;

currentFloorY := (weight (23 downto 12) * floorY + tmp *
tmpPosY) ;

floorTexX currentFloorX (23 downto 18);
floorTexY := currentFloorY (23 downto 18);

-- textureIndexOut <= x"000";
textureIndexOut <= (floorTex¥Y & floorTexX);

end process;

process (clk)
begin
if (rising edge(clk)) then
y local <= y;
end if;
end process;

-— Frame Rate Calculation

-- Edward Garcia
-- ewg2ll5@columbia.edu

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;

entity framerate calc is

port (
clk : 1in std logic; —-— Should be 50
MHz
wr_addr : in unsigned (9 downto 0);
frame rate : out unsigned (7 downto 0)

)7

end framerate calc;

architecture rtl of framerate calc is

constant CLOCK 1 SECOND : integer := 50000000; -- 50MHz
constant MAX COLUMN : integer := 640;

-- Signals for the video controller

signal frame count : unsigned(7 downto 0) := "00000000"; --
Horizontal position (0-800)
signal clk count : unsigned (25 downto 0) := (others => '0'");
Vertical position (0-524)
signal prev_wr addr : unsigned(9 downto 0) := "0000000000";
type states is (A, B, B2, C);
signal state : states := A;
begin
frame counter : process (clk, wr_ addr)
begin

if rising edge(clk) then
clk count <= clk count + 1;
prev_wr addr <= wr_ addr;

case state is
when A =>

if clk count = CLOCK 1 SECOND then
state <= B;

elsif wr addr = MAX COLUMN -1 then
state <= C;

else
state <= A;

end if;

when B =>
frame rate <= frame count;
clk count <= (others => '0");
state <= B2;

when B2 =>
frame count <= (others => '0');

state <= A;

when C =>
if wr addr = MAX COLUMN -1 then
state <= C;
else
frame count <= frame count + 1;
state <= A;
end if;

when others =>
state <= A;

end case;
end if;
end process frame counter;

library ieee;
use leee.std logic 1164.all;
use leee.numeric std.all;

entity memcustom is

port
(
clock : in std logic := '1l';
data : in std logic_vector (255 downto 0);
rdaddress : in unsigned (9 downto 0);
--wraddress : in unsigned(9 downto 0);
--wren : in std logic := '0"';
rd req : in std logic := '0' ;
--VGA BLANK : in std logic := '0';
row _in : in unsigned (9 downto 0);
row _out : out unsigned (9 downto 0);
g : out std logic vector (255 downto 0)

)7

end memcustom;

architecture rtl of memcustom is

signal toggle : std logic := '1';
signal blank prev : std logic := '0';
signal wren : std logic := '0';

signal wraddress : unsigned(9 downto O0);

signal address 1 a : std logic vector (8 downto
signal address 1 b : std logic vector (6 downto
signal address 2 a : std logic vector (8 downto
signal address 2 b : std logic vector (6 downto 0);
signal address patch 1 : std logic vector (5 downto 0);
signal address patch 2 : std logic vector (5 downto 0);

)7
)
)

O O O

’

) 4
)i
) .

’

signal data 1 a : std logic vector (255 downto
signal data 1 b : std logic_vector (255 downto
signal data 2 a : std logic_vector (255 downto
signal data 2 b : std logic _vector (255 downto 0);

signal data patch 1 : std logic vector (255 downto 0);
signal data patch 2 : std logic vector (255 downto 0);

o O O

signal g 1 a std logic vector (255 downto 0);
signal g 1 b std logic vector (255 downto 0);
signal g 2 a : std logic vector (255 downto 0);
signal g 2 b : std logic vector (255 downto 0);
signal g patch 1 : std logic vector (255 downto 0);
signal g patch 2 : std logic vector (255 downto 0);

signal wren 1 a std logic;

signal wren 1 Db std logic;

signal wren 2 a std logic;

signal wren 2 Db std logic;

signal wren patch 1 std logic;

signal wren patch 2 std logic;

type read codes is (A, B, C, D, E , F);

signal
begin

MO :

M1:

M3:

M4 :

read code read codes;
entity work.mem custom 2 a port map (
address => address 1 a,
clock => clock,
data => data_ 1 a,
wren wren 1 a,
q = q_l a
entity work.mem custom 2 b port map (
address => address 1 Db,
clock => clock,
data => data_ 1 Db,
wren => wren 1 Db,
q => glb
entity work.mem custom 2 a port map (
address => address 2 a,
clock => clock,
data => data 2 a,
wren => wren 2 a,
q => g 2 a
entity work.mem custom 2 b port map (
address => address 2 Db,
clock => clock,
data => data 2 Db,
wren => wren 2 b,
q => g 2b
)7
M5: entity work.mem patch 2 port map (
address => address patch 1,
clock => clock,
data => data patch 1,
wren => wren patch 1,

q =>

g_patch 1

M6: entity work.mem patch 2 port map (
address => address_patch 2,
clock => clock,
data => data patch 2,
wren => wren patch 2,

q => g_patch 2
)i

process (clock)
begin
if (rising edge(clock)) then
--data(242) is VGA BLANK from FSM through FIFO
--blank prev <= data(242);
if wren = 'l' and data(242) = '1' then
toggle <= not toggle;

end if;

--read code

--00 =1 a
--01 =1 b
--10 = 2 a
--11 2 Db

- case read code 1is

-- when A => qg <=9l a;
- when B => g <=qg 1l b;
- when C => g <=9 2 a;
- when D => qg <=9 2 b;

- when E => g <= g _patch 1;
- when F => g <= g patch 2;

- when others => g <= (others => '0'");
-- end case;

row out <= row_in;

if (rd req = 'l') then
wren <= '1"';
else
wren <= '0';
end if;
if (toggle = 'l') then

if (rdaddress < "0111110000") then
read code <= C;

elsif (rdaddress >= "1000010000"™) then
read code <= D;

else
read code <= F;

end if;

else

if (rdaddress < "0111110000") then
read code <= A;

elsif (rdaddress >= "1000010000"™) then
read code <= B;

else

read code <= E;
end 1if;
end 1f;
end 1f;

end process;

-- MUX for address inputs and writes
process (data)
begin
wraddress <= unsigned(data (241 downto 232));
end process;

process (toggle, wren, wraddress,rdaddress,data)
begin

data 1 a <= data;
data 1 b <= data;
data 2 a <= data;
data 2 b <= data;
data patch 1 <= data;
data patch 2 <= data;

if (toggle = '1l') then
if (wren = '1l') then
if (wraddress < "0111111110") then
wren 1 a <= '1";

wren 1 b <= '0";

elsif (wraddress >= "1000000010"™) then
wren 1 a <= '0';
wren 1 b <= '1";

else
wren 1 a <= '0";
wren 1 b <= '0";
end if;

if (wraddress >= "0111100010" and wraddress <
"1000011110"™) then
wren patch 1 <= '1';

else
wren patch 1 <= '0';
end if;
else
wren 1 a <= '0';
wren 1 b <= '0';
wren patch 1 <= '0';
end if;
wren 2 a <= '0';

wren 2 b <= '0';
wren patch 2 <= '0';

address_1 a <= std logic vector (wraddress (8 downto 0));
address_1 b <= std logic vector (wraddress (6 downto 0));
address patch 1 <= std logic vector (wraddress (5 downto

0));
address_2 a <= std logic vector (rdaddress (8 downto 0));
address 2 b <= std logic vector (rdaddress (6 downto 0));
address patch 2 <= std logic vector (rdaddress (5 downto
0));
else
if (wren = '1l') then
if (wraddress < "0111111110") then
wren 2 a <= 'l';

wren 2 b <= '0';
elsif (wraddress >= "1000000010"™) then
wren 2 a <= '0';
wren 2 b <= 'l"';
else
wren 2 a <= '0';
wren 2 b <= '0";
end if;

if (wraddress >= "0111100010" and wraddress <
"1000011110"™) then
wren patch 2 <= '1';

else
wren patch 2 <= '0';
end if;
else
wren 2 a <= '0';
wren 2 b <= '0';
wren patch 2 <= '0';
end if;
wren 1 a <= '0';

wren 1 b <= '0';
wren patch 1 <= '0';

address 2 a <= std logic vector (wraddress (8 downto 0));
address 2 b <= std logic vector (wraddress (6 downto 0));
address patch 2 <= std logic vector (wraddress (5 downto 0));

address 1 a <= std logic vector (rdaddress (8 downto 0));
address 1 b <= std logic vector(rdaddress (6 downto 0));
address patch 1 <= std logic vector (rdaddress (5 downto 0));
end if;
end process;
-- MUX for output read

process (read code,q 1 a,q 1 b,g 2 a,qg 2 b,g patch 1,g patch 2)

begin

case read code is
when A => q

when B => q

when q

when => q

g

g

AN
Il

’

A
I

I

A
I

I

AN
Il
NN - -
oo 0w

pgtch_l;
_patch 2;
= (others => '0");

<

C —
D —
when E => -
when F

when others
end case;

AN
Il

9

o

g

9

q

9
> g <
end process;

library ieee;
use leee.std logic 1164.all;
use ileee.numeric std.all;

entity niosInterface is

port (
clk : in std logic;
reset n : in std logic;
read : in std logic;
write : in std logic;
chipselect : in std logic;
address : in std logic vector (4 downto 0);

readdata : out std logic vector (31 downto 0);
writedata : in std logic vector (31 downto 0);

hardware data : in std logic vector (31 downto 0);

ctrl : out std logic;
nios_data : out std logic vector (255 downto 0)

);
end niosInterface;
architecture rtl of niosInterface is

signal control store : std logic := '0' ;

begin

process (clk)
begin
if rising edge(clk) then
ctrl <= control store;
if reset n = '0' then

readdata <= (others => '0'");

control store <= '0';
else
if chipselect = 'l' then
if read = '1' then
readdata <= hardware data;
elsif write = '1l' then

case address 1is
when "00000" =>
control store <=
writedata (0);
when "00001" =>
nios data (31 downto 0)
<= (writedata (31 downto 0));
when "00010" =>
nios data (63 downto 32)
<= (writedata (31 downto 0));
when "00011" =>
nios data (95 downto 64)
<= (writedata (31 downto 0));
when "00100" =>
nios data (127 downto
96) <= (writedata (31 downto 0));
when "00101" =>
nios data (159 downto
128) <= (writedata (31 downto 0));
when "00110" =>
nios data (191 downto
160) <= (writedata (31 downto 0));
when "00111" =>
nios data (223 downto
192) <= (writedata (31 downto 0));
when "01000" =>
nios data (255 downto
224) <= (writedata (31 downto 0));
when others =>
control store <= '0';
end case;
end if;
end if;
end if;
end if;
end process;

library ieee;
use leee.std logic 1164.all;
use leee.numeric_std.all;

entity ray FSM is

port

(

clk

in std logic;

control

VGA BLANK
wrfull

posX

posY
countstep
colAddrIn
rayDirX
rayDirY
tmpPosXout
tmpPosYout
isSide
isSide?2
bool

texNum
texNum2
texX

texX2
floorX
floorY
countout
countout?
line minus h
invline
line minus h2
invline?2
invdist out
drawStart
drawMid

drawEnd

colAddrOut

in

in

in

in

in

in

in

in

in

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

std logic;

std logic;

std logic;
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (9 downto
signed (31 downto

signed (31 downto

unsigned (31 downto

unsigned (31 downto
std logic;
std logic;
std logic;
unsigned (3 downto

unsigned (3 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto
unsigned (31 downto

unsigned (9 downto

state out : out std logic_vector
(11 downto 0);

WE : out std logic;

