Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Reconstruction of the MOS 6502 on the Cyclone Il FPGA

TEAM Double O Four

Yu Chen (yc2615)

Jaebin Choi (jc3797)

Arthy Sundaram (as4304)
Anthony Erlinger (afe2104)

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Table of Contents:

I. Introduction
1 Abstract
2 Preface
3 Why the 6502?

I1. Understanding the Design of the 6502
1 Instruction set architecture
2 ISA Implementation
a Opcode Format
b Opcode types
C Addressing modes
d Externally visible registers
3 Microarchitecture
Predecode
Instruction Register
Instruction Decode
Program Counter
Address Bus Registers
Data bus
Data Output Register
Stack Pointer
Index Register
Status Register
Accumulator
ALU
Timing Control
n XandY Registers
4 Process architecture (probably not needed)
a nMOS, two phase clock design
5 Design Iterations

3 —x—=—oDoQ "o 00 T

I11. Designing our own implementation
1 Examining the ISA
2 Understanding timing diagrams
3 Understanding the addressing modes
4 Design Constraints: Latches to Flip Flops
5 Memory and IO Interface

IV. Testing

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Divide and Conquer: Unit tests to Integration tests
Testing the ISA

Synthesis on the Cyclone Il

Known bugs/issues

A WDN P

V. Application
1 Writing to the VGA Frame buffer

2 The Bouncing Ball

V. Conclusion
1 Lessons learned
2 Future direction
3 References
4 Appendix (Timing Diagrams, Adaptations)

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Abstract

Owing to its low cost and simple yet powerful instruction set architecture the MOS 6502 processor is
one of the best selling processing microprocessors in history. Here we have modeled and reconstructed
a synthesizable 8-bit MOS 6502 processor in VHDL fully synthesizable on the Altera DE2 FPGA board.
In recreating the 6502 many design considerations and modifications needed to be made to the original
design in order to make it fully compatible with the more modern Cyclone Il FPGA utilized on the
Altera DE2. Our design differs in the two aspects that it (1) uses only a single phase clock (as opposed
to the non-overlapping two phase clock used in the original) and (2) uses edge triggered D flip flops for
internal registers in contrast to level sensitive latches which were used in the original design. Our
design includes a basic test interface on the DE2 board in addition as well as integration test and simple
ROM programs to test functionality. The process of creating our design consisted of two major sections.
First is a thorough analysis of the architecture around the 6502 processor and the motivations behind the
original design. Secondly, we will report on the process of designing of our own 6502 from design to
implementation and testing.

I. Introduction: History and Significance of the 6502
Preface:

The Mos 6502 CPU has earned a prominent place in computing history. Owing to its versatility and low cost, the
6502 has been implemented in a myriad of devices including the Apple Il, the Commodore 64, and the original
Nintendo Entertainment System. Along with its contemporary, the Zilog Z80, the 6502 was largely responsible for the
growth of computer games and the early operating systems in the 1980s. Today it remains in production within various
peripherals and legacy devices. However, perhaps more relevant is the influence of the 6502’s design on more modern.
This arises from the fact that the 6502 was the first CPU to utilize a “reduced” instruction set with an 8 bit opcode.
Today, many consider the 6502 to be the spiritual predecessor to the multiprocessor with interlocking pipelined stages
(MIPS) CPU, which, in turn inspired the development of the ARM instruction set implemented in virtually every
mobile device.

Why the 65027

In the concept phase of this project our group threw around many ideas. Virtually all of these were half-baked,
inconsistent, and posed a problem that was not relevant or tractable for this final project. After much discussion and
debate we narrowed down the scope of this project to focus on the hardware/software interface through the design of an
existing CPU. Again, we threw around many different ideas and after spending a great amount of time researching. We
considered other famous processors such as Intel’s 4004 and 8080, Motorola’s 6800, and the Zilog Z80. However, there
is a tremendous amount of community support in the “white hat” hacker community that has deconstructed and reverse
engineered the original design from the instruction set down to the transistor. After further research it was clear that

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

there weren’t any proprietary CPUs that are as well understood and documented as the MOS 6502 processor and after a
discussion with the professor, we settled on our choice on the 6502.

Before we proceed further to our implementation details, we thought it deserves to quote its history from websource
and the influence the 6502 had during its period and which inspired us to implement this processor as part of this class
project.

The 6502 processor not only brought great influences to computers market, it developed the video game console, too. Most of
the video game consoles uses refined version of 6502 processors. The first video game console which uses 6502 technology
was the Atari 2600. Atari 2600 uses a simplified version of 6502, 6507 which can only address 8KB memory. (What is the
source for this?)

I1. Understanding the Design of the 6502

Instruction Set Architecture

All instructions running on the 6502 are encoded within an 8-bit space which map to unique 62 operation codes
(known as “opcodes™) available to the processor. Each operation generally falls into one of three categories: (1)
Arithmetic operations such as ADD, OR, XOR and so on. (2) Memory operations which store and retrieve data to and
from system memory and the processor’s internal registers. These include operations that load data into a register,
transfer data between registers and (3) control flow operations which are used to allow a program to jump or branch to
another location of execution within a running program. Generally speaking, control opcodes are the most complex in
their execution as they involve many cycles across various components of the processor.

Opcodes:

Most operations (except for implied instructions such as CLC, TAX, Set processor status, etc...) accept up to three
operands, stored in little endian format, which occupy the following adjacent bits in memory.

OPCODE OPERAND 1 OPERAND2 OPERAND 3
(8-bit) (8-bit) (8-bit) (8-bit)

Since the processor can only fetch a single byte of data per clock cycle, an internal state machine is used to control
when and how the input pipeline fetches data from memory.

Last 4 Bits:

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

0000 0001 0010 0100 0101 0110 1000 1001 1010 1100 1101 1110
0000 BRKHb ORAZd,X) ORAR ASLEH PHP ORAGR ASLEA ORA®Z ASL
0001 BPLE ORAHd),Y ORAR,X ASLEH, X CLC ORA®,Y ORA®,X ASLE, X
0010 JSRE ANDAd,X) BITR ANDR ROL@ PLP ANDE# ROLA BIT® AND& ROLE
0100 BMIGk ANDHd),Y ANDRI,X ROL@,X SEC ANDB,Y ANDEA, X ROLE,X
0101 RTI EORdd,X) EORm LSR PHA EORG# LSREA IMPEG EOR@ LSRE
:V)_: 0110 BVCa EOR{d),Y EORm, X LSRG, X CLI EORM,Y EORGA, X LSR@,X
Ea' 1000 RTS ADCHd,X) ADCH ROR PLA ADC# ROREA JMPHa) ADC@& RORE
< 1001 BVSE ADCHd),Y ADCR,X RORGH, X SEI ADCB,Y ADCEa, X RORE@,X
2 1010 STAHd,X) STYR STAR STX@ DEY TXA STY@ STAR STX@
= 1100 BCCa STARd),Y STYRI,X STA®, X STX@,Y TYA STAG,Y TXS STA®@,X
R 1101 LDYG# LDAGd,X) LDX& LDY® LDA® LDX® TAY LDAG# TAX LDYE LDAZ LDX
1110 BCS@ LDAGd),Y LDY®R, X LDA®, X LDX®,Y CLv LDA®,Y TSX LDYE,X LDA®,X LDXGA,Y
1100 CPYG CMPGd,X) cPy® CMPR DECH INY CMP&# DEX CPY@ CMP& DECE
1101 BNER CMPGd),Y CMP@, X DEC@, X CLD CMP&,Y CMP&,X DECE,X
1110 CPX&E SBCHd,X) CPXmi N:ek)| INCE INX SBCE# NOP CPX& SBC@ INCE
1111 BEQ@ SBCAd),Y SBC@,X INC&i, X SED SBC@&,Y SBCE,X INC&,X

Memory Addressing Modes

Although there are only 62 operation types in the 6502, many can access or modify memory depending on how the
programmer wishes to access memory. For instance, the load accumulator (LDA) operation, which takes a value from
memory and stores it in the processors internal accumulator register, can be called with an immediate, zero page,
absolute (X or Y), indirect (X or Y).

There are a total of 13 addressing modes:

Implicit (1 byte instructions)
Accumulator (1 byte instructions)
Immediate (2 byte instructions)

Zero page (2 byte instructions)

Zero page, X (3 byte instructions)
Zero page, Y (3 byte instructions)
Relative (3 byte instructions)
Absolute - (3 byte instructions)
Absolute, X - (3 byte instructions)
Absolute, Y - (3 byte instructions)
Indirect, - (3 byte instructions)
Indexed Indirect - (2 byte instructions)
Indirect Indexed - (2 byte instructions)

There exist three registers which are used temporarily store data between operations. These are the accumulator
(ACC), and the X and Y registers. Values in these registers can be intermittently loaded, incremented, fetched, or stored
back into memory.

Opcode Bit Format

All instructions are encoded in a particular format which allows them to be most efficiently decoded after they are
fetched from the data bus from memory. Upon thorough examination, much of the internal architecture of the 6502 can

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

be inferred from its instruction set architecture. Therefore, fully understanding the instruction set architecture is
essential to fully understand the full CPU.

Depending on an instruction’s role, its eight bits can be categorized according to a format of AAABBBCC. The first
three and last two bits (i.e. AAA---CC) are used in identifying the type of opcode. The middle three bits (i.e. ---BBB--)
are used to identify the addressing mode according to the below table.

BBB Addressing Mode
000 (zero page,X)
001 zero page

010 #immediate

011 absolute

100 (zero page),Y
101 zero page,X

110 absolute,Y

111 absolute, X

Addressing modes not in this table are implied by their operation or occupy additional bits than just BBB. For instance,
the addressing mode on increment X instruction (INX), is always implied (just add +1 to the X register); the addressing
mode on a branch instruction is always relative, and so on. A good example of an instruction that uses multiple
addressing modes can be seen with the load accumulator instruction (LDA).

MODE SYNTAX HEX LEN TIME
Immediate LDA #$44 $SA9 2 2
Zero Page LDA $44 $AS5 2 3
Zero Page,X LDA $44,X SB5 2 4
Absolute LDA $4400 SAD 3 4
Absolute, X LDA $4400,X SBD 3 4+
Absolute, Y LDA $4400,Y SB9 3 4+
Indirect,X LDA ($44,X) SA1 2 6
Indirect,Y LDA ($44),Y $SB1 2 5+

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Microarchitecture
[Stages of execution]
Predecode

The predecoder is combinational circuitry that pre-processes only the “opcode” as soon as it is fetched from the
memory in T1 cycle. The pre-decoded opcode is then put onto the instruction register (IR) at the beginning of T2
and the timing generator also gets timing information from the predecoder and generates appropriate timing states
for the current opcode in the IR.

Instruction register storage

IR, stores the opcode through the instruction execution cycle starting from T2 till the beginning of the next
cyclic T2. The IR is implemented as a D-FlipFlop. As soon as the opcode is stored in the IR, the decoding and
actual execution of the instruction begins.

Instruction decode and execution (Can happen concurrently)

The random control logic takes as input the opcode from the IR and the timing state from the timing control
generator. In our implementation, the random control logic encompasses the sequential circuitry of decode and
execution and the combinational ALU circuitry. Each opcode is tested for bit patterns or opcode equivalents and
then the corresponding operation that needs to happen in each cycle is executed depending
on the “tcstate” from the timing controller. For example:

process(clk)
if (risingedge(clk)) then
if(opcode == XX and tcstate = T1) then
Al<=databus;
SUMS<=1;
end if;
end if;

The above code tests for T1 as that’s the tcstate value when T2 begins and loads the value from the data bus
onto the Al register at the beginning of T2 and sets SUMS to 1. The ALU circuitry is combinational and responds
to the state change and computes sum of the value with that in the BI register and alucarryin flag and stores the
result in ADD register in the same cycle.

[Components]

Program counter (PC)

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

The program counter is incremented every clock cycle and the opcode and the following byte is fetched in two
consecutive cycles. In the event the fetched opcode is single byte, the following fetched byte is ignored and
sometimes, the PC is either decreased or retained depending on the opcode under execution.

Address bus registers (ABH and ABL)

We use a 8-bit ABL and 8-bit ABH registers to form the 16bit required to address the memory. The memory is
asynchronous hence once address is put on these registers at the rising edge of current cycle, before the next
rising edge the data will be available on the “databus”. This register is write only, the processor can only write to
the address bus registers.

Databus (di)

The databus input lines contain the data read from memory addressed by the registers ABH and ABL when the
W _Ris 1 (read). The databus is not a register and hence at the rising edge of the clock it will be either stored in
the ACC, X, Y, Al, BI, SR, S registers depending on the opcode and the current tcstate.

Data output register (DOR)

The 8-bit data output register holds the data to be written to the memory in the current cycle. At the rising edge
of clock the DOR takes the input written to it and when the W_R signal set to write, the value is stored into the
memory to which the ABH and ABL registers are pointing to.

Stack pointer (S), index registers (X and Y), status registers (P), and accumulator (ACC)

They all can be written into and read from. Any addition and operation on content of these registers need to be
done by the ALU and hence the values should be stored first onto the ALU input registers and the corresponding
ALU flags must be set. The stack pointer is a 8-bit register holding the lower 8-bit of the stack address where the
next push will store the data to. The stack grows from 0x1ff to 0x100. After every push operation PHA/PHP, the
stack pointer points to the lower memory location and before every pull - PLA/PLP, the SP needs to be
incremented and then a memory read is performed to fetch the value from the stack (pop).

The status registers, hold the status of the alu or store or register transfer operation performed from the current
cycle. The semantics of this is same as that of the 6502 and can be found on the Appendix.

Timing Generator

Operation of the processor is further complicated by the fact that all instructions take multiple clock cycles
depending on the addressing mode or conditions that can occur during execution such as a carry or page crossing
being generated. The simplest instructions, such as LDA, STA and so on take a minimum of two cycles. More
complex instructions such as those involving complex address modes or interrupt operations (e.g. JSR, RTI) can
take up to 7 cycles depending if a carry is generated or a page crossing.

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

The current state of the processor is therefore stored through a Mealy state machine to represent the current
state of the processor. At any given time, the processor can exist in one of ten possible states (TO-T5, T2+TO,
VECL1, SD1-2). From our own analysis we have derived the state machine (which will be described in the next
chapter).

The derived state machine

The processor is designed such that it responds to the positive levels of the two phase clocks, enabling memory
transfers and instruction/opcode fetch to happen during the first phase and decoding and datapath transfers and
ALU operations to happen over the second phase. The datapath is most certainly behind the control path - which
handles the instruction fetch and decode - while the next opcode is being processed in the control plane, the last
cycle of the previous instruction could still be in execution in the data path thereby achieving a very primitive
form of pipelining.

I1. Redesign of the 6502:

Understanding the entire structure of the 6502 formed the premise for the design of our own architecture. However,
understanding the 6502 was an arduous task. Many hours were spent on formulating timing diagrams for each register,
bus, and control lines. Challenges quickly arose that were not expected early on in the design process. Most setbacks
were related to the fact that the 6502°s design is over 30 years old and was built in an entirely different process
technology from what is available today. To make matters worse, none of us fully understood the design constraints
imposed by and FPGA architecture. Much of our early design was based on the assumption of a latch implementation.
Somewhere around the three week mark, we realized our mistake of using tri-state buffers and high impedance switches
as these are not necessarily stable. Thus, much redesign was done implementing multiplexers in lieu of a single bus
being shared across many components. After about a month or so, we realized that memory data written to memory
might not be available to the input within the same clock cycle.

At a more fundamental level, progress was stymied by the sheer complexity of the 6502°s design. Although it is a
very old and primitive processor by today’s standards the cyclomatic complexity and number of possible independent
states of the processor is still immense. Faced with this complexity it can be very easy to become overwhelmed by the
scope of the task or become distracted by what is and is not important.

This created a “Big Design Up Front” (BDUF) problem in which we spent much effort making our understanding of
the CPU. Every assumption was checked with everyone else yet persistent disagreements stymied progress before work
could be started on a concrete implementation. Our design process evolved in many discrete stages:

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

=~ ~ ™
Generate D§51gn Create Tests [legrate Write
Research Timing archlitecture and components application
Di that is FPGA to top-level
iagrams . Components . code
compatible design

Documents, timing diagrams, and other work created during the concept phase is shown in Appendix B.

The “whiteboard” representation of our circuit model went through three different implementations before a concrete
design was implemented. This modified 6502 will henceforth be referred to as 16502 to identify as it is “inspired” from
the original 6502. Our design process went something like this:

1.) Research 6502 architecture and build timing diagrams. (2 months)
2.) Mapping timing diagrams to state and control logic (2 months)

3.) Create and test individual components in VHDL

4.) Integrate and test high level structure

5.) Run test programs written in 6502 assembly

Generating Timing Diagrams

Reflecting back on the design process for this project, all of us would agree that the majority of our time was spent on
timing diagrams. We started with some of the simpler instructions such as Load Accumulator (LDA), Store
Accumulator (STA) and worked our way up to the more complex instructions such as jump with subroutine (JSR), add
with carry (ADC), and so on. Many timing diagrams needed to be redone or later modified due to a misunderstanding
or false assumptions about what aspects of the i6502 could be implemented on an FPGA.

Creating a design that is fully synthesizable on an FPGA

The original 6502 structure is represented in the following diagram:

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

RESG v INTG
$2 #2
RAW $2
TZPRE 4!
(T1)$2R0Y $|
SYNC [
PRECHARGE
*a-bl
TO | TI ETS
TIX|T2
T3 |T4 Btﬁﬁi
Ts |18 %{.,‘,‘,D,S‘o
vy
AL/
B
v
SB/ADH
§$R&
o/ADL2
28/A%,
yapee
0sa
s
El
1
i CONTROL ADL
FLIP-FL. A00/S8(T)
FLIP-FL ofaoh
iRQ INMIG TNMIL POS [NOCRIY 28/ 5%
IRQP [NMIP SDI_|SD2 [i—>ac/co
RES SP [INTG cs o7
Y,
RESG | %
o6 z
READY ROY %z
IR5/1
W 4— IR5/D
sy > 5‘?"‘”’
DB7/N
#
$0 N 2 AR
[} AR
ouT DBO/C—
s o Z
42 ouT
payz—] 4
DBZ/2—
17
R o
B
prsvme RV
1N p/DB
DBYN—= N

PCL.

0/ADLD—
O/ ADLI =
O/ADLZ 1

#2-~{PRECHARGE

1/ADDC

0/ADD

{0SA)42 ATR o

(DAR) g2-ACR

AC/DB

5B

v
R 7 | W e
2 PRECHARGE |,
< MOSFETS
— 62:3: 0/ ADHO
| MOSFETS [0/ADHI
PCHC PoLC -
INC. INC. $1- ADH /ABH
LOGIC & LOGIC 7
@7 T AR
INCREMENT § s
LOsIC {0-7) 5 Az
#2 4 pa2
3 [pan
2 [PAIO
g 1 A9
= 0 a8
PCH/D!
SB/ADH LE
PASS
$B/08 MOSFETS
PASS
MOSFETS :
g 8/8 sB/s
#1-ADL /ABL
S/ADL +5Y 5/58 Tlpar
ey __‘ ECHARGE 6 6
| MOSFETS 5 Lpas
4 [-ag
ADL 3 1paz
2 A2
e 1 [Pl
) AQ
A0D/S8
ss 2
SB/ADD
o (DsafC)g2
S8/Y
saac OO
Y/S8

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

However, the original design cannot be integrated in an FPGA for three reasons:

1. The 6502 uses a two phase non-overlapping clock, however, the DE2 has a single clock structure.

2. The 6502 uses latches which cannot be reliably synthesized on an FPGA. To overcome this issue, we had to
redesign the register and memory structure to use flip-flops.

3. Tri-state buffers which are important in selecting how bus lines get asserted also cannot be synthesized on an
FPGA.

The synchronous-asynchronous problem

en ——>

[

D1
clk2 | | | | | |
o1kl I C1kzﬁ Dl /X T

Latch

(a) : :
| |
| |
en —> D1 D2 [|
— : 2kclkl] LML
> > T
2%c1k1 ’% b2 /7.
(b)
= L=
[am)
clkl-—J__>
(c)

We thought it would be worth mentioning how we came to our decision of the single-clock implementation. The
diagram above shows (a) a latch behavior (original 6502), (b) double-frequency clock implementation, and finally (c) a
single clock implementation. Here we compare cases (b) and (c) in modeling the (a) behavior of the original 6502. Case
(b) is straightforward: simply replace all latches with D-Flip-Flops. To match the (a) behavior, (b) is required a front-
shift of all commands as observed in the timing diagram. Thus, there is a half-cycle shift between the two schemes.
Case (c) which avoids using latches is based on our observation that two successive latches with a two-phase non-
overlapping clock is actually a single DFF. And we also have found that all the latches inside the original 6502 appear
in pairs. For example, in the control path, predecode and instruction latches are a pair; in the data path, data input latch
and any one of X, Y or ACC latches are another pair, etc. In any single cycle time (full cycle), data must go through a
pair of these latches. Combining these two observation, we came up with the second idea to use one DFF to replace two
successive latches, which is also the final decision to enable us implement the process on FPGA.

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

With the single D-flip flop replacement of two latches, we can simplify design from the extremely complex two-
phase 6502 to a simpler implementation, as shown blow. To our convenience, there is only one register in the control
path. The data path also only contains single layer of register with a MUX in front of each to choose the correct driver
at any given time, which are controlled by the random control logic.

CLK

Random Control Logic

Databus
Predecoder
Inst. cycle#
U
SYNC . .
R 5 Timing BRC
Generator
ACR
opcode ‘ | testate

Contro

Datapath

Addrbus

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

PC LOW pCL
REGISTER

DATA BUS
OUTPUT BUFFER

RRRRRE

nnnnnnn —

i PCH

= | lsB
e®
*ﬁﬁ
o 2| b
i»
:te" SBIAC
/ 4o0®
Joc®
P
D= - 7
B g
m\’}\ SB/X _rcd"a
—I So— e
e
) !
= i
SBIY
ADUABLW ADWABL%b— PDB T
PROCESSOR
ADDRESS BUS ADDRESS BUS STATUS
LOW REGISTER HIGH REGISTER REGISTER
(ABL) (ABH)
czibB VN

il

-—
et
—
-
-]
-—t
-—

Redesigning the timing generator

We built the timing generator of the 16502 closely following the original 6502 design (please refer to previous
sections). However, several modifications are made which eases our design a lot.