VGA BLANK OUT : out std logic;

ready : out std logic
);
end ray FSM;

architecture imp of ray FSM is

type rom type is array(0 to 1023) of unsigned (3 downto O0);
constant MAP ROM: rom type := (
X"9" X"9" X"9" X"9" X"9" X"9" X"9" X"9" X"9" X"9" X"9" X"9" X"9" X"9" X
4 4 4 4 4 4 4 4 4 4 4 4 4 4
"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"
9",X"9",X"9",X"9",X"9",X"O",X"O",X"7",X"O",X"8",X"O",X"8",X"O",X"O",X"S
" X"7" X"O" X"2" X"5" X"2" X"6" X"2" X"5" X"2" X"O" X"6" X"O" X"O" X"O"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"O",X"O",X"O",X"O",X"O",X"O",X"9",X"9",X"2",X"3",X"3",X"O",X"O",X"O",
X"O" X"O" X"8" X"8" X"4" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X
4 4 4 4 4 4 4 4 4 4 4 4 14 14
"O",X"O",X"O",X"O",X"O",X"5",X"O",X"O",X"6",X"O",X"9",X"9",X"O",X"O",X"
3",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O
" X"O" X"O" X"O" X"O" X"7" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"9"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"9",X"2",X"3",X"3",X"O",X"O",X"O",X"O",X"O",X"8",X"8",X"4",X"O",X"O",
X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"6" X"O" X"O" X"O" X
4 4 4 4 4 4 4 4 4 4 4 4 4 4
"6"’X"O",X"O",X"9",X"9",X"O",X"O",X"O",X"O"’X"O"’X"O"’X"O"’X"O"’X"O"’X"
8",X"4",X"O",X"O",X"O",X"O",X"O",X"6",X"6",X"6",X"O",X"6",X"7",X"O",X"O
" X"O" X"5" X"O" X"O" X"O" X"O" X"9" X"9" X"8" X"8" X"8" X"O" X"8" X"8"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"8",X"8",X"8",X"8",X"4",X"4",X"4",X"4",X"4",X"4",X"6",X"O",X"O",X"O",
X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"7" X"O" X"9" X"9" X"6" X"7" X
4 4 4 4 4 4 4 4 4 4 4 4 4 4
"7",X"O",X"7",X"7",X"7",X"7",X"O",X"8",X"O",X"8",X"O",X"8",X"O",X"8",X"
4",X"O",X"4",X"O",X"6",X"7",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"g
" X"9" X"7" X"O" X"O" X"O" X"O" X"O" X"O" X"7" X"8" X"O" X"8" X"O" X"8"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"O",X"S",X"8",X"6",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"S",X"O",
X"8",X"O",X"O",X"9",X"9",X"Z",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X
"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"7",X"O",X"
O",X"O",X"O",X"O",X"O",X"O",X"O",X"9",X"9",X"2",X"O",X"O",X"O",X"O",X"O
" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"8" X"6" X"O" X"6" X"O"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"6",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"9",X"9",X"7",X"O",
X"O",X"O",X"O",X"O",X"O",X"7",X"8",X"O",X"8",X"O",X"8",X"O",X"8",X"8",X
"6",X"4",X"6",X"O",X"6",X"6",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"
9",X"9",X"2",X"7",X"7",X"O",X"7",X"7",X"7",X"7",X"8",X"8",X"4",X"O",X"6
" X"8" X"4" X"8" X"3" X"3" X"3" X"O" X"3" X"6" X"O" X"O" X"O" X"O" X"O"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"O",X"O",X"O",X"9",X"9",X"6",X"2",X"2",X"O",X"2",X"2",X"2",X"2",X"4",
X"6",X"4",X"O",X"O",X"6",X"O",X"6",X"3",X"O",X"O",X"O",X"O",X"O",X"O",X
"O",X"O",X"O",X"O",X"O",X"O",X"O",X"9",X"9",X"6",X"O",X"O",X"O",X"O",X"
O",X"2",X"2",X"4",X"O",X"O",X"O",X"O",X"O",X"O",X"4",X"3",X"O",X"O",X"O
" X"O" X"6" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"9" X"9" X"O" X"O"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"O",X"O",X"O",X"O",X"O",X"2",X"4",X"O",X"O",X"O",X"O",X"O",X"O",X"4",
X"3" X"O" X"O" X"O" X"O" X"O" X"O" X"3" X"Z" X"O" X"4" X"3" X"O" X"O" X
4 4 4 4 4 4 4 4 4 4 4 4 4 4
"9",X"9",X"7",X"O",X"O",X"O",X"O",X"O",X"O",X"l",X"4",X"4",X"O",X"4",X"
4",X"6",X"O",X"6",X"3",X"3",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O
" X"O" X"O" X"O" X"9" X"g" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"Z" X"Z"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"2",X"O",X"2",X"2",X"Z",X"6",X"6",X"O",X"O",X"5",X"O",X"5",X"O",X"O",
X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"9",X"9",X"7",X"O",X"O",X"O",X"O",X
"O",XHZHIXHZH,XHZH,X"O",X"O",X"O",XHZH,X"2",Xﬂ3",XHSHIXHO",XHSH,X"O",X"
O",X"O",X"5",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"9",X"9",X"O",X"O
" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O" X"O"
4 4 4 4 4 4 4 4 4 4 4 4 4 4
,X"O",X"O",X"O",X"O",X"5",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",

X"9",X"9",X"7",X"O",X"O",X"O",X"O",X"O",X"O",X"3",X"4",X"2",X"1",X"1",X
"2",X"O",X"4",X"4",X"3",X"l",X"2",X"2",X"O",X"O",X"O",X"O",X"O",X"O",X"
0", x"0",x"0", x"0", x"9", x"9", x"0",x"0",x"0",x"0", x"0", x"0", x"0", x"2",x"0
", x"0", x"0", k0", x"0", x"2", x"0", x"0", x"0", x"0", x"0", x"0",x"0",x"0",x"0O"
,x"0", x"0", x"0", x"0", x"0", x"0", x"0", x" 9", x" 9", x"2", x"0", x"2", x"T", x"2",
X"7",X"2",X"2",X"2",X"O",X"7",X"O",X"8",X"8",X"O",X"5",X"O",X"4",X"O",X
"7, x"OM, x"0", x"0", x"0", x"0", x"0",x"0",x"0",x"0", x"0", x"9", x" 9", x"2", x"
O",X"2",X"7",X"2",X"7",X"2",X"2",X"2",X"O",X"7",X"O",X"8",X"8",X"O",X"5
",X"O",X"4",X"O",X"7",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O"
SO, XMON, X2, x" 0", x"2", x"0", x"0", x"0", k" 0", x"2", x"2", x"0", x" 7", x"0",
X"8",X"8",X"O",X"5",X"O",X"4",X"O",X"7",X"O",X"O",X"O",X"O",X"O",X"O",X
"O",X"O",X"O",X"O",X"9",X"9",X"2",X"O",X"Z",X"O",X"2",X"O",X"O",X"O",X"
O",X"O",X"7",X"O",X"8",X"8",X"O",X"3",X"O",X"4",X"O",X"7",X"O",X"O",X"O
", x"0", x"0", x"0", x"0",x"0", x"0", x"0", x"9", x" 9", x"2", x"0", x"2", x"0", x"2"
S XMOM, xM2M, %" 2", x" 2", x" 0", x"2", x"0", x"8", x"8", x"0", x"5",x"0", x"4", x"0",
X"7",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"9",X"9",X"2",X
"oM,x"2",x"0", x"2", x"0", x"0", x"0", x"1",x"0", x"2", x"0", x"3", x"3", x"0", x"
5",X"O",X"4",X"O",X"7",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O",X"O
",X"9",X"9",X"Z",X"O",X"Z",X"O",X"2",X"7",X"2",X"O",X"2",X"O",X"]_",X"O"
,x"8", x"8", x"0",x"3", x"0", x"4", x"0", x" 7", x"0",x"0",x"0",x"0", x"0", x"0",
X"O",X"O",X"O",X"O",X"9",X"9",X"2",X"O",X"2",X"O",X"Z",X"7",X"1",X"O",X
"M, x"OM,x"1", x"0", x"8", x"8", x"0",x"5",x"0", x"4", x"0", x" 7", x"0", x"0", x"
0", x"0",x"0", x"0", x"0", x"0", x"0",x"0",x"9", x"9", x"2", x"0", x"0", x"0", x"2
",X"7",X"2",X"l",X"2",X"O",X"7",X"O",X"O",X"O",X"O",X"5",X"O",X"O",X"O"
, "7, x"0", x"0", x"0", x"0", x"0", x"0", x"0", x"0",x"0",x"0", x"9", x"9", x"9",
X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X"9",X
"M, x"9M, x"9", x"9", x" 9", k" 9", k" 9", X" 9", x"9", x"9", x"9", x" 9", x" 9", k" 9", x"
9", x"9"

)7

type states is (A, B, C, D, E ,F, G, H, I,J,K,L);
signal state : states := A;

-- loop mod signals

signal controlprev : std logic := '0';

signal count : unsigned (31 downto 0) := (others => '0'");
signal count2 : unsigned (31 downto 0) := (others => '0'");

signal countstep sig : unsigned (31 downto 0):= x"00035a4b";
signal rayDirX sig : signed (31 downto 0):= x"00035a4b";
signal rayDirY sig : signed (31 downto 0):= x"fffddlg83";
signal rayDirX calc : signed (31 downto 0):= x"00035a4b";
signal rayDirY calc : signed (31 downto 0):= x"fffdd183";

signal rayPosX : unsigned (31 downto 0):= x"05c00000";
signal rayPosY : unsigned (31 downto 0):= x"02e00000";

x"05c00000";
x"02e00000";

signal rayPosX2 : unsigned (31 downto O0):
signal rayPosY2 : unsigned (31 downto O0):

signal colAddr : unsigned (9 downto 0):= "0000000001";

signal tmpPosX : unsigned (31 downto O0) x"05c00000™;
signal tmpPosY : unsigned (31 downto 0) := x"02e00000";

signal mapSpot : unsigned (3 downto 0) :=(others => '0")

);

signal mapSpot2 : unsigned (3 downto 0) (others => '0

signal countshift : unsigned (31 downto 0) :=(others => '0');

signal lineheight : unsigned(31 downto 0) :=(others => '0');

signal invlineheight : unsigned (31 downto 0) :=(others => '0");

signal lineheight2 : unsigned (31 downto 0) :=(others => '0');

signal invlineheight2 : unsigned (31 downto 0) :=(others => '0"'");

signal invdist : unsigned (31 downto 0) :=(others => '0"'");

signal remainder line : unsigned(31 downto 0) :=(others => '0");

signal remainder invline : unsigned(31 downto 0):=(others => '0');

signal remainder line2 : unsigned(31 downto 0):=(others => '0');

signal remainder invline2 : unsigned(31 downto 0) :=(others => '0");

signal remainder invdist : unsigned(31 downto 0) :=(others => '0');

signal inc : unsigned(4 downto 0) :=(others => '0'");

signal inc_limitl : unsigned(ll downto 0) := "111111111111";

signal inc_limit2 : unsigned(5 downto 0) := "111111";

signal bitselect : unsigned (31 downto 0) :=(others => '0'");

signal tmpCount : unsigned (31 downto 0) :=(others => '0'");

signal tmplineNum : unsigned (31 downto 0) :=(others => '0");

signal tmpinvDistNum : unsigned (31 downto 0) :=(others => '0');

signal tmpCount2 : unsigned (31 downto 0) :=(others => '0");

constant line numerator : unsigned(31 downto 0) := x"78000000";

constant screenHeight : unsigned(31 downto 0) := x"000001EQ";

constant halfscreenHeight : unsigned(31 downto 0) := x"000000F0";

constant invdist numerator : unsigned (31 downto 0) := x"01000000";

begin

process (clk) --Sequential process
variable drawStartTmp : unsigned (31 downto 0);
variable drawMidTmp : unsigned (31 downto 0);
variable drawEndTmp : unsigned (31 downto 0);
variable tmp rayPosX : unsigned (31 downto 0);
variable tmp rayPosY : unsigned (31 downto 0);
variable tmp rayPosX2 : unsigned (31 downto 0);
variable tmp rayPosY2 : unsigned (31 downto 0);
variable addr : unsigned (9 downto 0);
variable addr2 : unsigned (9 downto 0);
variable remainder line var : unsigned (31 downto 0);
variable remainder invline var : unsigned (31 downto 0);
variable remainder line var2 : unsigned (31 downto 0);

variable remainder invline var2 : unsigned (31 downto 0);

variable remainder invdi
begin

if rising edge(clk) then

st _var

colAddrOut <= colAddr;
controlprev <= control;

case state is
when A =>

unsigned (31 downto 0);

inc limitl <= "111111111111";

inc limit2 <= "111111";
state out <= "100000000000";
ready <= '1"';
WE<='0";
VGA_BLANK OUT <= '0';

if (controlprev = '0'

and control

count <= x"00000000";
count?2 <= x"00000000";