1) First of all, we divided all the opcodes into three sections: a) normal instructions b) branch instruction and c) read-

modified-write instruction. Let’s find the reasons from following:

a) Normal instructions: They are the instructions which do not belong to the following two categories. Their

timing states are very simple. It is almost linear with only one branch as you can see from the following figure.

It starts at TO and T1 in the first two cycles and keeps go on. The cycle# information from the predecoder tells

the state machine when to return the starting point (TQ). The only branch happens at the second to the last

cycle T#-1_#. If there is no page crossing, it will skip the last state T# # and go back to TO. Otherwise, it
T#_# will be the next state.

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

—>T0
—> T0 <— branch taken TJ1
W page cross =
\L APAETOE 5 10 lRM\;v#l
T1 J/ cycle
lcycle# T1 T2 #
no page .
T2_# crossing l branch NOT .
: taken T#-1 #
: T2 b___| N
T#‘2_# - branch taken J/ SD1
Jd w/o page cross d
—T#-1 # T3_b ———SD2
(a) timing states for normal (b) timing states for branch (c) timing states for RMW
instruction instruction instruction

b) Branch instruction: Most of the other instructions starts with TO and come back to TO after it finishes.
However, branch may not. Three cases could happen with brach instruction: i) branch not taken (2 cycles); ii)
branch taken without page crossing (3 cycles); iii) branch taken with page crossing (4 cycles). As we shown in
the following figure, for the first two cases, it goes back to T1 after finishes, rather than TO. This is because,
during the last cycle when judging either takes the branch or not, a new opcode has already been fetched on
the databus. It doesn’t need another TO cycle to do the same thing again.

¢) Read-modified-write instructions (RMW): These are the instructions which take the original data from
memory, modify it according to the instruction and store it back into the same address. The share the same
address modes with the other opcodes, but has two extra cycles. For example normal absolute address mode
has 4 cycles, but RMW needs 6 cycles. The have the exactly same behaviors as the other address mode in the
first several cycles, and the only distinct operations appear at the extra 2 cycles, which are labeled as SD1 and
SD2. In SD1, corresponding arithmetic (e.g inc, dec, ror) will be conducted on the data; In SD2, the modified
data will be stored back. In both cycles, the CPU are writing rather than reading the memory.

Mapping State and signal control

Knowing the facts that there are 152 instructions inside the 6502 and the longest opcode takes 7 cycles is really
annoying in the beginning, as it may be an endless way to figure out what signal controls are generated in each
cycle for any specific opcode (which is up to 152*7=1064 cases...). Fortunately, those brilliant designers of 6502
designed these 152 opodes in a way that many general patterns can be found. These patterns shrink the number of
cases with different signal controls into less than 50 cases! Here is an example: an opocde with absolute address
mode lasts for 4 cycles. However, no matter what function it is, the behaviors of the data path in the first two
cycles are exactly the same, which means they all share the same signal control. More specifically, as you can see
from the table below, in T2, the data path must load the data from memory into the ALU and add it with x”00”
(the two operands are stored in Al and Bl respectively); in T3, the data path must send the output of ALU from
the previous cycle into ABL (lower 8 bits of the address bus) and load the new data from memory into ABH
(higher 8 bits of the address bus).

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Address Mode: Absolute
T2 T3 TO(next opcode)
ADDR 1002(LL) 1003(HH) HHLL
DATA LL HH ?7?
PC 1003 1004 1005
IR opcode 1 opcode 1 opcode 2
RTL operations: | PC<=PC+1 PC<=PC
ABL<=PCL | ABL<=ADD
ABH<=PCH | ABH<=Data
Al<=00 Sums<="0'
Bl<=Data
Sums<="1"

Since there are 24 opcodes have absolute address mode, the original 24*2 individual cases can now be shared
by two cases mentioned above. 24X of effort are saving in this example.

With this in mind, we believe it is crucial to understand the general pattern of timing diagrams, control paths,
and enable which dictate which components of the processor are active at any given time. To accomplish this,
information was gathered from the aforementioned community resources [REFERENCES] and compiled into a
single spreadsheet containing exactly 712 rows for all of the 152 cycle-complete instructions. An excerpt
showing a very small subsection of this spreadsheet is shown below:

PC_Op SP_Op A B ALU_OP A Le X Le Y Le PS BIN

Mnem« Addr. Mode Opcods wgm#amﬁ N VBDI Z C Timi Done Addr_Op Din_Le Rd_En ALU_OUTPD DL DOR TIMING

6 10 !
INX IMP E8 2 2 1N 4 0 done x_reg one add le nz 11101000 000

1 oo1 '
INY IMP cs 2 2 1N 4 0 done y_reg one add le nz 11001000 00O

1 oo1 '
IMP ABS 4c 3 5 3 0 pc_p en read inc 01001100 000

1 en din inc oo1 '

2 split o0 !

3 done o1 !

4 w0 '
IMP (IND) 6C 5 8 3 0 pe_p en read inc 01101100 000

1 en din oo1 !

2 split read o0 |

3 split_p en read o1 !

4 en din 100 |

5 split 101 !

6 done 10 |

7 m !
JSR ABS =20 6 5 3 0 pc_p en read inc 00100000 000

1 sp en pch din push oo1 !

2 sp pcl split push [T

3 done oir |

4 w00 |
LDA ABS AD 4 5 IN z 0 pc_p en read inc 10101101 000

1 en din inc oo1 '

2 split read 010 !

3 done en 011

4 din passB le nz 100 '
LDA ABSX BD 4 5 3N Z 0

pe_p en read inc 10111101 000

From this data, certain distinct patterns arise:

1. Recall that we call the last two bits of opcodes cc. From the study, we found any opcodes with cc=10 are
conducting operations on the accumulator register; any opcodes with cc=01 are conducting operations on the X
index register; any opcodes with cc=10 are conducting operations on the Y index register. There are no opcodes
which end in “11”

o

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Any instructions shared with the same address mode, they will have the exact same behaviors in the datapath in
any cycles except TO and T1 (for RMW opcodes, SD1 and SD2 have different behaviors too). For example, LDA,
LDY, LDX, INC (absolute) have the same behaviors as we shown in the above table.

Any opcodes, no matter what their address modes are, share the same behaviors in TO and T1. For example, LDA
with absolute, zero page, zero page indirect and etc share the same data path operations. More specifically, as we
shown in the table below, the data fetched from memory will always be sent into the accumulator in TO; in T1, it
prepares for the next instruction.

Instructions: LDA Address Mode: Don't care
TO T1
ADDR 1002(LL) 1003(HH)
DATA LL HH
PC 1003 1004
IR opcode 1 opcode 1
RTL operations: PC<=PC+1 PC<=PC+1
ABL<=PCL | ABL<=PCL
ABH<=PCH | ABH<=PCH
ACC<=Data

Each instruction takes a minimum of two cycles but no more than 7 cycles and therefore the timing state can be
represented within a 3 bit register.

The ALU is only used once per instruction.

13 total modes of the ALU. Can represent the ALU operation in 4 bits.

There are many operations where the ALU loads zeros into on register, to pass the value of register A to its
output.

Work distribution:

Actually, these patterns not only help us to understand the operation inside the process, but also easy our life when

we distribute our work when implementing the instructions operations in VHDL. We divided the total 152 opcodes
into four parts:

1)
2)
3)
4)
5)

Opcodes end with 10 (accumulator operation);

Opcodes end with 01 (index register X operation);

Opcdoes end with 00 expect 4) and 5) (index register Y operations);
All the branch and jump instructions;

All the single byte instructions.

Writing and Testing VHDL Code of the processor
The VHDL code of the process (CPU core) is entirely pattern based. If certain pattern is matched, we ask the

process to do the corresponding operations. Thus, one can imagine that the CPU.vhdl will be composed with a huge
list of if...else statement. Here is an example code in T2 of absolute address mode:

--Address Mode: Absolute; aaa: don't care; cc: don't care.

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--Timing: T2
if (opcode (4 downto 2)="011" and tcstate(2)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0))
ABH<=std logic vector (PC(15 Downto 8));
Sums<='1";
AI<=x"00";
BI<=unsigned (Databus) ;
I _ADDC<='0"';
end if;

In the if conditions, opcode(4 downto 2)="011" will be matched with all the opcodes with absolute address mode.
tcstate(2)="0" will be met when the system enters T2 cycle. With both conditions, the operations followed will be
active.

High Level Implementation on the Altera DE2 Board:

Our 16502 system connects to an off-chip asynchronous memory via an 8-bit address bus and a 16-bit address
bus with a Read/Write line indicating whether the operation is read or write. The program to be executed will be
stored in the SRAM and the 16502 will be pre-configured / boot loaded with the program start address. The
processor operates on a single clock and responds to positive edge triggers of the clock. The reset pin can be used to
reset the processor and restart execution of the program in memory.

The program should comply with i6502 instruction set architecture described in detail below.

V. Testing

1. Testing the ISA

Verifying a fully VHDL-implemented CPU with over 700 possible states required careful planning of the test
bench. Having tested earlier on that a digital-logic-heavy command such as one involving the ALU can stabilize
an output value within one 50MHz clock cycle, the remainder of our verification effort focused on tracking all
necessary transitions occurring at each rising edge of the clock.
The well-organized mask implementation of the decode ROM meant that if there was an error, it would occur
across all opcodes in the same category. This also meant that the removal of the error would solve the problem for
all opcodes with similar behavior. This encouraged us to approach the debug of the i6502 on a mask-by-mask
basis, while keeping an eye on noticeable patterns.

2. Unit tests: Modelsim

Our first series of tests were executed on Modelsim. Modelsim allows for a combination of both synthesizable
and non-synthesizable elements. This expedites the debug process by replacing non-synthesizable components
with appropriate behavioral code, and also eliminating memory declaration which consumed the majority of
compilation time. By feeding the databus directly with chosen opcodes and operands at each clock cycle(40ns),
we were able to quickly run through an ideal-case simulation of the edge-triggered ISA behavior. Each test
targeted an individual mask among: 62 opcode masks represented by aaaxxxxx, 11 address modes (xxxbbbxx),
four categories (xxxxxxcc), and exceptions that require a combination of two or more of aaa, bbc, and cc. Below
is an example test bench, testing LDA imm (11) and ORA imm (22), and following (TODO: figure) is the
simulation result. A portion of the used testbench can be found in the appendix (TODO: point to location).

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

process --test the first section cc=01
begin

wait for 400ns;

databus<=x"A9"; --LDA imm
wait for 40ns;

databus<=x"11"; --(LDA) #=11
wait for 40ns;

databus<= x"09"; --ORA #

wait for 40ns;

databus<= x"22"; --#=22

wait for 40ns;

end process;

108

BPEPPHPFTRT

The large database of timing diagrams on paper served their purpose well in our visual verification of the opcode
action. First, we verified the large framework of each instruction, to guarantee the loading of the next instruction.
This included a check on 1) decision of Predecode on total cycle number, 2) Mealy machine increment and
interaction with RCL, 3) PC increment, and 4) output of instruction. The second and more detailed check verified
details in 1) flag output, 2) ALU output, 3) on-and-off of ALU input signals, etc. In such a way we tested a
combination of masks that comprised of about 50% of the 152 instructions, with much confidence in the
functionality of the remaining instructions due to the repetitive mask structure of the RCL. These set of
simulations yet were not able to test possible sources of error that the behavioral code had replaced, such as signal
delay in communication with the memory, and data-fetch/write processes.

Hardware verification

To verify a hardware implementation after synthesis, we used both peripherals (HEX displays, LEDs) for
display of critical numbers, and the SignalTap Il Logic Analyzer for additional internal value checking. In detail,
we displayed A, X and Y registers on hex displays, processor status register flags as green LEDs. In addition, we
implemented a 2’s power frequency divider to slow down the SOMHz clock to ~1Hz for real-time verification.
The 6502 does not have an instruction to stop all activity, because the processor always needs to be responsive to
a certain signal. The ‘BRK’ instruction which is closest in function resets PC to an absolute address stored in the
end of the memory, and continues to function. We assigned an ‘illegal’ opcode “FF” the ‘stop all’ function, for its
great utility in debugging.

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Switch 17 (SW17) on the DE2 board was designated to be the reset switch. At reset, ROM.vhd writes out its
initialization bits to the SRAM at every clock cycle, as well as resetting all internal register values and signals to
default. ROM.vhd is declared as an internal memory array and hence consumes a considerable amount of time to
compile. Initializing only the first page of the memory (0000-00FF, 156 bytes) proved sufficient to debug all
opcodes with reasonable compilation time (2 minutes). Below is an example of ROM.vhd testing debug.
type rom_type is array (0 to 255) of std_logic_vector(7 downto 0);

constant ROM : rom_type :=

(x"Ab5", x"11", x"00", x"ae", x""12", x"00", x"a0", x"aa", x"a0", x"bb", x"a2", x"cc", x"ff", x"ff", x"00",
x"00",

x"00", x"66", x"33", x"44", x"55", x"00", x"00", x"00", x"00", x"00", x"00", x"00", X"00", x"00", x"00", x"00",
x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", X"00", x"00", x"00", X"00", X"00",
x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", X"00", x"00",
)

All opcodes in cc=10, 01, 00 have been verified with the following method. This sums up to about 90% of the 152
instructions (opcode + address mode).

Known bugs/issues

Only minor errors were found in the debug process, at a clock speed of 50MHz. This owes to the reliability of the
FPGA board, small time delay in digital signal paths, and each of the team members’ familiarity with timing
diagrams—from which the vhdl code was implemented from. Among the few errors were: faulty PC increment,
faulty reset of SUMS or |_ADDC signals, and interrupt opcodes (BRK, JSR, etc.).

V. Application

As a final product we implemented the bouncing ball as did in Lab3, but the C code replaced with the 16502
processor, as the following figure. The 16502 used the Altera DE2 video RAM for executing the bouncing ball
program. We incremented the pixel index by 3 for each inc/decrement in x/y and fed the VGA raster. The VGA
raster drew the circle with X and Y co-ordinates as the center.

LED DISPLAY

v . —F
il 0 i6502 VGA CTRLR
-

|
|

DISPLAY TERM

m
=
=
&
a
=]
<
=
o
=

©

ASYNC MEMORY
(SRAM)

Here is a list of memory bytes used for the program, and a portion of the assembly code:

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

X register — x coordinate of ball
Y register — y coordinate of ball
$0070 — size of x grid

$0071 — size of y grid

$0072 — x direction of ball
$0073 -y direction of ball

~-BRC1

LDA $0072 AD
CMP #$01 C9
BEQ (BRC3) FO

BNE (BRC4) DO

Two cross-linked loops, one for X operation and another for Y, were written in assembly code,
totaling to a number of 50 instructions in twelve separate branch operations. A series of 98 bytes
representing the instructions were bootloaded via ROM.vhd into the first page of the SRAM. The full
code is attached in the appendix. With the reset signal off, the bouncing ball successfully showed up on
the LCD screen, proving that all instructions used have been properly implemented on FPGA.

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

V1. Conclusion

Lessons Learned

Arthy

This project 6502 started as my most favorite project as | had taken computer arch, microarchitecture
and parallel architecture. | was all excited about it. | expected this to be an experience in itself.

“Start early, develop iteratively, test in “hardware” iteratively, have small goals and accomplish them -
do not sleep over the project till the last minute *

My honest advice would be as most others in previous years have reiterated - choose your team
carefully.

There is nothing more important than that. Your entire experience of this class would only depend on
this one factor as the entire second half of the semester is with them.

1. If you are not clear about the project when submitting the first milestone something is wrong.

2. Choose your team leader

3. Every problem you face in the team, try to solve it as team. If the team cannot solve small issues
then it cannot solve the project period.

4. Choose a project which every team member is happy about. It may be hard to come to consensus

but that’s team.

Anthony

It may seem rather trite to conclude a final project paper by talking about the lessons we learned,
challenges we faced, and so on. Yet as we reflect back over the development of this project, there
have been few, if any, projects in our undergraduate or graduate careers that have been as
challenging, and consequently, rewarding as this one. Of course, this reward came with great effort.
Much like hacking through a jungle with a dinner spoon, the endeavor to understand the 6502 was
met with many false starts, dead ends, and futile disagreements over trivial issues like variable
notation or source code control. In the end our greatest challenges arose from consequences we did
not even conceive to begin with. Looking back now, it is easy to appreciate the 6502’s rich yet
beautiful microarchitecture, yet, understanding and adapting its design to meet spec was a major
undertaking. However, the true enemy of progress was the equally complex and foreign problem of
managing communication and collaboration across a team with different interests, backgrounds,
skillsets, and schedules.

Concrete progress over time was also very nonlinear. Seeing the processor come to life at quite
literally last minute justified all of the sleepless nights and lost weekends. It was the pearl in the
oyster bridging the gap between software and silicon is something that even most software and
circuits engineers take for granted. Being able to understand the software/hardware interface from C

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

to instruction set down to the silicon is more rewarding than I thought it would be when we started
this project. The famous computer scientist Donald Knuth once said:

“The psychological profiling [of a programmer] is mostly the ability to shift levels of abstraction,

’

from low level to high level. To see something in the small and to see something in the large.” —
Donald Knuth

If I had to nail it down to a few points:

1. Beware of “analysis paralysis”: Of course it’s important to fully understand the
architecture you’re building but in the end what matters is execution. It’s easy always easy
to justify drawing more timing diagrams or understanding but this should never come at
the expense of real progress.

2. Know thy build environment: Hours can be wasted when you spend time designing
around technology that isn’t fully understood.

3. RTFM, even if it’s 300 pages of roughly scanned typewriter print.

Many of our problems came down to the fact that we had very little upfront knowledge, if any,
about the architecture of the 6502. Of course hindsight is 20/20 and in retrospect it would have
made more sense to design our 16502 implementation from the top-down beginning with an
understanding of what the opcodes do and how many cycles they require under various conditions.
In other words, the instruction set and the timing states really define the “soul” of the 6502 and do
not require any assumptions about the details of the microarchitecture implementation. The
controller (also called random control logic) is by far the most complex aspect of the 6502, however,
its state can be defined by the current instruction and the timing state (TO-T7). From there, writing
up timing diagrams plays an important role in mapping the control logic to the control lines which
dictate when certain components and bus lines of the processor are asserted.

Jaebin Choi

| initially started working on the project with not much interest in VHDL coding, and little knowledge
of the 6502. | took the class and VHDL from a very practical perspective, thinking that being able to
communicate with hardware would be a strong skill set in my future research. | believe my relaxed
attitude partly relied on the fact that I trusted the team in its ambition and intelligence. But the 6502
changed that. | felt a nerdy attachment for the intricacies of the primitive processor, and | was glad that |
had, by my teammates, been exposed to such great work. However optimistic | am about my learning
experience, | must admit that there has been a great cacophony inside the team. | took a part in every
implementation step of the 16502, from timing diagrams to the bouncing ball. In detail, I have written a
third of the decode rom (cc=00), integrated the CPU.vhd divided into three people’s work, verified on
both software and hardware, and written the code regarding the bouncing ball.

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Yu Chen
My contribution and lesson learnt

To be honest, I contributed the most in this project. Before the third milestone, 1 am one of the
members who spent a huge amount of time in learning the processor, reading materials, drawing timing
diagrams and helping the other members to understand the system. | am also the person who had done
two unsuccessful tries in implementing a single opcode in VHDL and raised the issue of different
timing between latched based system and DFF based system. After the third milestone and finalizing
our design strategy, | implemented and tested more than half of all the opcodes (cc=10 and 01 parts) and
all the others blocks: timing generator, predecoder, DFF, ROM, SRAM controller and gave the life to
the processor on FPGA. | am also one of the active members who built applications like bouncing ball
and hex displacement in the final stage of the project.

Lesson learnt:

1. Looking for good team members. Good team members should not only have skills, abilities to finish
tasks, passions on the project but also should be responsible reliable.

2. Not hesitate to communicate with your team members. Not ignore any new ideas, different opinions
and arguments.

3. Don’t try to finish things alone. You are not a superman!

Contribution Summary
Arthy: Understand and research on 6502 operation; Implemented single byte instructions in final vhdl code.

Anthony: Conducted initial research on 6502 material; Created database of opcodes and possible timing state;
Created custom block diagram for the data path.

Yu: Understand and research on 6502 operation; Implemented initial vhdl test code and all of the other
surrounging building blocks in vhdl for final implementation; Implemented cc=01 and cc=10 part of opcodes in
final vhdl code; Test and debug; Realized Bouncing ball top level architecture and VGA, SRAM controls.

Jaebin: Implemented cc=00 of decode in final vhdl code; Integration of full decode; Test and debug; Design the
bouncing ball assembly code and implementation

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Future Direction:

With the fundamental design of the 6502 complete the fruits of our labor can now be realized. Our basic bouncing ball
serves to demonstrate a very basic, but functional “hello, world” example of our 16502 processor. It would be
worthwhile to examine and test existing ROMs on our architecture to validate our design.

In the broader picture, there exists significant interest in the 6502 processor in the “hacker” community most notably
through visual6502.0rg and 6502.0rg organizations, both of which were extremely influential in our own understanding
of the 6502. This project would not have been possible without their efforts in reconstructing. There is also work that
we have done that has not yet been documented or published online by the visual 6502 team. We hope that we can give
back to the community through some of the work that we have don

References:

The Visual 6502 Project

Hanson’s 6502 Block Diagram

6502 Datapath http://visual6502.org/wiki/index.php?title=6502_datapath
6502.0rg

MOS Hardware Manual

MOS Software Manual

lllegal Opcodes

Opcode format

Reverse Engineering the MOS 6502 CPU

. Beregnyei Balazs’ full transistor-level schematic
. An Interview with Donald Knuth

http://webcache.googleusercontent.com/search?g=cache:guUSdnZ4m0gkJ:www.drdobbs.com/an-interview-with-
donald-knuth/184409858+&cd=4&hl=en&ct=clnk&gl=us

RB ©o0o N O RwWwDDE

= O

http://webcache.googleusercontent.com/search?q=cache:gUSdnZ4m0qkJ:www.drdobbs.com/an-interview-with-donald-knuth/184409858+&cd=4&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:gUSdnZ4m0qkJ:www.drdobbs.com/an-interview-with-donald-knuth/184409858+&cd=4&hl=en&ct=clnk&gl=us

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Timing Diagrams used for mask generation for cc=00 (as examples).