'l'") then

22)) & "00000") +

22)) & "00000") +

MAP ROM(to_integer (addr));

MAP ROM(to integer (addr2));

else

(tmp rayPosY

(tmp rayPosY2

countstep sig <= countstep;
rayDirX sig <= rayDirX;
rayDirY sig <= rayDirY;
rayDirX calc <= rayDirX;
rayDirY calc <= rayDirY;

rayPosX <= posX;
rayPosY <= posY;

rayPosX2 <= posX;
rayPosY2 <= posY;

tmpPosX <= posX;
tmpPosY <= posY;

tmp rayPosX = posX;
tmp rayPosY := posY;
addr := ((tmp_ rayPosX

(31 downto 22));

tmp rayPosX2 = posX;
tmp rayPosY2 := posY;
addr2 := ((tmp rayPosX2

(31 downto 22));

mapSpot <=
mapSpot2 <=
state <= B;

colAddr <= colAddrIn;

state <= A;

(26 downto

(26 downto

when B =>

"000000000000")

countstep sig;

unsigned (signed (rayPosX)

unsigned (signed (rayPosY)

unsigned (signed (rayPosX2)

unsigned (signed (rayPosY2)

unsigned (signed (rayPosX)

unsigned (signed (rayPosY)

22)) & "00000")

unsigned(signed (rayPosX2)

unsigned (signed (rayPosY2)

22)) & "00000")

MAP ROM(to_integer (addr));

then

end if;

state out <= "010000000000";
ready <= '0';

WE<='0";

VGA_BLANK OUT <= '0';

inc limitl <= inc limitl - 1;
if (mapSpot2 < x"5" and inc_limitl >

x"0") then
count <= count +

if (mapSpot

rayPosX <=
rayDirX sig);
rayPosY <=

+ rayDirY siq);

end if;

count2 <= count2 + countstep sig;
rayPosX2 <=

+ rayDirX siq);
rayPosY2 <=

+ rayDirY sig);

tmp rayPosX :=
rayDirX sig);
tmp rayPosY :=

+ rayDirY siqg);

addr := ((tmp_rayPosX (26 downto

+ (tmp rayPosY (31 downto 22));

tmp rayPosX2
+ rayDirX sig);

tmp rayPosY2 :=
+ rayDirY siq);

addr2 := ((tmp rayPosX2 (26 downto

+ (tmp_rayPosY2 (31 downto 22));

mapSpot <=

mapSpot2 <=

MAP ROM(to_ integer (addr2)) ;

when

cC =>

state <= B;
else
state <= C;
end if;

state out <= "001000000000";
ready <= '0';

WE<='0";

VGA BLANK OUT <= '0';

state<= D;

--decrement variables to increase precision
countstep sig <= "00000" & countstep sig(31
downto 5);

-- if negative shift in 1's
if (rayDirX sig(31 downto 31) = "1") then
rayDirX sig <= "11111" &
rayDirX sig (31 downto 5);

else
rayDirX sig <= "00000" &
rayDirX sig(31 downto 5);
end 1if;
if (rayDirY sig(31 downto 31) = "1") then
rayDirY sig <= "11111" &
rayDirY sig (31 downto 5);
else
rayDirY sig <= "00000" &
rayDirY sig(31 downto 5);
end if;

when D =>
state out <= "000100000000";
ready <= '0';
WE<='0";
VGA BLANK OUT <= '0';

inc 1imit2 <= inc limit2 - 1;

if((mapSpot = x"0" and mapSpot2 < x"5") or
inc_limit2 = "000000") then
state <= E;
else
if (mapSpot > x"0") then
count <= count -
countstep sig;

rayPosX <=
unsigned(signed (rayPosX) - rayDirX sig);
rayPosY <=
unsigned (signed (rayPosY) - rayDirY sig);
end 1if;

if (mapSpot2 > x"4") then

count?2 <= count?2 -
countstep sig;
rayPosX2 <=

unsigned (signed(rayPosX2) - rayDirX sig);
rayPosY2 <=
unsigned(signed(rayPosY2) - rayDirY sigq);

end if;

tmp rayPosX := unsigned(signed(rayPosX)
- rayDirX siq);

tmp rayPosY := unsigned(signed(rayPosY)
- rayDirY siq);
addr := ((tmp_rayPosX (26 downto 22)) &
"00000"™) + (tmp_rayPosY (31 downto 22));

tmp rayPosX2 :=

unsigned (signed (rayPosX2) - rayDirX sig);

tmp rayPosY2 :=
unsigned(signed(rayPosY2) - rayDir¥Y siq);

addr2 := ((tmp rayPosX2 (26 downto
22)) & "00000"™) + (tmp rayPosY2 (31 downto 22));

mapSpot <=

MAP ROM(to_integer (addr));

mapSpot2 <=
MAP ROM(to_integer (addr2)) ;

state <= D;

end if;

when E =>
state out <= "000010000000";
ready <= '0';
WE<='0";
VGA BLANK OUT <= '0';

count <= count + countstep sig;

rayPosX <= unsigned(signed(rayPosX) +
rayDirX sig);

rayPosY <= unsigned (signed (rayPosY) +
rayDirY sig);

count2 <= count2 + countstep sig;

rayPosX2 <= unsigned(signed(rayPosX2) +
rayDirX sig);

rayPosY2 <= unsigned(signed(rayPos¥2) +
rayDirY sig);

tmp rayPosX := unsigned(signed(rayPosX) +
rayDirX sig);
tmp rayPosY := unsigned(signed(rayPosY) +
rayDirY sig);
addr := ((tmp_rayPosX (26 downto 22)) &
"00000™) + (tmp_rayPosY (31 downto 22));
tmp rayPosX2 := unsigned(signed(rayPosX2) +

rayDirX sig);

tmp rayPosY2 unsigned (signed (rayPosY2) +
rayDirY sig);
addr2 := ((tmp rayPosX2 (26 downto 22)) &

"00000") + (tmp rayPosY2 (31 downto 22));

mapSpot <= MAP ROM(to integer (addr));
mapSpot2 <= MAP ROM(to integer (addr2));

state <= F;

when F =>
state out <= "000001000000";
ready <= '0';
WE<='0";
VGA_BLANK OUT <= '0';

inc <= "11111";

countshift <= "0000000000" & count (31
downto 10) ;

lineheight <= x"00000000";

invlineheight <= x"00000000";

invdist <= x"00000000";

lineheight2 <= x"00000000";
invlineheight2 <= x"00000000";

remainder line <= x"00000000";
remainder invline <= x"00000000";
remainder invdist <= x"00000000";

remainder line2 <= x"00000000";
remainder invline2 <= x"00000000";

bitselect <= x"80000000";

tmplineNum <= line numerator;
tmpCount <= "0"&count (31 downto 1);
tmpinvDistNum <= invdist numerator;

tmpCount2 <= "0"&count2 (31 downto 1);
state <= G;

when G =>
state out <= "000000100000";
ready <= '0';
WE<='0";
VGA BLANK OUT <= '0';

if (inc = "00000") then
state <= H;
else
state <= G;
end if;
remainder line var := (remainder line (30

downto 0))& tmplineNum (31 downto 31);
remainder invline var :=

(remainder invline (30 downto 0))& tmpCount (31 downto 31);
remainder invdist var :=

(remainder invdist (30 downto 0))& tmpinvDistNum (31 downto 31);

remainder line var2 := (remainder line2 (30
downto 0))& tmplineNum (31 downto 31);

remainder invline var2 :=
(remainder invline2 (30 downto 0))& tmpCount2 (31 downto 31);

tmplineNum <= tmplineNum (30 downto 0) & "0";
tmpCount <= tmpCount (30 downto 0) & "0O";
tmpCount2 <= tmpCount2 (30 downto 0) & "0";
tmpinvDistNum <= tmpinvDistNum (30 downto 0) &

"o";
bitselect <= "0" & bitselect (31 downto 1);
if (remainder line var >= count) then
remainder line <=
remainder line var - count;
lineheight <= lineheight +
bitselect;
else
remainder line <=
remainder line var;
end if;

if (remainder invline var >= screenHeight)
then
remainder invline <=
remainder invline var - screenHeight;
invlineheight <=
invlineheight + bitselect;
else
remainder invline <=
remainder invline var;
end if;

if (remainder invdist var >= countshift) then
remainder invdist <=
remainder invdist var - countshift;
invdist <=invdist +
bitselect;
else
remainder invdist <=
remainder invdist var;
end if;
if (remainder line var2 >= count2) then
remainder line2 <=
remainder line var2 - count2;
lineheight2 <= lineheight2 +
bitselect;
else
remainder line2 <=
remainder line var2;
end if;

if (remainder invline var2 >= screenHeight) then
remainder invline2 <= remainder invline var2 -
screenHeight;
invlineheight2 <= invlineheight2 + bitselect;
else

remainder invline2 <=
remainder invline var2;
end if;

inc <= inc - 1;

when H =>
state out <= "000000010000";
ready <= '0';
WE<='0";
VGA_BLANK OUT <= '0';

if (mapSpot > x"4") then
bool <= '1"';
drawStartTmp :=
halfscreenHeight - (lineheight (30 downto 0)& "O0") - ("0" &
lineheight (31 downto 1));
texNum <= mapSpot - 5;

else
bool <= '0';
drawStartTmp :=
halfscreenHeight - (lineheight2 (30 downto 0) & "O0") —-("0" &
lineheight2 (31 downto 1));
texNum <= mapSpot - 1;
end if;

texNum2 <= mapSpot2 - 5;

drawMidTmp := halfscreenHeight - ("0" & lineheight (31
downto 1)) ;

drawEndTmp halfscreenHeight + ("0" & lineheight (31

downto 1));

if (drawStartTmp >= screenHeight) then
drawStart <= x"00000000";
else
drawStart <= drawStartTmp;
end if;

if (drawMidTmp >= screenHeight) then
drawMid <= x"00000000";
else
drawMid <= drawMidTmp;
end if;

if (drawkEndTmp >= screenHeight) then
drawEnd <= screenHeight -1;

else

drawEnd <= drawEndTmp;
end if;
line minus h <= lineheight - screenHeight;

invline <= invlineheight;

invdist out <= invdist;

line minus h2 <= lineheight2 - screenHeight;
invline2 <= invlineheight2;

state <= I;

when I =>
state out <= "000000001000";
ready <= '0';
WE<='0";
VGA_ BLANK OUT <= '0';

if (wrfull = '1l') then
state <= I;
else
state <= J;
end if;

when J =>
state out <= "000000000100";
ready <= '0';
VGA_ BLANK OUT <= '0';
if (colAddr >= "1001111111") then
state <= K;

WE<='0";
else

WE<='1";

state <= A;
end if;

when K =>
state out <= "000000000010";
ready <= '0';
if (VGA_BLANK = '1") then
state <= A;
WE<='"'1";
VGA_BLANK OUT <= '1';
else
VGA BLANK OUT <= '0';
state <= K;
WE<='0";
end if;

when others =>
state out <= "111111111111";
state <= A;

end case;

end if;
end process;

process (count,count2,mapSpot,mapSpot2, rayPosX,
rayPosY, rayPosX2, rayPosY2, tmpPosX ,tmpPosY ,rayDirX calc, rayDirY calc)

variable mapX : unsigned (31 downto O0);
variable mapX2 : unsigned (31 downto 0);

variable mapY : unsigned (31 downto O0);
variable mapY2 : unsigned (31 downto O0);

variable checkSide std logic;
variable checkSide2 std logic;
variable wallX unsigned (31 downto O0);
variable wallX2 unsigned (31 downto 0);
variable tmpTexX unsigned (31 downto 0);
variable tmpTexX2 unsigned (31 downto O0);
variable floorXvar unsigned (31 downto 0);
variable floorYvar unsigned (31 downto 0);
begin
if rayDirX calc < 0 then
mapX := ((rayPosX srl 22) + 1) sll
22;
mapX2 := ((rayPosX2 srl 22) + 1)
sll 22;
else
mapX := (rayPosX srl 22) sll 22;
mapX2 := (rayPosX2 srl 22) sll 22;
end if;
if rayDirY calc < 0 then
mapY := ((rayPosY srl 22) + 1) sll
22;
mapY2 := ((rayPosY2 srl 22) + 1)
sll 22;
else
mapY := (rayPosY srl 22) sll 22;
mapY2 := (rayPosY2 srl 22) sll 22;
end if;
--Calculate distance of perpendicular ray (obligque
distance will give fisheye effect!)
checkSide := '0';
checkSide2 := '0"';
if rayDirX calc > 0 and rayDirY calc > O then
if (rayPosX - mapX) < (rayPosY -
mapY) then
checkSide := '1"';
end if;
if (rayPosX2 - mapX2) < (rayPosY¥2 -
mapY2) then
checkSide2 := '1"';
end if;
elsif rayDirX calc > 0 and rayDirY calc < 0 then
if (rayPosX - mapX) < (mapY -
rayPosY) then
checkSide := '1"';

end if;

rayPosY2) then

mapY) then

mapY2) then

rayPosY) then

rayPosY2) then

((checkSide =

((checkSide2 =

IOI)