BIT absolute | 2C 4 cycles NVZ
TO Tl T2 T3 TO Tl T2
ADDR 1000 | 1001(op) | 1002(LL) | 1003(HH) HHLL(AA) | 1004(next) 1005
DATA opcode | LL HH AA next
PC 1001 1002 1003 1004 1004 1005 1006
IR opcode opcode opcode opcode next
Al 0 BB
Bl LL AA
ADD LL result
AC BB BB BB BB BB
N bit7 of AA
\ bit6 of AA
z 1 if result=00
PC>AB PC>AB PC>AB
PC+1>PC PC+1>PC | PC+1>PC
DATA>BI | DATA>ABH | DATA>BI | DATA>IR
00>Al ADD>ABL AC>Al
SUMS
ANDS ADD>N
ADD>V

ADD>Z

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

JMP absolute | 4C 3 cycles no flags
TO T1 T2 TO Tl T2
ADDR 1000 | 1001(op) | 1002(LL) 1003(HH) HHLL (next) | HH(LL+1)
DATA opcode | LL HH next
PC 1001 1002 1003 | 10LL HH(LL+1) | HH(LL+2)
IR opcode opcode opcode next
Al
BI
ADD
PC>AB [DATA,PCL]>AB PC>AB
DATA>PCL | [DATA,PCL]+1>PC | PC+1>PC
JMP ::r;dlre 6C 5 cycles no flags
TO Tl T2 T3 T4 TO Tl T2

ADD 1001 (o HHLL(A BBAA(ne | BBAA
R 1000 0) 1002(LL) | 1003(HH) A) HHLL+1(BB) xt) 1
RAT opcode | LL HH AA BB next
PC 1001 1002 1003 | 10LL HHLL+1 | HHAA BBAA+1 E; AA
IR opcode opcode opcode opcode opcode next
Al
BI
ADD

PC>AB I[3DATA,PCL]>A PC>AB [BDATA,PCL]>A PC>AB

DATA>P | [DATAPCL]+1 | DATA>P | [DATA,PCL]+1

cL >PC cL >PC PC+1>PC

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

STY absolute | 8C 4 cycles no flags
T0 Tl T2 T3 TO Tl T2

ADDR 1000 | 1001(op) | 1002(LL) | 1003(HH) HHLL 1004(next) 1005
DATA opcode | LL HH AA next
PC 1001 1002 1003 1004 1004 1005 1006
IR opcode opcode opcode opcode next
Al 0
BI LL
ADD LL
DOR AA

PC>AB PC>AB PC>AB

PC+1>PC PC+1>PC PC+1>PC

DATA>BI | DATA>ABH | DOR>DATA | DATA>IR

00>Al ADD>ABL | RIW>W

SUMS Y>DOR
LDY absolute | AC 4 cycles NZ

TO T1 T2 T3 TO T1 T2
ADDR 1000 | 1001(op) | 1002(LL) | 1003(HH) HHLL(AA) | 1004(next) 1005
DATA opcode | LL HH AA next
PC 1001 1002 1003 1004 1004 1005 1006
IR opcode opcode opcode opcode next
Al 0 0
Bl LL AA
ADD LL AA
Y - AA AA
bit7 of
N AA
1if

z AA=00

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

PC>AB PC>AB PC>AB
PC+1>PC PC+1>PC | PC+1>PC
DATA>BI | DATA>ABH | DATA>Y | DATA>IR
00>Al ADD>ABL
SUMS
CPX absolute | EC 4 cycles NzC
T0 T1 T2 T3 TO Tl T2
ADDR 1000 | 1001(op) | 1002(LL) | 1003(HH) HHLL(AA) 1004(next) 1005
DATA opcode | LL HH AA next
PC 1001 1002 1003 1004 1004 1005 1006
IR opcode opcode opcode opcode next
Al 0 BB
BI LL invert(AA)
ADD LL result
X BB BB BB BB BB
N bit7 of result(ADD)
Z 1 if X=memory
C 1 if X>=memory
PC>AB PC>AB PC>AB
PC+1>PC PC+1>PC PC+1>PC
DATA>BI | DATA>ABH | DATAbar>Bl | DATA>IR
00>Al ADD>ABL | X>Al
SUMS
SUMS ADD>N
ADD>Z
ADD>C
BIT zeropage 24 | 3cycles NVZ
T0 Tl T2 TO Tl T2
ADDR 1000 | 1001(op) | 1002(LL) OOLL(AA) | 1003(next) 1004
DATA opcode | LL AA next
PC 1001 1002 1003 1003 1004 1005
IR opcode opcode opcode next

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Al BB
BI AA
ADD result
AC BB BB BB BB
N bit7 of AA
\Y bit6 of AA
7 1 if result=00
PC>AB PC>AB
PC+1>PC | PC+1>PC
DATA>ABL | DATA>BI | DATA>IR
00>ABH AC>AI
ANDS ADD>N
ADD>V
ADD>Z
STY zeropage 84 | 3 cycles no flags
T0 Tl T2 TO Tl T2
ADDR 1000 | 1001(op) | 1002(LL) 00LL 1003(next) 1004
DATA opcode | LL AA next
PC 1001 1002 1003 1003 1004 1005
IR opcode opcode opcode next
Al
Bl
ADD
Y AA AA AA AA
DOR AA AA AA
PC>AB PC>AB
PC+1>PC PC+1>PC
DATA>ABL | DOR>DATA | DATA>IR

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

00>ABH R/W>W
Y>DOR
LDY zempag A4 3cycles | NZ
TO Tl T2 TO Tl T2
QDD 1000 [1);)01(0 1002(LL) | 0OLL(AA) 3)003(”“ 1004
RAT opcode | LL AA next
PC 1001 1002 1003 1003 1004 | 1005
IR opcode opcode opcode next
Al 0
BI AA
ADD AA
Y AA AA
bit7 of
N AA
1if
z AA=0
0
PC>AB PC>AB
PC+1SPC PC+1>P
C
DATA>AB DATA>Y DATA>I
L R
00>ABH
*LDY affects flags N,Z. Does the memory
value have to go through ADD?
DATA>BI ADD>N
00>Al ADD>Z
SUMS
CPX zeropage | E4 3 cycles NzC
TO Tl T2 TO T1 T2

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

ADDR 1000 | 1001(op) | 1002(LL) O0LL(AA) 1003(next) 1004
DATA opcode | LL AA next
PC 1001 1002 1003 1003 1004 1005
IR opcode opcode opcode next
Al BB
BI invert(AA)
ADD result
X BB BB BB BB
N bit7 of result(ADD)
Z 1 if X=memory
C 1 if X>=memory

PC>AB PC>AB

PC+1>PC PC+1>PC

DATA>ABL | DATAbar>BIl | DATA>IR
00>ABH X>Al
SUMS ADD>N
ADD>Z
ADD>C
STY zeropage, X 94 | 4 cycles no flags
TO T1 T2 T3 TO T1 T2

ADDR 1000 | 1001(op) | 1002(ZZ) | 1002(zZ) | OORR 1003(next) 1004
DATA opcode | ZZ 2z MM next
PC 1001 1002 1003 1003 1003 1004 1005
IR opcode opcode opcode opcode next
Al \AY
BI Y4
ADD RR
X \AY} \AY \AY \AY \AY}
Y MM MM MM MM MM
DOR MM

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

PC>AB PC>AB
PC+1>PC PC+1>PC
DATA>BI DOR>DATA | DATA>IR
X>Al ADD>ABL | RIW>W
SUMS 00>ABH
Y>DOR
LDY zeropage,X | B4 4 cycles NZ
T0 Tl T2 T3 TO Tl T2
ADDR 1000 | 1001(op) | 1002(ZZ) | 1002(zZ) | OORR(MM) | 1003(next) 1004
DATA opcode | ZZ ZZ MM next
PC 1001 1002 1003 1003 1003 1004 1005
IR opcode opcode opcode opcode next
Al \AY 0
BI ZZ MM
ADD RR MM
X \AY \AY \AY \AY vV
Y MM MM
bit7 of
N MM
1if
z MM=00
PC>AB PC>AB
PC+1>PC | PC+1>PC
DATA>BI DATA>Y | DATA>IR
X>Al ADD>ABL
SUMS 00>ABH
DATA>BI | ADD>N
00>Al ADD>Z
SUMS
LDY absolute,X | BC 4-5 cycles | NZ
TO T1 T2 T3 TO T1 T2
ADDR 1000 | 1001(op) | 1002(LL) | 1003(HH) HHSS(AA) | 1004(next) 1005

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

DATA opcode | LL HH AA next
PC 1001 1002 1003 1004 1004 1005 1006
IR opcode opcode opcode opcode next
Al XX 0 0
BI LL HH AA
ADD SS HH AA
X XX XX XX XX XX
bit7 of
N AA
1if
z AA=00
alucout 0
PC>AB PC>AB PC>AB
PC+1>PC PC+1>PC | PC+1>PC
DATA>BI | DATA>ABH DATA>Y | DATA>IR
X>Al ADD>ABL
SUMS
alucout>alucin
DATA>BI DATA>BI | ADD>N
00>Al 00>Al ADD>Z
SUMS SUMS
if alucout=0
nothing
happens
LDY immediate | AO 2 cycles NZ
TO T1 T2+TO0 T1 T2
ADDR 1000 | 1001(op) | 1002(VV) | 1003(next) 1004
DATA opcode | VV next
PC 1001 1002 1003 1004 1005
IR opcode opcode next
Al 0
BI \AY
ADD \AY)
Y --- \AY) \YAY
N bit7 of

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

\AY
1if
z VV=00
PC>AB PC>AB
PC+1>PC | PC+1>PC
DATA>Y | DATA>IR
DATA>BI | ADD>N
00>Al ADD>Z
SUMS
CPY immediate | CO 2 cycles NzC
T0 Tl T2+T0 T1 T2
ADDR 1000 | 1001(op) | 1002(VV) 1003(next) 1004
DATA opcode | VV next
PC 1001 1002 1003 1004 1005
IR opcode opcode next
Al AA
BI invert(VV)
ADD result
Y AA AA AA
N bit7 of result(ADD)
Z 1 if Y=memory
C 1 if Y>=memory
PC>AB PC>AB
PC+1>PC PC+1>PC
DATAbar>Bl | DATA>IR
Y>AI
SUMS
ADD>N
ADD>Z
ADD>C

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

CODES

DE2 VGA RASTER.VHD

-—- Simple VGA raster display

—-— Stephen A. Edwards
-—- sedwards@cs.columbia.edu

library ieee;
use ieee.std logic_1l1164.all;
use ieee.numeric_std.all;

entity de2 vga_ raster is

port (
reset : in std logic;
clk : in std logic; —-— Should be 25.125 MHz
center: in std logic vector (15 downto 0) := X"f0f0"; -- circle center
-—chipselect : in std logic;
--write : in std logic;
--address : 1in std logic vector (17 downto 0);
--readdata : out std logic vector (15 downto 0);
--writedata : in std logic vector (15 downto 0);
VGA CLK, -- Clock
VGA HS, -- H_SYNC
VGA VS, -- V_SYNC
VGA BLANK, -— BLANK
VGA_SYNC : out std logic; -- SYNC
VGA R, -— Red[9:0]
VGA G, -— Green[9:0]
VGA B : out unsigned(9 downto 0) -- Blue[9:0]