IOI)

if (rayPosX2 - mapX2) < (map¥2 -

checkSide2 := '1';
end if;

elsif rayDirX calc < 0 and rayDirY calc > 0 then
if (mapX - rayPosX) < (rayPosY -

checkSide := '1"';
end if;

if (mapX2 - rayPosX2) < (rayPosY2 -

checkSide2 := '1"';
end if;

elsif rayDirX calc < 0 and rayDirY calc < 0 then
if (mapX - rayPosX) < (mapY -

checkSide := '1"';
end if;

if (mapX2 - rayPosX2) < (mapY2 -

checkSide2 := '1"';
end if;
end if;
if checkSide = '0' then wallX := rayPosX;
else wallX := rayPosY;
end if;
if checkSide2 = '0' then wallX2 := rayPosX2;
else wallX2 := rayPosY2;
end if;
wallX := wallX - ((wallX srl 22) sll 22);
wallX2 := wallX2 - ((wallX2 srl 22) sll 22);
--x coordinate on the texture
tmpTexX := wallX srl 16;
tmpTexX2 := wallX2 srl 16;
if ((checkSide = '1') and (rayDirX calc > 0)) or
and (rayDirY calc < 0)) then
tmpTexX := 64 - tmpTexX - 1;
end if;
if ((checkSide2 = '1') and (rayDirX calc > 0)) or
and (rayDirY calc < 0)) then
tmpTexX2 := 64 - tmpTexX2 - 1;

end if;

texX <= tmpTexX;
texX2 <= tmpTexX2;

--x, y position of the floor texel at the bottom of

the wall
if (checkSide = '1') and (rayDirX calc > 0) then
floorXvar := (rayPosX srl 22) sll
22;
floorYvar := ((rayPosY srl 22) sll
22) + wallX;
elsif (checkSide = 'l') and (rayDirX calc < 0) then
floorXvar := ((rayPosX srl 22) sll
22) + "10000000000000000000000";
floorYvar := ((rayPosY srl 22) sll
22) + wallX;
elsif (checkSide = '0') and (rayDirY calc > 0) then
floorXvar := ((rayPosX srl 22) sll
22) + wallX;
floorYvar := (rayPosY srl 22) sll
22;
else
floorXvar := ((rayPosX srl 22) sll
22) + wallX;
floorYvar := ((rayPosY srl 22) sll

22) + "10000000000000000000000";
end if;

isSide <= checkSide;
isSide2 <= checkSide2;
countout <= count;
countout?2 <= count2;

floorX <= floorXvar srl 10;
floorY <= floorYvar srl 10;

tmpPosXout <= tmpPosX srl 10;
tmpPosYout <= tmpPosY srl 10;

end process;

library ieee;
use ieee.std logic 1164.all;

use leee.numeric_ std.all;

entity skygen is

port (
signal reset n : in std logic;
signal clk : in std logic; -- Should be 50 MHz
signal read : in std logic;
signal write : in std logic;
signal chipselect : in std logic;
signal address : in std logic vector (17 downto 0);
signal readdata : out std logic vector (15 downto 0);
signal writedata : in std logic vector (15 downto 0);
signal byteenable : in std logic vector(l downto 0);

signal SRAM DQ : inout std logic vector (15 downto 0);
signal SRAM ADDR : out std logic vector (17 downto 0);
signal SRAM UB N, SRAM LB N : out std logic;
signal SRAM WE N, SRAM CE N : out std logic;

signal SRAM OE N : out std logic;
signal Cur Row in : in std logic _vector (9 downto 0);
signal FB_angle in : in std logic_vector (9 downto 0);
signal Sky pixel : out std logic _vector (7 downto 0);
signal Sram mux_out : out std logic

)i
end skygen;

ARCHITECTURE SYN OF skygen IS

SIGNAL sSram_ mux : std logic;
-= SIGNAL cpu_data : STD LOGIC VECTOR (15 DOWNTO O) ;
-- SIGNAL cpu_addr : STD LOGIC VECTOR (16 DOWNTO 0) ;

-- SIGNAL cpu ub, cpu lb;
-= SIGNAL cpu we, cpu ce, Cpu oe;

SIGNAL Cur_ Row : unsigned (9 downto 0);
SIGNAL FB angle : unsigned (9 downto 0);

SIGNAL vga_ addr 1lsb : std logic;

--SIGNAL vga_ addr tmp : unsigned (18 downto 0) ;

SIGNAL vga_ addr : STD LOGIC VECTOR (17 downto 0) ;

BEGIN
-— Communicate with MEM
MEM : process (clk)

begin
if rising edge (clk) then
if reset n = '0' then
sram mux <= '0';
else
if chipselect = '1l' then
if write = '1l' then
if address = "111111111111111111" then

sram mux <= writedata (0);

end if;
end if;
end if;
end if;
end if;
end process MEM;

--Cur Row <= unsigned(Cur Row in (9 downto 0));
--FB_angle <= unsigned(FB_angle in(9 downto 0));

addrGen : process (cur_row_in,FB angle in)
variable vga_addr tmp : unsigned(18 downto 0);

begin
vga_addr tmp := unsigned(Cur_ Row_in (9 downto
0)&"000000000"™) + unsigned(FB_angle in(9 downto 1));
vga _addr 1lsb <= FB_angle in(0);
vga_addr <= std logic vector(vga addr_ tmp (17 downto
0))s
end process addrGen;

skyPixelGen : process (SRAM DQ, vga addr lsb)

begin
if (vga_addr 1lsb = '0') then
Sky pixel <= SRAM DQ (7 downto 0);
else
Sky pixel <= SRAM DQ (15 downto 8);
end if;

end process skyPixelGen;

SRAM DQ <= writedata when write = 'l' and sram mux = '0' else
(others => 'Z");

SRAM ADDR <= address when sram mux = '0' else
vga_addr when sram mux = 'l' else
(others => '0"');
SRAM UB N <= not byteenable(l) when sram mux = '0' else
_ VB 01 |
SRAM LB N <= not byteenable(0) when sram mux = '0' else
_ BB 0t |
SRAM WE N <= not write when sram mux = '0' else
Ill;
SRAM CE N <= not chipselect when sram mux = '0' else
IOI;
SRAM OE N <= not read when sram mux = '0' else
IOI;

readdata <= SRAM DQ;

--Sky pixel<= (SRAM DQ (7 downto 0)) when vga addr 1lsb = '0O' else

- (SRAM DQ (15 downto 8));
Sram mux out <= sram mux;

END SYN;

library ieee;
use leee.std logic 1164.all;
use leee.numeric_ std.all;

entity sound Controller is

port (

-- Avalon:

clk : in std logic;

reset n : in std logic;

read : in std logic;

write : in std logic;

chipselect : in std logic;

address : in std logic vector (7 downto 0);

readdata : out std logic vector (7 downto 0);

writedata : in std logic vector (7 downto 0);
-- connection to the component inside:

irg : OUT STD_LOGIC ;
AUD ADCLRCK : out std logic; -= Audio CODEC ADC LR Clock
AUD_ ADCDAT : in std logic; - Audio CODEC ADC Data
AUD DACLRCK : out std logic; -= Audio CODEC DAC LR Clock
AUD DACDAT : out std logic; - Audio CODEC DAC Data
AUD BCLK : inout std logic ; -- Audio CODEC Bit-Stream
Clock

AUX XCK : out std logic; -- Audio CODEC Bit-Stream Clock
led : out std LOGIC vector(l5 downto 0)

)7
end sound Controller;

architecture ar of sound Controller is

-—-FSM

type states is (IDLE,WAITING)
signal state : states:=IDLE;
--Audio Interface

signal audio_clock : unsigned(l downto 0) := "00";
signal indata : std logic vector (7 downto 0) ;
signal data to music : std logic vector (15 downto 0);
signal we,inter:std logic;

signal audio request : std logic;

signal counter : integer:=0;

component de2 wm8731 audio is port(
clk : in std logic; -- Audio CODEC Chip Clock
AUD XCK (18.43 MHz)

reset n : in std logic;

test mode : in std logic; -= Audio CODEC
controller test mode

audio request : out std logic; -- Audio controller
request new data

data : in std logic_vector (15 downto 0);

-- Audio interface signals

AUD ADCLRCK : out std logic; - Audio CODEC ADC
LR Clock

AUD ADCDAT : in std logic; -= Audio CODEC ADC
Data

AUD DACLRCK : out std logic; - Audio CODEC DAC
LR Clock

AUD DACDAT : out std logic; -= Audio CODEC DAC
Data

AUD BCLK : inout std logic -- Audio CODEC Bit-

Stream Clock

);

end component de2 wm8731 audio;

begin

V1l: de2 wm8731 audio port map (
clk => audio clock(1l),
reset n => reset n,
test mode => '0', -- Don t output a sine wave
audio request => audio request,
data => data to music,

-- Audio interface signals
AUD ADCLRCK => AUD ADCLRCK,

AUD ADCDAT => AUD ADCDAT,
AUD DACLRCK => AUD DACLRCK,
AUD DACDAT => AUD DACDAT,
AUD BCLK => AUD BCLK
--AUD DACDAT => led

)7

--Audio clock generation
process (clk)

begin
if rising edge(clk) then
-- we <= 'l' when chipselect = 'l'and write ='1"' else '0'
data to music <= indata & x"00"; --Since the audio is on 16 bits,

we pad the data with Os
-—-led <= data to music;
audio clock <= audio clock + "1";
end if;
end process;

AUX XCK<=audio_ clock(1l);

--Combinational process

process (clk)
begin
--By default reset the interuption signal

-= next state <= state;
if (rising _edge(clk)) then

if reset n = '0' then

state <= IDLE;

irg<= '0"';

led <= "0000000000000000";
end if;

case state is

--Waiting for a note request
when IDLE =>
led <= "1111100000000000"™;
indata <=indata;

if (audio request = '1") then
state <= WAITING;
irg <= '1";

else

irg <='0";
state <= IDLE;
end if;

--A request has come. wait for writing
when WAITING =>
led <= "0000000000001111"™;
--irg <='0";
if (write ='l' and chipselect = '1")
chipselect = '1l' and write ='1"
indata <=writedata;
state <= IDLE;
irg <= '0"';

then

else
-—if (counter=1000) then counter<=0;
--else counter<=counter +1;
--end 1if;
--if (counter=0) then
state <=WAITING;
irg<= '1";
--end 1if;
end if;

when others =>
irg <= '0';
state <= IDLE;

end case;
end if;

end process;
end architecture;

-- Texture Generation

-- Edward Garcia
-- ewg2ll5@columbia.edu

library ieee;
use leee.std logic 1164.all;
use ileee.numeric std.all;

entity tex gen is

port (

reset : in std logic;

clk : in std logic; -- Should be 50 MHz
-- clk25 : in std logic;
sidel : in std logic;
side2 : in std logic;
bool : in std logic;
boolOut : out std logic;
Cur_Row : in unsigned (11 downto 0);
Row_End : in unsigned (8 downto 0);
Row Mid : in unsigned (8 downto 0);
texNum : in unsigned (3 downto 0);
texNum?2 : in unsigned (3 downto 0);
invLineHeight : in unsigned (17 downto 0);
line minus h : in signed (17 downto 0);
invLineHeight2 : in unsigned (17 downto 0);
line minus h2 : in signed (17 downto 0);
texX : in unsigned (5 downto 0);
texX2 : in unsigned (5 downto 0);
floorX : in unsigned (17 downto 0);
flooryY : in unsigned (17 downto 0);
tmpPosX : in unsigned (17 downto 0);

tmpPosY : in unsigned (17 downto O0);
invDistWall : in unsigned (11 downto 0);
% : in unsigned (8 downto 0);
textureIndexOut: out unsigned (11 downto 0);
SideOut : out std logic;
texNumOut : out unsigned (3 downto 0);
texNum20ut : out unsigned (3 downto 0);

- Row _Start : out unsigned (8 downto 0);
- Row_End : out unsigned (8 downto 0);

tex addr out : out unsigned (13 downto 0)

)7

end tex gen;

architecture rtl of tex gen is

type rom type is array(0 to 239) of unsigned (15 downto 0);
constant DIVTABLE: rom type := (
x"1000",x"1011",x"1022",x"1033",x"1045",x"1057",x"1069",x"107b", x
"108d",x"109f",x"10b2",x"10c4",x"10d7",x"10ea",x"10fd", x"1111",x"1124",
x"1138",x"114c",x"1160",x"1174",x"1188",x"119d",x"11b2",x"11c7",x"11dc"
,X"11E1", x"1207", x"121c", x"1232",x"1249" , x"125£f", x"1276",x"128c",x"12a4
", x"12bb",x"12d2",x"12ea",x"1302",x"131a",x"1333",x"134b",x"1364",x"137
e",x"1397",x"13b1",x"13cb",x"13e5",x"1400",x"141a",x"1435",x"1451",x"14
6c",x"1488",x"14a5",x"14cl",x"14de",x"14fb",x"1519",x"1537",x"1555",x"1
573",x"1592",x"15b1",x"15d1",x"15f1",x"1611",x"1632",x"1653",x"1674",x"
1696",x"16b8",x"16db",x"16fe",x"1721",x"1745",x"176a",x"178e",x"17b4", x
"17d9",x"1800",x"1826",x"184d",x"1875",x"189d",x"18c6",x"18ef",x"1919",
x"1943",x"196e",x"1999",x"19c5",x"19f2",x"1alf",x"1add",x"1a7b",x"laaa"
,x"lada",x"1b0a",x"1b3b",x"1b6d",x"1bal0",x"1bd3",x"1c07",x"1c3c",x"1c71
", x"lca8",x"lcdf",x"1d17",x"1d50",x"1d89",x"1dc4",x"1e00",x"1e3c",x"1e’7
9", x"1eb8",x"1lef7",x"1£38",x"1£f79",x"1fbc",x"2000",x"2044",x"208a",x"20
da2",x"211a",x"2164",x"21laf",x"21fb",x"2249",x"2298",x"22e8",x"233a",x"2
38e",x"23e3",x"2439",x"2492" ,x"24ec",x"2548",x"25a5",x"2605",x"2666",x"
26c9",x"272f",x"2796",x"2800",x"286b",x"28d9",x"294a",x"29%0d",x"2a32",x
"2aaa",x"2b25",x"2ba2",x"2c23",x"2ca6",x"2d2d",x"2dbeo",x"2e43",x"2ed4",
x"2f68",x"3000",x"309b",x"313b",x"31de",x"3286",x"3333",x"33e4",x"349a"
x"3555",x"3615",x"36db",x"37a6",x"3878",x"3950",x"3a2e",x"3b13",x"3c00
", x"3cf3",x"3def",x"3ef3",x"4000",x"4115",x"4234",x"435e",x"4492" ,x"45d
1", x"471c",x"4873",x"49d8", x"4b4b",x"4ccc",x"4ebe", x"5000",x"51b3",x"53
7a",x"5555",x"5745",x"5944d", x"5b6ed", x"5da8",x"6000",x"6276",x"6504",x"6
7c8",x"6aaa",x"6dbo6",x"70£0",x"745d",x"7800",x" 7Tbde", x"8000", x"8469", x"
8924",x"8e38",x"93b1",x"9999",x"al000",x"a6fd",x"ae8b",x"b6db",x"c000", x
"cala",x"d555",x"elel",x"£f000",x"0000",x"1249",x"2762",x"4000",x"5d17",
x"8000",x"aaaa",x"e000",x"2492",x"8000",x"0000",x"c0O0O0",x"0000",x"8000"
,x"0000"
);
-— constant SCREENHEIGHT : unsigned (8 downto 0) := "111100000";
--480
-—- constant SCREENHEIGHT HALF : unsigned (8 downto 0) := "011110000";
--240
-- constant SCREENHEIGHTMINUS1 : unsigned(8 downto 0)
--470

"111111110";

signal y local : unsigned (8 downto 0);
signal cur row local : unsigned (11 downto 0);
signal tex addr : unsigned (13 downto 0);
signal clk enable : std logic := '0';
signal inA 0 : std logic vector (17 downto
signal inB 0 : std logic vector (17 downto
signal inA 1 : std logic_ vector (17 downto
signal inB 1 : std logic_vector (17 downto 0) :=
signal result 0 : std logic vector (35 downto 0);
signal result 1 : std logic vector (35 downto 0)
signal sideSig : std logic;
signal boolSig : std logic := '0';
signal texNumSig : unsigned (3 downto 0);
signal texNum2Sig : unsigned (3 downto 0);

-= signal tmp : unsigned (12 downto O0);

-= signal floorXprev : unsigned (17 downto O0);

(others => '0'
(others => '0'
:= (others => '0
(others => '0'

o O O

)
)
)

)7

; TOW_
line minus h, invLineHeight, texX2, texNum2,

bool,

signal

floorYprev : unsigned (17 downto 0);

signal tmpPosXprev : unsigned (17 downto 0);

signal tmpPosYprev : unsigned (17 downto O0);
signal weight : unsigned (27 downto 0);
signal texY 0 : unsigned (35 downto 0);
signal texY 1 : unsigned (35 downto 0);
signal texXprev : unsigned (5 downto O0);
signal texX2prev : unsigned (5 downto 0);
signal texNumprev : unsigned (3 downto 0);
signal texNum2prev : unsigned (3 downto 0);
signal texNumprev 2 : unsigned (3 downto 0);
signal texNumZprev_ 2 : unsigned (3 downto 0);
signal sidelprev : std logic;
signal sideZprev :std logic;
signal boolprev : std logic;
signal row Mid prev : unsigned (8 downto 0);
signal row End prev : unsigned (8 downto 0);
entity work.mult port map (

dataa => inA O,

datab => inB 0,

result => result 0

entity work.mult port map (
dataa => inA 1,
datab => inB 1,
result => result 1
process (floorX, floorY, tmpPosX, tmpPosY, invDistWall,

end , cur_row, texX,texNum,

sidel,
--proce

variabl
variabl
variabl
variabl
variabl
variabl
variabl

variabl
variabl

variabl
variabl

side2, result O,result 1 ,row Mid)
ss (clk)

e texY 0 : unsigned (35 downto 0);
e texY 1 : unsigned (35 downto 0);

e currentDist : unsigned (15 downto 0);

e weight: wunsigned (27 downto 0);
e tmp : unsigned (12 downto 0);

e currentFloorX : unsigned (30 downto 0);
e currentFloorY : unsigned (30 downto 0);

e floorTexX : unsigned (5 downto 0);
e floorTexY : unsigned (5 downto 0);

e temp mult O : unsigned (17 downto 0);
e temp mult 1 : unsigned (17 downto 0);

Yy

line minus h2,invLineHeight2,

variable checker board pattern : unsigned (0 downto 0);

begin
--if (rising edge(clk)) then

-- gated inputs from VGA

-- gated outputs to asynchronous VGA and Texture ROM
processes
-= if (clk25 = '1') then
- y local <= y;
-- cur_row_local <= cur_ row;
-= tex addr out <= tex addr;
- sideOut <= sideSig;
-- boolOut <= boolSig;
- texNumOut <= texNum;
-— texNum20ut <= texNum2;
- end 1if;

-- stage 1 pipeline

temp mult O := unsigned(signed(cur row sll 1)+
line minus h) (17 downto 0);

inA 0 <= std logic vector (temp mult 0);
inB 0 <= std logic_vector (invlineHeight) ;
texY 0 := unsigned(result 0) srl 16 ;

temp mult 1 := unsigned(signed(cur row sll 1)+
line minus h2) (17 downto 0);

inA 1 <= std logic_vector (temp mult 1);

inB 1 <= std logic_vector (invlineHeight2) ;

texY 1 := unsigned(result 1) srl 16 ;
currentDist := DIVTABLE (to integer (480 - y));
weight := currentDist * invDistWall;
tmp := "1000000000000" - weight (23 downto 12);

--stage 2 pipeline

currentFloorX := (weight (23 downto 12) * floorX + tmp
* tmpPosX) ;

currentFloorY := (weight (23 downto 12) * floorY + tmp
* tmpPosY) ;

floorTexX := currentFloorX (23 downto 18);

floorTexY := currentFloorY (23 downto 18);

checker board pattern := unsigned(currentFloorX(29
downto 24) + currentFloorY (29 downto 24)) (0 downto 0);

if (y <= row_end +1) then

if (bool ="'1" or (y >= row mid)) then
boolSig <= '1';
tex addr <= texNum(l downto 0) & texY 0(5
downto 0) & texX;
sideSig <= sidel;
else
boolSig <= '0';
tex addr <= texNum2 (1l downto 0) &
texY 1(5 downto 0) & texX2;

sideSig <= side2;
end 1if;

texNumSig <= texNum;
texNum2Sig <= texNum2;

else
if (checker board pattern = "1") then
tex addr <= ("11"& floorTexY &
floorTexX) ;
else
tex addr <= ("00"& floorTexY &
floorTexX) ;
end if;
texNumSig <= "0000";
texNum2Sig <= "0000";
sideSig <= '1"';
boolSig <= '0';
end if;

- texNumprev 2 <= texNumprev;
- texNumZprev 2 <= texNumZprev;

--Gated Outputs

end process;

process (clk)
begin
if (rising edge(clk)) then
tex addr out <= tex addr;
sideOut <= sideSig;
boolOut <= boolSig;
texNumOut <= texNumSig;
texNum20ut <= texNum2Sig;
end if;
end process;

-- RowStartEndGen : process (clk)

-- begin

-= if rising edge(clk) then

-= if (line _height > SCREENHEIGHT) then
- Row Start <= (others => '0'");

- Row_End <= SCREENHEIGHTMINUSI;

-- else

-= Row_Start <= SCREENHEIGHT HALF - ("o" &
line height (8 downto 1));

-= Row_End <= SCREENHEIGHT HALF + ("o" &
line height (8 downto 1));

- end if;

-- end if;
-- end process RowStartEndGen;

end rtl;

library ieee;
use leee.std logic 1164.all;
use ileee.numeric std.all;

entity texture rom is
port (

--clk : in std logic;

tex addr : in unsigned (13 downto 0);
- side in : in std logic;
- texNum in : in unsigned (3 downto 0);
- texNumZ2 in : in unsigned (3 downto 0);
-- bool in : in std logic;
- side out : out std logic;
- texNum out : out unsigned (3 downto 0);
- texNumZ out : out unsigned (3 downto O0);
-- bool out : out std logic;

tex data : out unsigned (23 downto 0)

;;d texture rom;

architecture rtl of texture rom is

type rom type is array (0 to 16383) of unsigned (23 downto 0);

constant ROM: rom type := (

--Omit some data here
x"383838",x"000070",x"00007c",x"00007c",x"00007c",x"00007c",x"00007c", x

"00007c",x"00007c",x"00007c",x"00007c",x"00007c",x"00007c",x"00007c", x"
00007c",x"00007c",x"00007c",x"00007c",x"00007c",x"00007c",x"00007c",x"0

0oo70",x"383838",x"383838",x"000088",x"000088",x"000088",x"000088",x"00
oosg",x"000088",x"000088",x"000088",x"000088",x"000088",x"000088",x"000
ogg",x"000088",x"000088",x"000088",x"000088",x"000088",x"000088",x"0000
gg",x"000088",x"000088",x"000088",x"000088",x"000088",x"000088",x"00008
8",x"000088",x"000088",x"383838",x"383838",x"000070",x"00007c",x"00007c
", x"00007c",x"00007c",x"00007c",x"00007c",x"00007c",x"000070",x"2c2c2c"