)7
end de2 vga raster;
architecture rtl of de2 vga raster is

-- Video parameters

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

constant HTOTAL : integer := 800;

constant HSYNC : integer := 96;

constant HBACK PORCH : integer := 48;

constant HACTIVE : integer := 640;

constant HFRONT PORCH : integer := 16;

constant VTOTAL : integer := 525;

constant VSYNC : integer := 2;

constant VBACK PORCH : integer := 33;

constant VACTIVE : integer := 480;

constant VFRONT PORCH : integer := 10;

—-—constant RECTANGLE HSTART : integer := 100;

-—-constant RECTANGLE HEND : integer := 240;

—-—constant RECTANGLE VSTART : integer := 100;

—-—-constant RECTANGLE VEND : integer := 180;

—-- Signals related to ball drawing

constant RADIUS : integer :=10; --radius of the ball

constant Hinitial : integer :=400; --initial x value of the center of the
ball

constant Vinitial : integer :=263; --initial y value of the center of the
ball

-—- Signals for the video controller

signal Hcount : unsigned (9 downto 0); -- Horizontal position (0-800)

signal Vcount : unsigned (9 downto 0); -- Vertical position (0-524)

signal EndOfLine, EndOfField : std logic;

signal vga hblank, vga hsync,

vga vblank, vga vsync : std logic; -- Sync. signals
signal rectangle h, rectangle v, rectangle : std logic; -- rectangle area
-— signal center in : unsigned(31 downto 0) := X"008000cO";
begin

-— Horizontal and vertical counters

HCounter : process (clk)

begin
if rising edge(clk) then
if reset = '1l' then
Hcount <= (others => '0"');
elsif EndOfLine = '1l' then
Hcount <= (others => '0'");
else

Hcount <= Hcount + 1;
end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end if;
end process HCounter;

EndOfline <= '1' when Hcount = HTOTAL - 1 else '0';

VCounter: process (clk)

begin
if rising edge(clk) then
if reset = '1l' then
Vcount <= (others => '0'");
elsif EndOfLine = 'l' then
if EndOfField = '1l' then
Vcount <= (others => '0");
else
Vcount <= Vcount + 1;
end if;
end if;
end if;

end process VCounter;
EndOfField <= 'l' when Vcount = VTOTAL - 1 else '0';
-—- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

HSyncGen : process (clk)
begin
if rising edge(clk) then
if reset = 'l' or EndOfLine = '1l' then
vga hsync <= '1"';
elsif Hcount = HSYNC - 1 then
vga _hsync <= '0'";
end if;
end if;
end process HSyncGen;

HBlankGen : process (clk)
begin
if rising edge(clk) then
if reset = '1' then
vga_hblank <= '1';
elsif Hcount = HSYNC + HBACK PORCH then
vga_hblank <= '0';
elsif Hcount = HSYNC + HBACK PORCH + HACTIVE then
vga hblank <= '1"';
end if;
end if;
end process HBlankGen;

VSyncGen : process (clk)
begin
if rising edge(clk) then
if reset = '1' then

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

vga_vsync <= '1'";
elsif EndOfLine ='1' then
if EndOfField = '1l' then
vga vsync <= '1"';
elsif Vcount = VSYNC - 1 then
vga _vsync <= '0';
end if;
end if;
end if;

end process VSyncGen;

VBlankGen : process (clk)
begin
if rising edge(clk) then
if reset = '1l' then
vga vblank <= '1"';
elsif EndOfLine = '1' then
if Vcount = VSYNC + VBACK_PORCH - 1 then
vga_vblank <= '0';
elsif Vcount = VSYNC + VBACK PORCH + VACTIVE - 1 then
vga_vblank <= '1';
end if;
end if;
end if;
end process VBlankGen;

BallGen : process (clk)

variable distance square : integer;
variable distance H : integer;
variable distance V : integer;
begin
if rising edge (clk) then
distance H := abs(TO INTEGER (Hcount)- 3*TO INTEGER (unsigned (center (7
downto 0)))-144);
distance V := abs (TO INTEGER (Vcount)- 3*TO INTEGER (unsigned(center (15
downto 8)))-35);
- distance H := abs(TO INTEGER (Hcount)- Hinitial);
—-— distance V := abs(TO INTEGER (Vcount)- Vinitial);
distance square :=(distance H*distance H)+ (distance V*distance V);
if reset = '1' then N B B
rectangle h<= '0';
rectangle v<= '0';

elsif distance square < RADIUS*RADIUS then
rectangle h<= '1";

rectangle v<= '1';
else
rectangle h<= '0';
rectangle v<= '0';
end if;

end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end process BallGen;

rectangle <= rectangle h and rectangle v;
-- Registered video signals going to the video DAC

VideoOut: process (clk, reset)
begin
if reset = '1' then
VGA R <= "0000000000";
VGA G <= "000000000CO0"™;
VGA B <= "0000000000";
elsif clk'event and clk = '1l' then
if rectangle = 'l' then --color of ball
VGA R <= "1111111111";
VGA G <= "0000000000";
VGA B <= "1111111111";
elsif vga hblank = '0' and vga vblank ='0' then
VGA R <= "0111011100"; --color of background
VGA G <= "1110000000";
VGA B <= "1110111000";
else
VGA R <= "0000000000";
VGA G <= "000000000CO";
VGA B <= "0000000000";
end if;
end if;
end process VideoOut;

VGA CLK <= clk;

VGA HS <= not vga hsync;

VGA VS <= not vga vsync;

VGA SYNC <= '0';

VGA:BLANK <= not (vga hsync or vga vsync);

end rtl;

DEBOUNCE . VHD

library ieee;
use ieee.std logic 1164.all;
use leee.numeric std.all;

-—the delay settings has been changed to enable efficient simulations.
--original settings for the board: 24 bits for 'count'
--new settings for simulation: 7 bits for 'count'

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

entity debounce is
port (
clk, resetsw : in std logic;
resetout : out std logic
);

end debounce;

architecture imp of debounce is

signal count: unsigned (23 downto 0) := (others => '0'");
signal rout buf: std logic := '0';
begin

detect: process(clk)
begin

if rising edge(clk) then

--0 to 1 transition of resetsw
if rout buf='0' and resetsw='l'"' then
count <= count + 1;
if count (23)='1" then
rout buf <= '1';

resetout <= '1"';
count <= (others => '0'"); —-- reset count.
end if;

end if;

--1 to 0 transition of resetsw
if rout buf='l' and resetsw='0"' then
count <= count + 1;
if count (23)="'1" then
rout buf <= '0';

resetout <= '0';
count <= (others => '0'"); -- reset count.
end if;
end if;
end if;

end process detect;

end imp;

HEX7SEG.VHD

library ieee;
use ieee.std logic 1164.all;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

use lieee.numeric std.all;

-— Provides the unsigned type

entity hex7seg is

port

output

(input

end hex7seg;

in std logic vector (3 downto 0); —-- A number

out std logic vector (6 downto 0)); -- Just bits

architecture combinational of hex7seg is

begin

.
14

with input select output <=

"1000000™
"1111001"
"0100100"
"0110000™
"0011001"
"0010010"
"0000010"
"1111000"
"0000000"
"0010000"
"0001000"
"oooo011"
"1000110"
"0100001"
"0000110"
"0001110"
19:0:0:0:0:0:0:4%

end combinational;

PREDECODE . VHD

library ieee;
use ieee.std logic 1164.all;
use leee.numeric std.all;

entity Predecode 1is

port

(

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

x"0
x"1
x"2
x"3
x"4
x"5
x"6
x"7
x"8
x"9

w
14
w
14
w
14
\AJ
14
\AJ
4
\AJ
4
\AJ
4
\AJ
4
\AJ
4

\AJ
4

X"A" ,

x"B
x"C
x"D
x"E
x"F

\AJ
14
\AJ
14
\AJ
14
\AJ
14

\AJ
14

others

databus in std logic vector (7 downto 0);
reset in std logic;

cycle number out unsigned (3 downto 0);
Instruction out std logic vector (7 downto 0);
RMW : out std logic);

end Predecode;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

architecture rtl of Predecode is

begin
process (databus, reset)
begin
if reset='1l' then
cycle number <= x"1"; --yuchen0513
Instruction <= x"00";
RMW <= '0"';
else
Instruction <= databus;
RMW <= '0"';
if databus=x"FF" then
cycle number <= x"1";
——==============================CCc=01
section==================================
elsif databus(l downto 0)="01" then
if databus (4 downto 0)= "00001"™ then --(zero page, X) with
cc=01
cycle number <= x"6";
RMW <= '0"';
elsif databus (4 downto 0) = "00101" then --zero page with
cc=01
cycle number <= x"3";
RMW <= '0"';
elsif databus (4 downto 0) = "01001" then --#immediate with
cc=01
cycle number <= x"2";
RMW <= '0"';
elsif databus (4 downto 0) = "01101" then --absolute with
cc=01
cycle number <= x"4";
RMW <= '0"';
elsif databus (4 downto 0) = "10001" then --(zero page), Y
with cc=01

cycle number <= x"6";
RMW <= '0"';
elsif databus (4 downto 0) = "10101" then --zero page, X
with cc=01
cycle number <= x"4";
RMW <= '0"';

elsif databus (4 downto 0) = "11001" then --absolute, Y with
cc=01
cycle number <= x"5";
RMW <= '0"';
elsif databus (4 downto 0) = "11101" then --absolute, X with
cc=01

cycle number <= x"5";
RMW <= '0';

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

else
cycle number<=x"1"; --JB0513
RMW <= '0"';
end if;
——==============================CcCc=01 section
ends==============================
——==============================CC=10
section==================================
elsif databus(l downto 0)="10" then
--Arthy's code, hex XA: 1Ixxx1010
if databus(7)='1l"'" and databus (3 downto 2)="10" then
RMW <= '0"';
cycle number<= x"2"; --JB0511. check if wrong.
--Yu's code below..
--STX, LDX (non read-modify-write code)
elsif databus (7 downto 6)="10" and not (databus (3 downto
2):"10") then __************arthy

RMW <= '0"';

if databus (4 downto 2)="000" then --immediate

cycle number<= x"2";

elsif databus (4 downto 2)="001" then
cycle number<= x"3";

elsif databus (4 downto 2)="010" then

*****************arthy

cycle number<= x"2";

elsif databus (4 downto 2)="011" then
cycle number<= x"4";

elsif databus (4 downto 2)="101" then
cycle number<= x"4";

-—zero page

—-—accumulator

-—absolute

--zero page,

elsif databus (4 downto 2)="111" then --absolute,
cycle number<= x"5";
else cycle number<=x"0"; RMW <= '0';
end 1if;
--6 read-modify-write instructions
elsif databus (4 downto 2)="010" then --accumulator

cycle number<= x"2";
RMW <= '0';

X/Y

X/Y

else

RMW <= '1";

if databus (4 downto 2)="001" then cycle number<=x"5";
--zero page

elsif databus (4 downto 2)="011" then
cycle number<=x"6"; --absolute

elsif databus (4 downto 2)="101" then
cycle number<=x"6"; --zero page, X/Y

elsif databus (4 downto 2)="111" then
cycle number<=x"7"; --absolute, X/Y

else cycle number<=x"1"; --yuchen0513

end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end if;
——==============================CCc=10 section
ends==================================
——==============================CcCc=00
section==================================
elsif databus(l downto 0)="00" then

if databus (4 downto 2)="000" and databus(7)='0' then --

interrupts

if databus (6 downto 5) = "00" then --BRK
-—cycle number<=x"7"; --JB need to define VEC
separately!
cycle number<=x"1"; --yuchen0513
RMW <= '0"';
else --JSR, RTS, RTI
cycle number<=x"6";
RMW <= '0';
end if;

else -- among cc=00, all other than interrupts

--Arthy's hex: X8 codes fit here.
if databus (3 downto 2)="10" then
RMW <= '0"';
if databus (7 downto 4)="0000" then
cycle number<=x"3";
elsif databus (7 downto 4)="0010" then
cycle number<=x"4";
elsif databus (7 downto 4)="0100" then
cycle number<=x"3";
elsif databus (7 downto 4)="0110" then
cycle number<=x"4";
else
cycle number<=x"2";
end if;
-—end of Arthy's X8 codes.

elsif databus (4 downto 2)="100" then --branch
cycle number<=x"0"; -- 2 for no branch, 3 for
branch, 4 for branch w/ page crossing. JB0510: zero.
--BRC <= '1', JB0510 commented out. BRC value
is determined by CPU in cycle TZ2.
RMW <= '0"';
-—else cycle number<=x"0"; RMW <= '0';
-—-end 1f;
elsif databus (4 downto 2)="000" then --immediate
cycle number<=x"2";
RMW <= '0"';
-—else cycle number<=x"0"; RMW <= '0';
-—end 1f;
elsif databus (4 downto 2)="001" then --zeropage
cycle number<=x"3";

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

RMW <= '0"';
--else cycle number<=x"0"; RMW <= '0';
-—end 1f;
elsif databus (4 downto 2)="011" and databus (7 downto
5)="010" then -- absolute, JMP abs
cycle number<=x"3";
RMW <= '0"';
elsif databus (4 downto 2)="011" and databus (7 downto
5)="011" then -- absolute, JMP ind
cycle number<=x"5";
RMW <= '0"';
elsif databus (4 downto 2)="011" and not (databus (7
downto 6)="01") then --rest of all absolutes
cycle number<=x"4";
RMW <= '0"';
--else cycle number<=x"0"; RMW <= '0';
-—end 1f;
elsif databus (4 downto 2)="101" then --zeropage,X
cycle number<=x"4";
RMW <= '0"';
--else cycle number<=x"0"; RMW <= '0';

-—-end 1f;
elsif databus (4 downto 2)="111" then --absolute,X
cycle number<=x"5"; --could be 4 w/o page
crossing
RMW <= '0"';
else cycle number<=x"1"; RMW <= '0'; --yuchen0513
end 1if;
end if;
else cycle number<=x"1"; RMW <= '0';
end if;
——==============================cc=01 section
ends==============================
end if;
end process;
end rtl;

QuASITOPLEVEL.VHD

library ieee;
use lieee.std logic 1164.all;
use leee.numeric std.all;

entity QuasiTopLevel is
port (
CLOCK 50 : std logic;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

HEX2, HEX3, HEX4, HEX5, HEX6, HEX7 -- 7-segment displays
out std logic vector (6 downto 0); -
(active low)

SW : in std logic; -—- DPDT switches

SRAM DQ : inout unsigned (15 downto 0); -— Data bus
16 Bits

SRAM ADDR : out unsigned (17 downto 0); -— Address
bus 18 Bits

SRAM UB N, -- High-byte
Data Mask

SRAM LB N, -- Low-byte
Data Mask

SRAM WE N, -- Write
Enable

SRAM CE_N, -- Chip
Enable

SRAM OE N : out std logic -— Output
Enable

) ;

end QuasiTopLevel;

architecture datapath of QuasiTopLevel is

signal Databus, DOR, ROM data : std logic vector (7 downto 0);
signal Addrbus, ROM address : std logic vector (15 downto 0);
signal W R : std logic;

component SixFiveO2

port (
Databus :in std logic vector (7 downto 0);
Addrbus :out std logic vector (15 downto 0);

DOR : out std logic vector (7 downto 0);

reset, clk :in std logic;
XL, XH, YL, YH, ACCL, ACCH : out std logic vector (6 downto 0);
W R : out std logic);

end component;

component rom is
port(addr : in std logic vector (15 downto 0);

data : out std logic vector (7 downto 0));
end component;

component SRAMCtrl is

port (
reset, clk, W R : in std logic;
ROM data, DOR : in std logic vector (7 downto 0);
databus : out std logic vector (7 downto 0);
AddressBus : in std logic vector (15 downto 0);
ROM address : out std logic vector (15 downto 0);
SRAM DQ : inout unsigned (15 downto 0);
SRAM ADDR : out unsigned (17 downto O0);

SRAM UB_N, -- High-byte Data Mask

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

SRAM LB N, -— Low-byte Data Mask
SRAM WE N, -—- Write Enable
SRAM CE N, -— Chip Enable
SRAM OE N : out std logic -- Output Enable

) ;

end component;
begin

CPUConnect: SixFiveO2 port map (clk=>CLOCK 50, reset=>SW, W R=>W R, XH=>HEX7,
XL=>HEX6, YH=>HEX5, YL=>HEX4, ACCH=>HEX3, ACCL=>HEX2,

Databus=>Databus,
DOR=>DOR, Addrbus=>Addrbus) ;

InstructionROM: Rom port map (addr=>ROM address, data=>ROM data);

MemorySRAM: SRAMCtrl port map (reset=>SW, clk=>CLOCK 50, W R=>W R,
ROM data=>ROM data, DOR=>DOCR,
databus=>databus,
AddressBus=>Addrbus, ROM address=>ROM address,
SRAM DQ=>SRAM DQ,
SRAM ADDR=>SRAM ADDR,
SRAM UB_N=>SRAM UB N,
SRAM LB N=>SRAM LB N,
SRAM WE N=>SRAM WE N,
SRAM CE N=>SRAM CE N,
SRAM OE_N=>SRAM OE N);
end datapath;

ROM. vHD

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

entity rom is
port(addr : in std logic vector (15 downto 0);

data : out std logic vector (7 downto 0));
end rom;

architecture imp of rom is

signal address : unsigned(7 downto 0);

type rom type is array (0 to 255) of std logic vector (7 downto 0);
constant ROM : rom type :=

(

-—- the 6 lines below are for the LDA, LDX and LDY opcodes 1in all the
different address mode.

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

—_— X”Ag”, X"ll ", X"a2"/ X"22", X”aO”, X"33", X"a5"/ X"20", X"b5"/ X"20",
X"ad"/ X"21 ", X”OO”/ X”bd”/ X"2l ", X”OO”/

P X"BQ", X"21 ", X”OO”/ X"al ", X"22", X"bl ", X"22", X"ff", X"ff", X"OO"/
X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/

R X"ab", X"33", X"22", X”OO", X”OO”, X”OO", X”OO”, X”OO", X”OO”, X”OO",
X”OO”, X”OO", X”OO”, X”OO", X”OO”, X”OO",

R X”OO”, X”OO", X”OO”, X”OO", X”OO”, X”OO", X”OO”, X”OO", X”OO”, X”OO",
X”OO”, X”OO", X”OO”, X”OO", X”OO”, X”OO",

R X”OO”, X”OO", X"42", X"43", X"20", X”OO", X”OO”, X”OO", X”OO”, X”OO",
X”OO”, X”OO", X”OO”, X”OO", X”OO”, X”OO",

P X”OO”/ X”OO”/ X”OO”/ X”OO”/ X"54", X"55", X”OO”/ X”OO”/ X”OO”/ X”OO”/
X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/

P X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/ X"66"/ X”OO”/ X”OO”/ X”OO”/
X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/

-—the two lines below are for the INC, DEC opcodes test with immediate
address mode.

R X"EE", X"ZO", X”OO”, X"AD", X"20", X”OO", X"EE", X"ZO", X”OO”, X"AD",
X"20", X”OO", X"EE", X”ZO", X”OO”, X"AD",

R X"20", X”OO", X"CE", X”ZO", X”OO”, X"AD", X"20", X”OO", X"CE", X”ZO",
X”OO”, X"AD", X"20", X”OO", X"ff", X"ff",

-—the two lines below are for the CMP absolute test.

— X"a9", X"l2"/ X"Cd", X"lO"/ X”OO”/ X"Cd"/ X"ll ", X"OO"/ X"Cd"/ X"l2"/
X”OO”/ X"ff"/ X"ff", X"OO"/ X”OO”/ X"OO"/

— X"ll ", X"l2"/ X"13", X"OO"/ X”OO”/ X"OO"/ X”OO”/ X"OO"/ X”OO”/ X"OO"/
X”OO”/ X"OO"/ X”OO”/ X"OO"/ X”OO”/ X"OO"/

—-—the 3 lines below are for CPX test with immediate and absolute address
modes.

— X"EO", X”Zl ", X"EO", X"22", X"EO", X"23", X"ff", X"ff", X"OO", X"OO",
X"OO", X"OO", X"OO", X"OO", X"OO", X"OO",

— X"EC", X"lO", X"OO", X"EC", X"ll ", X"OO", X"EC", X"l2", X"OO", X"ff",
X"ff", X"OO", X"OO", X"OO", X"OO", X"OO",

— X"23", X"22", X"21 ", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO",
X"OO", X"OO", X"OO", X"OO", X"OO", X"OO",

-—the 2 lines below are for CPY test with absolute address mode.

— X"CC", X"lO", X"OO", X"CC", X"ll ", X"OO", X"CC", X"l2", X"OO", X"ff",
X"ff", X"OO", X"OO", X"OO", X"OO", X"OO",

— X"33", X"32", X"3l "/ X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO",
X"OO", X"OO", X"OO", X"OO", X"OO", X"OO",

--the line below is for INC, LDA and JMP loop, it will keep increase the
value in ACC.