) ;
signal tex data sig : unsigned (7 downto 0) ;
begin

process (tex addr)
begin

tex data <=ROM(to_integer (tex addr));
end process;

end rtl;

-- DE2 top-level module that includes the simple VGA raster generator

-- Stephen A. Edwards, Columbia University, sedwards@cs.columbia.edu

-- From an original by Terasic Technology, Inc.
-- (DE2_TOP.v, part of the DE2 system board CD supplied by Altera)

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;

entity top is

port (
-- Clocks
CLOCK_27, -- 27 MHz
CLOCK_50, -- 50 MHz
EXT CLOCK : in std logic; -- External Clock

-- Buttons and switches

KEY : in std logic_vector (3 downto 0); —-— Push buttons
SW : in std logic vector (17 downto 0); —-— DPDT switches

-- LED displays

disp

Tran

Mask

Mask

Stro

Stro

Bits
Mask

Mask

HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7

lays

out std logic vector (6 downto 0);
LEDG : out std logic vector (8 downto 0);
LEDR : out std logic vector (17 downto 0);

-- RS-232 interface

UART TXD : out std logic;
UART RXD : in std logic;

-— IRDA interface

IRDA TXD : out std logic;
smitter
IRDA RXD : in std logic;

-- SDRAM

DRAM DQ : inout std logic vector (15 downto 0);
DRAM ADDR : out std logic vector (1l downto 0);
DRAM_LDQM,

DRAM UDQM,

DRAM WE N,

DRAM CAS N,

be

DRAM RAS N,

be

DRAM CS N,

DRAM BA 0,

DRAM BA 1,

DRAM CLK,

DRAM CKE : out std logic;

-—- FLASH

FL DQ : inout std logic vector (7 downto 0);
FL ADDR : out std logic vector (21 downto 0);
FL WE N,

FL RST N,

FL OE N,

FL CE N : out std logic;

-- SRAM

SRAM DQ : inout std logic vector (15 downto 0);
SRAM ADDR : out std logic vector (17 downto 0);

SRAM UB N,
SRAM LB N,
SRAM WE_N,

SRAM CE N,
SRAM OE N : out std logic;

-- 7-segment

-— Green LEDs
--— Red LEDs

-— UART transmitter
-— UART receiver

-— IRDA

-— IRDA Receiver

-— Data Bus
-— Address Bus
-- Low-byte Data

-- High-byte Data

-—- Write Enable
—-— Column Address

-—- Row Address

-— Chip Select

-— Bank Address 0
-— Bank Address 0
-—- Clock

-— Clock Enable

-- Data bus

- Address bus
-— Write Enable
—-— Reset
—-— Output Enable
-- Chip Enable

-- Data bus 16 Bits
-— Address bus 18

-- High-byte Data
-- Low-byte Data
-- Write Enable

-—- Chip Enable
-- Output Enable

-— USB controller

OTG_DATA inout std logic vector (15 downto 0); -- Data bus

OTG_ADDR out std logic vector(l downto 0); —-— Address

OTG_CS N, -— Chip Select

OTG RD N, -- Write

OTG_WR N, -- Read

OTG_RST N, -- Reset

OTG_FSPEED, -- USB Full Speed, 0 = Enable, Z =
Disable

OTG_LSPEED out std logic; -- USB Low Speed, 0 = Enable, 7z =
Disable

OTG_INTO, -- Interrupt O

OTG_INTI, -— Interrupt 1

OTG_DREQQ, -— DMA Request 0

OTG_DREQ1 in std logic; -- DMA Request 1

OTG_DACKO N, -- DMA Acknowledge
0

OTG_DACK1 N out std logic; -- DMA Acknowledge
1

-- 16 X 2 LCD Module

LCD ON, Power ON/OFF

LCD_BLON, Back Light ON/OFF

LCD_RW, Read/Write Select, 0 = Write, 1 =
Read

LCD_EN, Enable

LCD RS out std logic; Command/Data Select, 0 = Command, 1
= Data

LCD DATA inout std logic vector (7 downto 0); -- Data bus 8 bits

-— SD card interface

SD DAT,

SD DAT3,

SD_CMD inout std logic;
SD_CLK out std logic;

-- USB JTAG link

TDI,
TCK,

TCS : in std logic;
TDO : out std logic;

-- I2C bus

I2C SDAT inout std logic;
I2C SCLK out std logic;
-- PS/2 port

PS2 DAT,

Ps2 CLK in std logic;

SD Card Data

SD Card Data 3

SD Card Command Signal
SD Card Clock

CPLD -> FPGA (data in)
CPLD -> FPGA (clk)
CPLD -> FPGA (CS)
FPGA -> CPLD (data out)

I12C Data
I2C Clock

Data
Clock

-— VGA output

VGA CLK, -- Clock

VGA HS, -- H SYNC

VGA VS, -- V_SYNC

VGA BLANK, -—- BLANK

VGA_ SYNC out std logic; -— SYNC

VGA R, -— Red[9:0]

VGA G, -— Green[9:0]

VGA B out unsigned (9 downto 0); -— Blue[9:0]

-- Ethernet Interface

ENET DATA inout std logic vector (15 downto 0); -- DATA bus
16Bits

ENET CMD, -—- Command/Data Select, 0 = Command, 1 = Data

ENET CS N, -— Chip Select

ENET WR N, -- Write

ENET RD N, -- Read

ENET RST N, -- Reset

ENET CLK out std logic; -- Clock 25 MHz

ENET INT in std logic; -- Interrupt

—-- Audio CODEC

AUD ADCLRCK inout std logic;

AUD ADCDAT in std logic;

AUD DACLRCK inout std logic;

AUD DACDAT out std logic;

AUD BCLK inout std logic;
Clock

AUD XCK out std logic;

-— Video Decoder

TD DATA in std logic vector(7 downto 0); --
TD HS, -- H _SYN
TD VS in std logic; -— V_SYN
TD RESET out std logic; -- Reset
-— General-purpose I/0
GPIO O, -- GPIO
GPIO 1 inout std logic vector (35 downto 0) -- GPIO
) ;

end top;

architecture datapath of top is

component de2 i2c av config is

port (
iCLK in std logic;
iRST N in std logic;
I2C SCLK out std logic;
I2C SDAT inout std logic

-— ADC LR Clock
-- ADC Data

--— DAC LR Clock
-—- DAC Data

-- Bit-Stream

-- Chip Clock

Data bus 8 bits

C
C

Connection 0
Connection 1

end component;

signal clk dram std logic := '0';
signal clk sys std logic := '0';
signal clk25 std logic := '0';
signal clk25 shift std logic := '1l"';
signal reset n std logic := '0';
signal VGA BLANK SIG std logic := '0';
signal counter unsigned (15 downto 0);
signal data out STD _LOGIC VECTOR (255 downto 0);
signal mem out STD_LOGIC VECTOR (255 downto 0);
signal data outl STD LOGIC VECTOR (63 downto 0);
signal data out2 STD LOGIC VECTOR (255 downto 0);
signal Cur Col unsigned (9 downto 0);
signal Cur_ Row unsigned (9 downto 0);
signal cur row from mem unsigned (9 downto 0);
signal tex addr unsigned (13 downto 0);
signal ctrl std logic := '0';
signal row_s unsigned (8 downto 0);
signal row e unsigned (8 downto 0);
signal tex rom out unsigned (23 downto 0);
signal flr rom out unsigned (7 downto 0);
signal frame rate unsigned (7 downto 0);
signal state out std LOGIC VECTOR(11l downto 0);
signal sky out STD LOGIC VECTOR (7 downto 0);
signal sram mux std logic;
signal data rdy std logic;
signal isSide std logic;
signal isSide2 std logic;
signal sideOut std logic;
signal write en std logic;
signal bool std logic;
signal boolToTex std logic;
signal texNumToTex unsigned (3 downto O0);
signal texNum2ToTex unsigned (3 downto O0);
signal sideToTex std logic;
signal boolOut std logic;
signal texNum unsigned (3 downto O0);
signal texNum2 unsigned (3 downto O0);
signal texNumOut unsigned (3 downto 0);
signal texNum20ut unsigned (3 downto 0);
signal texX : unsigned (31 downto 0);
signal texX2 unsigned (31 downto O0);
signal floorX unsigned (31 downto O0);
signal floorY : unsigned (31 downto 0);
signal line minus_h unsigned (31 downto 0);
signal invline unsigned (31 downto O0);
signal line minus h2 unsigned (31 downto 0);
signal invlineZ2 unsigned (31 downto O0);

signal invdist out unsigned (31 downto 0);
signal drawStart unsigned (31 downto 0);
signal drawMid unsigned (31 downto O0);
signal drawEnd unsigned (31 downto O0);
signal countout unsigned (31 downto 0);
signal countout?2 unsigned (31 downto 0);
signal colAddrOut unsigned (9 downto 0);
signal floor pixel unsigned (11 downto O0);
signal tmpPosX unsigned (31 downto O0);
signal tmpPosY unsigned (31 downto 0);
signal ledSound std LOGIC VECTOR (15 downto 0);
--FIFO signals
signal rdempty sig std logic;
signal wrfull sig std logic;
signal rdreq sig std logic;
signal VGA BLANK OUT std logic;
signal g fifo std logic vector (255 downto 0);
begin
-— process (clk sys)
-- begin

then

if rising edge(clk sys)
clk25 <= not clk25;
clk25 shift <= not clk25 shift;
end if;
end process;

process (clk_sys)
begin
if counter = x"ffff" then
reset n <= '1"';
else
reset n <= '0';

counter <= counter + 1;
end if;

end process;

VO0: entity work.sdram pll port map (

inclk0 => CLOCK_ 50,

c0 => clk dram,
cl => clk sys,
c2 => clk25

);
V7: entity work.pll 25 port map (

inclk0 => clk sys,
c0 => clk25

)7

entity work.new doom port map (

-- 1) global signals:
reset n => reset n,
clk 0 => clk_sys,

-- the niosInterface 0
ctrl from the niosInterface 1 0 => ctrl,
hardware data to the niosInterface 1 0 => ("00000000000000000000"
& std logic vector (frame rate) & "000" & data rdy),
nios _data from the niosInterface 1 0 => data out,

-— the sram
SRAM ADDR from the skygen 0 => SRAM ADDR,
SRAM CE N from the skygen 0 => SRAM CE N,
SRAM DQ to_and from the skygen 0 => SRAM DQ,
SRAM LB N from the skygen 0 => SRAM LB N,
SRAM OE N from the skygen 0 => SRAM OE N,
SRAM UB N from the skygen 0 => SRAM UB N,
SRAM WE N from the skygen 0 => SRAM WE N,

-— SDRAM

zs_addr from the sdram 0 => DRAM ADDR(11 downto 0),

zs_ba from the sdram 0(0) => DRAM BA O,

zs_ba from the sdram 0(1) => DRAM BA 1,

zs_cas n from the sdram 0 => DRAM CAS N,

zs_cke from the sdram 0 => DRAM CKE,

zs cs n from the sdram 0 => DRAM CS N,

zs_dgq to_and from the sdram 0 => DRAM DQ (15 downto 0),

zs_dgm_ from the sdram 0(0) => DRAM LDQM,

zs_dgm from the sdram 0(1) => DRAM UDQM,

zs_ras n_ from the sdram 0 => DRAM RAS N,

zs we n from the sdram 0 => DRAM WE N,
-— New

Cur Row_in to the skygen 0 => STD LOGIC_ VECTOR (Cur_ Row (9 downto
0)),

FB angle in to the skygen 0 => STD LOGIC VECTOR (mem out (169
downto 160)), --Need to Modify !!!!

Sky pixel from the skygen 0 => sky out (7 downto 0),

Sram mux out from the skygen 0 => sram mux,

-— PS2
PS2 Clk to the de2 ps2 1 => PS2 CLK,
PS2 Data to the de2 ps2 1 => PS2 DAT,

-— the sound controller 0

AUD ADCLRCK from the sound controller 0 => AUD ADCLRCK,
AUD BCLK to _and from the sound controller 0 => AUD BCLK,
AUD DACDAT from_ the sound controller O => AUD DACDAT,
AUD DACLRCK_ from the sound controller 0 => AUD DACLRCK,
AUX XCK from the sound controller 0 => AUD XCK,

AUD ADCDAT to_ the sound controller 0 => AUD ADCDAT,

led from the sound controller 0 => ledSound,--LEDR

-- the tri state bridge 0 avalon slave
address_to the cfi flash 0 => FL ADDR,
data to and from the cfi flash 0 => FL DQ,

read n to the cfi flash 0 => FL OE N,

select n to the cfi flash O => FL CE N,
write n to the cfi flash 0 => FL WE N

)7

V2: entity work.

de2 vga raster port map (

reset = '0",

clk => clk25,
bool => boolOut,

VGA CLK => VGA CLK,

VGA_HS => VGA_HS,

VGA VS => VGA VS,

VGA BLANK > VGA BLANK,
VGA BLANK SIG => VGA BLANK SIG,

VGA_SYNC => VGA_ SYNC,

VGA R => VGA R,

VGA G => VGA G,

VGA B => VGA B,
is_Side => sideOut,
Row_Start => unsigned(mem out (25 downto 17)),
Row Mid => unsigned (mem out (186 downto 178)),
Row_End => unsigned (mem out (16 downto 8)),
Col Color_ sky => unsigned(sky out), --Need to Modify
Col Color => tex rom out,
texNum => texNumOut,
texNum?2 => texNum20ut,
Flr Color => flr rom out,
Cur_ Row => Cur_ Row,
Cur Col => Cur Col

);

V3: entity work.tex gen port map (

reset => '0"',

clk => clk25,
--clk25 => clk25,
bool => mem out (223),
boolOut => boolOut,

Cur_ Row

—-— Should be 50 MHz

=> "00" & Cur Row_ from mem,

sidel => mem out (63),

side2 => mem out (62),

texNumOut => texNumOut,

texNum20ut => texNum20ut,

texNum => unsigned(mem out (227 downto 224)),
texNum2 => unsigned(mem out (231 downto 228)),

line minus
line minus

h
h2

=> signed(mem out (61 downto 44)),
=> signed(mem out (222 downto 205)),

invLineHeight => unsigned (mem out (43 downto 26)),
invLineHeight2 => unsigned(mem out (204 downto 187)),

texX => unsigned (mem out (7 downto 2)),

texX2 => unsigned (mem out (177 downto 172)),

tex addr out => tex addr,

sideOut => sideOut,

Row_End => unsigned (mem out (16 downto 8)),

Row Mid => unsigned (mem out (186 downto 178)),

floorX => unsigned (mem out (81 downto 64)),
floorY => unsigned (mem out (99 downto 82)),

tmpPosX => unsigned (mem out (117 downto

100)),

tmpPosY => unsigned (mem out (135 downto
118)),

invDistWall => unsigned (mem out (147 downto 136)),

% => Cur_ Row_from mem(8 downto
0)

)7

V4: entity work.texture rom port map (
--clk => clk sys,
tex addr => tex addr,
tex data => tex rom out

);

V9: ENTITY work.FIFO port map (
data => x"FFEF" &
"O" &
VGA BLANK OUT &
std logic vector (colAddrOut)

std logic vector (texNum2) &
std logic vector (texNum) &
bool &

std logic vector(line minus h2 (17 downto 0)) &

std logic vector(invline2 (17
downto 0)) &

std logic vector (drawMid (8
downto 0)) &

std logic vector (texX2 (5
downto 0)) &

"oo" &

std LOGIC VECTOR(data out (169
downto 160)) &

x"FFE" &

STD LOGIC VECTOR (invdist out (1l downto 0)) &

STD LOGIC VECTOR (tmpPosY (17
downto 0)) &

STD LOGIC_VECTOR (tmpPosX (17
downto 0)) &

STD_LOGIC_VECTOR(floorY(17
downto 0)) &

STD_LOGIC_VECTOR(floorX(17
downto 0)) &

isSide & isSide2 &

STD LOGIC VECTOR(line minus h (17 downto 0)) &
STDfLOGIC7VECTOR(inVline(17
downto 0)) &
STD_LOGIC VECTOR (drawStart (8
downto 0)) &
STDfLOGIC7VECTOR(drawEnd(8
downto 0)) &

STD_LOGIC_ VECTOR (texX (5
downto 0)) &

"oo",
rdclk => clk25,
rdreq => rdreq_sig,
wrclk => clk_sys,
wrreq => write en,
q => q fifo,
rdempty => rdempty sig ,
wrfull => wrfull sig
) i
rdRegGen: process (rdempty sig)
begin
rdreq sig <= not rdempty sig;
end process rdRegGen;
V5: entity work.memcustom port map (
clock => clk25,
-— data => data_ out,
data => g fifo,
rdaddress => Cur Col,
rd reqg => rdreq_sig,
- wraddress => colAddrOut,
-— wraddress => data out (255 downto 246),
--wren => write en,
--VGA BLANK => VGA BLANK SIG,
row in => cur_ row,
row_out => cur_row_ from mem,
-= wren => ctrl,
q => mem out

)7

V6: entity work.framerate calc port map (
clk => clk sys, —-— Should be 50 MHz
wr addr => unsigned(data_out (255 downto 246)),

frame rate => frame rate

)7

- V7: entity work.ray FSM port map (

- clk => clk_sys,

-- VGA BLANK => VGA BLANK SIG,

-= control => ctrl,

—-———— reset => data out (240),

- posX => unsigned (data out (31

downto 0)),

- posY => unsigned(data_out (63

downto 32)),

- countstep => unsigned(data out (95 downto

64)),

96)),

128,
246)),
downto
downto
64)),

downto
downto
246)),

V8:

96)),

128)),

rayDirX
rayDirY
colAddrIn

isSide
texNum

texX

floorX
floorY
tmpPosXout
tmpPosYout
countout
line minus h
invline
invdist out
drawStart
drawEnd
colAddrOut
state_ out
WE

ready

entity work.ray FSM port map

clk
control
VGA BLANK

=>
=>
=>
=>
=>
=>
=>
=> write en,

(
=>
=>
=>

=> signed(data_out (127 downto

=> signed(data_ out (159 downto

=> unsigned(data_ out (255 downto

=> isSide,
=> texNum,
=> texX,

=> floorX,
=> floorY,

=> tmpPosX,
=> tmpPosY,

=> countout,

line minus h,
invline,
invdist out,
drawStart,
drawEnd,
colAddrOut,
state_ out,

=> data rdy

clk sys,
ctrl,
VGA BLANK SIG,

VGA BLANK OUT => VGA BLANK OUT,

wrfull
posX

posY
countstep
rayDirX
rayDirY
colAddrIn

tmpPosXout
tmpPosYout
isSide
isSide?2
bool
texNum
texNum?2
texX

texX2
floorX
floorY
countout
countout?
line minus_h

=> wrfull sig ,

=> unsigned(data_ out (31

=> unsigned(data_out (63
unsigned(data out (95 downto

=> signed(data_out (127

=> signed(data_out (159
unsigned(data out (255 downto

tmpPosX,
tmpPosY,
isSide,
isSide2,
bool,
texNum,
texNum2,
texX,
texX2,
floorX,
floory,

=> countout,
countout2,
line minus_h,

invline =>
line minus h2 =>

invline?2 =>
invdist out =>
drawStart =>
drawMid =>
drawEnd =>
colAddrOut =>
WE =>
ready

state_ out =>

i2c de2 i2c_av _config port map (
iCLK => clk_sys,
iRST n = '1",
IZC_SCLK => IZC_SCLK,
I2C_SDAT => I2C_SDAT
) ;
HEX7 <= "0001001"; -- Leftmost
HEX6 <= "0000110";
HEX5 <= "1000111";
HEX4 <= "1000111";
HEX3 <= "1000000";
HEX2 <= (others => '1");
HEX1 <= (others 1) ;
HEXO <= (others '1');
LEDG <= (others => '1");
LEDR <= state out & "000000";
LCD ON <= '1";
LCD BLON <= '1';
LCD RW <= '1';
LCD EN <= '0';
LCD RS <= '0';
SD DAT3 <= '1';
SD CMD <= '1';
SD CLK <= '1';
UART TXD <= '0';
--DRAM ADDR <= (others => '0');
--DRAM LDQM <= '0';
-—-DRAM UDQM <= 'Q0';
--DRAM WE N <= '1';
--DRAM CAS N <= '1';
--DRAM RAS N <= '1';
--DRAM CS N <= '1';
--DRAM BA 0 <= '0';
--DRAM BA 1 <= '0';
DRAM CLK <= clk dram;
--DRAM CKE <= '0';
-—-FL ADDR <= (others => '0'");
--FL WE N <= '1';

FL RST N <= '1';

invline,
line minus h2,
invlineZ2,
invdist out,
drawStart,
drawMid,
drawEnd,
colAddrOut,
write en,

=> data_rdy,
state_ out

-- Rightmost

--L OE N <= '1"';

--FL CE N <= '1';

OTG_ADDR <= (others => '0");
OTG CS N <= '1';

OTG RD N <= '1';

OTG RD N <= '1';

OTG WR N <= '1';

OTG RST N <= '1';

OTG_FSPEED <= '1';

OTG LSPEED <= '1';

OTG_DACKO N <= '1';
OTG_DACK1 N <= '1';

TDO <=

'O';

ENET CMD <=
ENET CS N <=
ENET WR N <=
ENET RD N <=
ENET RST N <

IOI;
lll;
'l';
'l';
lll;

ENET CLK <= '
TD _RESET <=
--I2C_SCLK <=

--AUD DACDAT
--AUD_XCK <=

-- Set all bidirectional ports to tri-state

DRAM DQ <= (others => '72");
--FL_DQ <= (others => '72"');
SRAM DQ <= (others => 'Z");
OTG_DATA <= (others => 'Z");
LCD DATA <= (others => '72"');
SD_DAT <= '7';
--I2C_SDAT <= '2';
ENET_DATA <= (others => 'Z");
——AUD_ADCLRCK <= 'zZ"';
—-—-AUD DACLRCK <= '72';
--AUD BCLK <= 'Z"';
GPIO_ 0 <= (others => '72"');
GPIO 1 <= (others => 'Z");

end datapath;

helloworld.c

#include <math.h>

#include <io.h>

#include <system.h>

#include <stdio.h>

#include "sky.h"

//#define HALF RAD 0.00090275650965225
#define GREEN 8BIT 0x1C //green

//#define RAD 0.0018055130193045
#define HALF RAD 0.0007669903939428
//#define HALF RAD 0.0010226538585904

#define RAD 0.0015339807878856
//#define RAD 0.0020453077171808

//#define lookupLength 3480
#define lookupLength 4096
//#define lookupLength 3072
#define screenWidth 640
#define halfScreenWidth 320
#define screenHeight 480
#define texWidth 64

#define texHeight 64
#define mapWidth 32

#define mapHeight 32
#define extensionFactor 5
#define loopbackFactor 4
#define RED 8BIT OxEQ0 //red

#define BLUE 8BIT 0x03 //blue

#define YELLOW 8BIT OxFC //yellow

#define WHITE SBIT OxFF //white

#define VIOLET 8BIT OxE2 //violet

#define CTRL WRITE LOW O

#define CTRL WRITE HIGH O
#define posShift 22

data) \
data)

offset,

se, (offset*4),

TOWR 32DIRECT (base,

#define IOWR RAM DATA (base,

\

» offset)
(offset*4))

IORD 32DIRECT (base,

#define IORD RAM DATA (base,

data) \

data)

offset,

#define IOSKYWR RAM DATA (base,

TOWR 16DIRECT (base,

2,

*

(offset)

char worldMap [mapWidth] [mapHeight]

9, 9,

O N L N T TN
A OY O)Y OY O)Y OY O)Y OY O)Y O O OY O
N N L N N T T NN
O OO OO0 O0OOoOoOoooo
O N L N N T U TN
O VOO Or~- OO0 oo oOo
N L T N N T T TN
O OO WOOOWwWoOoooo
N N L N N T U TN
O OO OO0 Ooooo
N N L T N N T N NN
ONHOOoONHmHOOWwWOOoooo
O N L N N T U RN
O OO OO0 Ooooo
N L T N N T N NN
O OO WOOOOOoOoooo
N N L N T T TN
O OO OO0 Ooooo
N N L e T N N N N NN
OO~ oOoOMmr~-orr-~- o~ 0O Wwwo
N N L N N T TN
OO OOWOWOoOOoOWwWwWwWwWwmOo
N N L e T N N N N NN
O OO OO0 Oooooo
N T L T T N N N N NN
N OOOWOT OO WwWWwWwmOo
N N L N N N T TN
N O OO WVWODODODOOTMO
N N L T T N N N NN
NOOOLWVWLOUTL WO WwWOWwmmM
L N e N L NN
O OO OO I WO 00w L
O L N T U T
N O O OO O WO O wH o
N L T N N N T TN
N OO OO T oWO OO O o
O L N T T T T
N OO OO O WO O wwo
N N L N N T T TN
O OO OO g O oo o oo
O N T U TN
S O g O 00O O 00
N L N N T U NN
O O O 0 W W WO OO O Lo
N L N N T U TN
O 0O WO WO wWwo O W o
N N L N N T T TN
OO OO OoOwWwrr-rr-oor-r- N
N L N T T TN
VOO OCOWw SO oo o r-«N
N N L T N N T T TN
O OO OOW MO OoOOoor-«N
D S N O N N
VO OO OwWwrsEO oo o r-«N
N N L T N N N N NN
O OO OO0 O0OOoOOoooo
O L N T U TN
MM MO0~ OO O o I «N
N N L T N N T N NN
OMOMmOWw O OO or-«N
N N L N N T U TN
O NONOWWOWMENNM>AN LW
~ CSEECNEEEN

~ S
O OY O)Y OY O)Y O)Y O)Y OY O)Y OY O OY O

L S N . T L N
Y Oy O) O)Y OY OY O)Y O)Y O)Y O)Y O)Y O)Y O)Y O)Y O)Y O &) O
L N L N N L N
oleoNeoRoNoloNoNolNolNolNoNolNoNolNolNolNollo)
D N N N N N N N S
O OO OO OO ODODIODODODODOOOCOO
L N S N N S
O MO OO OO ODODODODIODODODODOOOO,
D N N N N N N N NN
O I O O OO OO0 ODOOOOOoon
D L N L L N N NN
eoNeololololoNoNoNeoNeoNeoNeNeNeNe e Ne o
L N N N N N NN
O NO OOOOOOOOOOOOoOooon
N L L L N N NN
O MO O OO ODODODODDODIODODODOOOO,
D N N N N N NN
O O OO OO ODOOOIODOOOOOoOos
R N N T N N N N N
O OO OINHNODODODODODODODIODOOOOOO,
D N N N N N N NN
O OO INHOHH OOOOOOOOOoOoon
N S N L S N N N N
o ocococooNoOM>>M>M>O>O>O>D>>O
N L N N N N NN NN
O OO N OONOOOOOOOOOOoOoOn
D N N N N N NN
QO MO NO HO I I I I OO
R N N T N N N N L N NN
M MM OOOMOO OO0 OO oo
D S N N S N N T N
T O OO TOoOWnWnWMLW WML LW0n o
N N N N N N N N NN
O OO WMOJTOODODODIODODODODODOOOOO
D N N L T N N ST TN
O O W ANNOONOWOW O WM oo o
I N N N N N e N N N NN
OO T NANONOOG®WOC O OoMmMOooOowo o
S S N N N e N TN
OO T NOOHOOOOOOOOOooOooH
O N N N N N Y T N
OO oo oo H O NN A~
D L N N L T N T NN
OO T NOONOOOOOOOOOoOoOH
I N N N N N L N N T N
T IFTTTANANNOTONNNONAANANOD
L S N . L N N LN
NN T ANNOMANNNNONOOO O
N N L T N T U TN
N O OO NODOONNODONON—HNO
D L N N N L T L L s L N NN
eoNeolololoNoNoNoRN N eNeNeNelN S
I N N N N N NN
O OO OO OO ONNONNNNNNO
L N N N L NN N T NN
eoNeolololoNoNoNoRN N oo NeNeNo oo
I N N N N e N N N L NN
O OO OO OO ONNNNNNNNOO
D L N N N L L N N NN
eoNeololololNoNoNoNeoNeoNoNeNeNeNe ool
I N N N N N N N N N
OO~ OO~ O N NNNNNNNNO
~ NN

~ D N L L L NN
O OY OYOYOYOYOYOYOY Oy Oy Oy Oy Oy Oy O O O

o~
—_—

/// INTERRUPT VARIABLES

volatile int offset
volatile alt u8 new

0;

128;

alt u32 id) {

(void * context,

14531) {

note isr

static void

//1if (offset>

if (offset>=227327) {

=0;

offset

else(

offset++;

IORD 8DIRECT (CFI_FLASH 0 BASE,offset);

IOWR_8DIRECT (SOUND CONTROLLER_ 0 BASE, 0, new);

new

return;

//fixed point conversion functions

int doubleTolInt (double) ;

unsigned int

unsigned int texX,

void DrawTexture (unsigned int columnIndex,

unsigned int texNum,

unsigned int side,

unsigned int rowEnd,

unsigned int invLineHeight ,

rowStart,

unsigned int line minus h);

int png,

int

int countstep,

int posX,

void DrawAccelerate (int angle,

rayDirX,

unsigned int columnIndex) ;

int rayDiry,

int absVal (int v);

///UNECESSARY CAN BE IMPLEMENTED WITHOUT THESE TWO LOOKUP

int dirsine[lookupLength];
int dircosine[lookupLength];

/// MEMORY HERE CAN BE CUT DOWN IF NECESSARY

int sine[lookupLength];

int cosine[lookupLength];

int main ()

{

IOWR_RAM DATA (NIOSINTERFACE 1 0 BASE, 0, 0);

int dir = 0;

int posX = doubleToInt (21.5), posY = doubleToInt(11.5); //x
start position
int x =0;
int p, g;
TOSKYWR RAM DATA (SKYGEN 0 BASE, 262143, 0x0000);
for(p = 0; p < 480; p++){
for(g = 0; g < 512; gt++)

{

IOSKYWR RAM DATA (SKYGEN 0 BASE, p*512+q,

(sky[p*1024+g*2+1]<<8) +

}
}

IOSKYWR RAM DATA (SKYGEN_ 0 BASE,

double sine temp;
double cosine temp;

for(x = 0;

{

//calculate ray position and direction
sin (x*RAD + HALF RAD);
= cos (x*RAD + HALF RAD);

sine temp =
cosine temp

dirsine([x] =
dircosine[x]

x < lookupLength ;

(sky[p*1024+q*21)) ;

262143, 0x000F) ;

x++)

doubleTolInt (sin (x*RAD)) ;

= doubleToInt (cos (x*RAD));

sine[x] = doubleTolnt (sine_ temp)>>extensionFactor;

cosine[x] =

}

int angle;
int fish angle;
int move;

int rayDirX;
int rayDirY;
int count step;

int k;

int forward = 0;
int backward = 0;
int left = 0;

int right = 0;

unsigned char code =
int hardwareData = 0;

alt irg register (SOUND CONTROLLER 0 IRQ ,NULL, (void*)

while (1)

0;

doubleToInt (cosine temp)>>extensionFactor;

note isr);

and vy

X:
for (k
{

0;
= -halfScreenWidth; k < halfScreenWidth; k++)

if ((k & 0xF) == 0)
{
code = 0;
code = IORD 8DIRECT(DE2 PS2 1 BASE, 1);

switch (code)

{

case 'u':
forward = 1;
backward = 0;
break;

case 'r':

forward = 0;
backward = 1;
break;

case 't':
right = 1;
left = 0;
break;

case 'k':
left = 1;
right = 0;
break;

case 'U':
forward = 0;
break;

case 'R':
backward = 0;
break;

case 'T':
right = 0;
break;

case 'K':
left = 0;
break;

case ') ':

forward = 0;
backward = 0;

right = 0;
left = 0;
break;
}
}
angle = (dir + k) &O0xFFF;

fish angle = k&OxFFF;
//calculate ray position and direction
rayDirX = cosine[angle];

rayDirY = sine[angle];
count step = cosine[fish angle];

DrawAccelerate (angle, posX, posY, count step, rayDirX, rayDirY, x);
IOWR RAM DATA (NIOSINTERFACE 1 0 BASE, 0, 0);

hardwareData = IORD_32DIRECT (NIOSINTERFACE 1 0 BASE, 1);

while (! (hardwareData & 1)) {
hardwareData = IORD 32DIRECT (NIOSINTERFACE 1 0 BASE, 1);

}

IOWR_RAM DATA (NIOSINTERFACE 1 0 BASE, 0, OxXFFFFFFFF);

X++;

}

//move forward if no wall in front of you
if (forward == 1)
{
move = dircosine[dir]>>4;
if (worldMap|[(posX + move)>>posShift] [posY>>posShift] == 0)
posX += move;

move = dirsine[dir]>>4;
if (worldMap[posX>>posShift] [(posY+move) >>posShift] == 0)
posY += move;
}
//move backwards if no wall behind you
if (backward == 1)
{

move = dircosine[dir]>>4;
if (worldMap| (posX - move)>>posShift] [posY>>posShift] == 0)
posX -= move;

move = dirsine[dir]>>4;
if (worldMap[posX>>posShift] [(posY - move)>>posShift] == 0)
posY —-= move;
}
//rotate to the right
if (right == 1)
{
//both camera direction and camera plane must be rotated
dir = (dir +13) &0xXFFF;
}
//rotate to the left
if (left == 1)
{
//both camera direction and camera plane must be rotated
dir = (dir - 13) &0xXFFF;
}

return 0;

}

int absVal (int v)

{
return v * ((v>0) - (v<0));

}

int intToDouble (int a)

{
return a>>posShift;

}

int doubleTolInt (double a)
{
return (int) (a* (1l<<posShift)):;

}

void DrawTexture (unsigned int columnIndex, unsigned int texX, unsigned int
rowStart, unsigned int rowEnd, unsigned int side, unsigned int texNum,
unsigned int invLineHeight , unsigned int line minus_h)
{
TOWR _RAM DATA (NTOSINTERFACE 1 0 BASE, 8, (columnIndex << 22));
TOWR _RAM DATA (NTOSINTERFACE 1 0 BASE, 1, ((texNum & 3) + (texX <<2)
(rowEnd<< 8) + (rowStart<<1l7)+ ((invLineHeight & O0x3F)<<26)));
TOWR RAM DATA (NTOSINTERFACE 1 0 BASE, 2, ((invLineHeight & Ox3FFFF)
>> 6) + ((line minus_h & Ox3FFFF) << 12) + (side << 31));
IOWR RAM DATA (NIOSINTERFACE 1 0 BASE, 0, 1);
IOWR_RAM_DATA (NIOS INTERFACE_l_O_BASE, 0, 0);

}

void DrawAccelerate(int angle, int posX, int posY, int countstep, int
rayDirX, int rayDirY, unsigned int columnIndex)

{

IOWR_RAM DATA (NIOSINTERFACE 1 0 BASE, 8, (columnIndex << 22));
IOWR _RAM DATA (NIOSINTERFACE 1 0 BASE, 1, posX);

TOWR _RAM DATA (NIOSINTERFACE 1 0 BASE, 2, posY);

IOWR RAM DATA (NIOSINTERFACE 1 0 BASE, 3, countstep);

IOWR_RAM DATA (NIOSINTERFACE 1 0 BASE, 4, rayDirX);

IOWR_RAM DATA (NIOSINTERFACE 1 0 BASE, 5, rayDirY);

IOWR_RAM DATA (NIOSINTERFACE 1 0 BASE, 6, angle & Ox03FF);

~

+

clear all;

fp=fopen ('F:\Embedded System\music\msg.txt', 'w');
fid=fopen ('F:\Embedded System\music\sound.bin','wb');
[s,sr,n]=wavread ('F:\Embedded System\music\intwap.wav');
[sl,srl,nl]=wavread('F:\Embedded System\music\msg.wav');

data=s* (278/2)+(278/2) ;
data=floor (data) ;

datal=sl1*(2"8/2)+(2"8/2);
datal=floor (datal) ;

offset=1;
whole=zeros (400000,1);

for i=1l:2:1length(data)
whole (offset)=data (i) ;
offset=offset+1;

end

for i=l:length(datal)

whole (offset)=datal (1) ;
offset=offset+1;
end

fwrite (fid,whole, 'uint8")
fclose (fid)

$sound (s)