P X"ee"/ X"lO", X”OO”/ X"ad"/ X”lO”, X”OO”/ X"4C", X”OO”/ X”OO”/ X"ff",
X"ff", X”OO”/ X”OO”/ X”OO”/ X”OO”/ X”OO”/

x"A2", x"00", x"AO", x"00", x"A9", x"AO", x"8D", x"70", x"00", x"A9",
x"D6", x"8D", x"71", x"00", --Initl/2 (24, x18)

x"A9", x"01", x"8D", x"72", x"00", x"A9", x"01l", x"8D", x"73", x"00",
—-Init2/2 (24, x18)

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

x"AD", x"72", x"ooO", x"Cc9", x"O01", x"FO", x"OB", x"DO", x"11", --BIl:
0018 (9) --B3 and B4

x"AD", x"73", x"ooO", x"Cco9", x"O01", x"FO", x"11", x"DO", x"17", --B2:
0021 (9) --B5 and B6

x"E8", x"EC", x"70", x"00", x"FO", x"18", x"DO", x"39", --
B3: 002A (8) --B7 and BI2

x"CA", x"EO", x"00", x"FO", x"19", x"DO", x"32", --B4:
0032 (7) --B8 and B120

x"C8", x"CC", x"71", x"00", x"FO", x"19", x"DO", x"23", --B5:
0039 (8) --B9 and BI11

x"88", x"CO", x"00", x"FO", x"1A", x"DO", x"20", --B6:

0041 (7) --B10 and B110
x"A9", x"00", x"8D", x"72", x"00", x"4C", x"21", x"00", --B7: 0048 (8)

--J2

x"A9", x"01", x"8D", x"72", x"00", x"4C", x"21", x"00", --B8: 0050 (8)
--J2

x"A9", x"00", x"8D", x"73", x"00", x"4C", x"18", x"00", --B9: 0058 (8)
—-J1

x"A9", x"01l", x"8D", x"73", x"00", x"4C", x"18", x"00", --B10: 0060 (8)

x"4C", x"18", x"00", --Bll: 0068 (3) --J1

x"4C", x"21", x"00", --B12: 006B (3) --J2

x"££", x"ff", --6

X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO",
X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", __7

X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO",
X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", __8

X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", X"OO",
X"OO", X"OO", X"OO", X"OO", X"OO", X"OO", __9

x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00",
x"00", x"00", x"00", x"00", x"00", x"00", --10

x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00",
x"00", x"00", x"00", x"00", x"00", x"00", --11

x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00",
x"00", x"00", x"00", x"00", x"00", x"00", --12

x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00",
x"00", x"00", x"00", x"00", x"00", x"00", --13

x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00",
x"00", x"00", x"00", x"00", x"00", x"00", --14

x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00",
x"00", x"00", x"00", x"00", x"00", x"00" --15

--Bl: 0018
--B2: 0021
--B3: 002A
--B4: 0032
--B5: 0039
--B6: 0041
--B7: 0048
--B8: 004F
--B9: 0056
--B10: 005D

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--Bl11: 0064
--B12: 0066

) ;

begin
address<=unsigned(addr (7 downto 0));
data<=ROM(TO_ Integer (address));

end imp;

SIXFIVEQ2 .VHD

library ieee;
use lieee.std logic 1164.all;
use leee.numeric std.all;

entity SixFiveO2 1is
port (
Databus :in std logic vector (7 downto 0);
Addrbus :out std logic vector (15 downto 0);
DOR , P, X Reg out, Y Reg out : out std logic vector (7 downto 0);

reset, clk :in std logic;
XL, XH, YL, YH, ACCL, ACCH : out std logic vector (6 downto 0);
W R : out std logic);

end SixFive02;

architecture imp of SixFiveO2 is

signal instruction, opcode : std logic vector (7 downto 0);
signal tcstate : std logic vector (5 downto 0);

signal cycle number : unsigned(3 downto 0);

signal BRC, ACR, RMW, SYNC, SDl, SD2, VECl: std logic;

--signal DOR, databus : std logic vector(7 downto 0);
--signal Addrbus: std logic vector (15 downto 0);
signal ACC Reg, X Reg, Y Reg : std logic vector (7 downto 0);

component Predecode

port (
databus : in std logic vector (7 downto 0);
reset : in std logic;
cycle number : out unsigned (3 downto 0);
Instruction : out std logic vector (7 downto 0);
RMW : out std logic);

end component;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

component DFlipFlop

port (
input : in std logic vector (7 downto 0);
enable : in std logic;
clk : in std logic;
reset : in std logic;
output : out std logic vector (7 downto 0));

end component;

component TG

port (
clk : instd logic;
cycle number : inunsigned (3 downto 0);
RMW : in std logic; --read-modify-write instruction
ACR : in std logic; --carry in from ALU
BRC : in std logic; --branch flag
reset : instd logic;
tcstate : out std logic vector (5 downto 0);
SYNC, SD1, SD2 : out std logic;
VEC1 : out std logic);

end component;

component CPU
port (

clk, SD1, SD2, reset, VEC1 : in std logic;

opcode : in std logic vector (7 downto 0);

tcstate : in std logic vector (5 downto 0);

databus : in std logic vector (7 downto 0);

ACR out, W R, BRC : out std logic;

ABL out, ABH out, DOR, X out, Y out, ACC out, P out : out
std logic vector (7 downto 0)

)

end component;

—-—component Memory

- port (

-= clk, reset : in std logic;

—— we : in std logic;

—— address : in std logic vector (15 downto 0);
—— di : in std logic vector (7 downto 0);

—— do : out std logic vector (7 downto 0)

-)7

—-—end component;

component hex7seg
port
(input : in std logic vector (3 downto 0); -- A number
output : out std logic vector (6 downto 0)); -- Just bits
end component;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

begin
Predecodelogic: Predecode port map (databus=>databus, reset=>reset,
cycle number=>cycle number, Instruction=>Instruction, RMW=>RMW) ;

IR: DFlipFlop port map (input=>instruction, enable=>SYNC, clk=>clk,
reset=>reset, output=>opcode);

Timing: TG port map (clk=>clk, cycle number=>cycle number, RMW=>RMW, ACR=>ACR,
BRC=>BRC, reset=>reset, tcstate=>tcstate, SYNC=>SYNC, SD1=>SD1l, SD2=>SD2,
VEC1=>VEC1) ;

Core: CPU port map (BRC=>BRC, clk=>clk, SD1=>SD1, SD2=>SD2, VECl1=>VEC1,
reset=>reset, opcode=>opcode, tcstate=>tcstate, databus=>databus,
ABL out=>Addrbus (7 downto 0),

ABH out=>Addrbus (15 downto 8), DOR=>DOR, ACR out=>ACR,
W R=>W R, X out=>X Reg, Y out=>Y Reg, ACC out=>ACC Reg, P out=>P);

-—Mem: Memory port map (clk=>clk, reset=>reset, we=>W R, address=>Addrbus,
di=>DOR, do=>databus)

XHDis: hex7seg port map (input=>X Reg(7 downto 4), output=>XH);
XLDis: hex7seg port map (input=>X Reg (3 downto 0), output=>XL);

YHDis: hex7seg port map (input=>Y Reg(7 downto 4), output=>YH);
YLDis: hex7seg port map (input=>Y Reg(3 downto 0), output=>YL);

ACCHDis: hex7seg port map (input=>ACC Reg (7 downto 4), output=>ACCH);
ACCLDis: hex7seg port map (input=>ACC Reg (3 downto 0), output=>ACCL);

process (X Reg, Y Req)
begin

X Reg out<=X Reg;

Y Reg out<=Y Reg;
end process;

end imp;

SLOWCLK . VHD

library ieee;
use ieee.std logic 1164.all;
use leee.numeric std.all;

-—the delay settings has been changed to enable efficient simulations.
--25 bits for ~1/3sec
--26 bits for slower

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

entity slowclk is
port (
clkin : in std logic;
clkout : out std logic
) ;

end slowclk;

architecture imp of slowclk is

signal cur: std logic := '0';
signal count: unsigned (12 downto 0) := (others => '0'");
begin

detect: process(clkin)
begin

if rising edge(clkin) then
count <= count + 1;
if count(12)="'1" then
count <= (others => '0'); -- reset count.
cur <= not (cur);
clkout <= cur;
end if;
end if;
end process detect;
end imp;

SRAMCTRL . VHD

library ieee;
use ieee.std logic_1l1164.all;
use ieee.numeric_std.all;

entity SRAMCtrl is

port (
reset, clk, W R : in std logic;
ROM data, DOR : in std logic vector (7 downto 0);
databus : out std logic vector (7 downto 0);

AddressBus : in std logic vector (15 downto 0);
ROM address : out std logic vector (15 downto 0);
SRAM DOQ : inout unsigned (15 downto 0);

SRAM ADDR : out unsigned(l7 downto 0);

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

SRAM UB N, -- High-byte Data Mask
SRAM LB N, -— Low-byte Data Mask
SRAM WE N, -—- Write Enable

SRAM CE N, -- Chip Enable
SRAM OE N : out std logic -- Output Enable

) ;
end SRAMCtrl;

architecture rtl of SRAMCtrl is
--signal address : unsigned (15 downto 0):=x"0000";

signal counterl: unsigned (3 downto 0) :=x"0";
begin
process (reset, clk, W R, ROM data, DOR, AddressBus, SRAM DQ)
variable address : unsigned (15 downto 0) :=x"0000";
begin

SRAM ADDR (17 downto 16)<="00";
SRAM CE N<='0"';
SRAM LB N<='0"';
SRAM UB N<='1";

if reset='1l' then
SRAM WE N<='0';
SRAM OE N<='1"';
databus<=(others=>'0") ;
if rising edge(clk) then
if (counterl=x"0" or counterl=x"1") then
counterl<=counterl+1;
else counterl<=counterl;
end if;
-—to make sure that address=x"0000" is written
correctly
if (counterl=x"0" or counterl=x"1") then
address:=address;
elsif address=x"ffff" then address:=x"0000";
else address:=address+1;
end if;
end if;

if address (15 downto 8)=x"00" then SRAM DQ (7 downto
0) <=unsigned (ROM data);
-—elsif address (15 downto 0)=x"ffrfe" then SRAM DQ (7
downto 0)<=x"fd",
-—elsif address (15 downto 0)=x"ffrff" then SRAM DQ (7
downto 0)<=x"ff'",;
else SRAM DQ(7 downto 0)<=x"00";
end if;
-—SRAM DQ (15 downto &8)<=x"00";
SRAM ADDR (15 downto 0)<=address;
ROM address<=std logic vector (address) ;

end rtl;

TG.VHD

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

else
SRAM WE N<=W R;
SRAM OE N<=not (W R);
SRAM ADDR (15 downto 0)<=unsigned (AddressBus) ;
if W R='0"' then
SRAM DQ (7 downto 0)<=unsigned (DOR) ;
databus<= (others=>'0") ;
else SRAM DQ(7 downto 0)<=(others=>'Z"');

databus<=std logic vector (SRAM DQ (7 downto 0));

end if;
ROM address<=(others=>'0");

end if;
end process;

library ieee;
use ieee.std logic 1164.all;
use leee.numeric std.all;

entity TG is

port (

) ;

end TG;

clk : instd logic;

cycle number : inunsigned (3 downto 0);

RMW : in std logic; --read-modify-write instruction
ACR : in std logic; --carry in from ALU

BRC : in std logic; --branch flag

reset : instd logic;

tcstate : out std logic vector (5 downto 0);
SYNC, SD1, SD2 : out std logic;

VEC1 : out std logic

architecture rtl of TG is

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

-— Build an enumerated type for the state machine
-—-type state type is (s0, sl1, s2, s3);
type state type is (TO, T1F T1, T2 TO, T2 3, T2 4, T3 4, T2 5, T3 5,

T2 6, T3 6, T4 6, T5 6, T2 7, T3 7,

T4 7, TS5 7, T6_ 7,

T2 B, T3 B, TI1F,

T2 RMW5, T3 RMW5, T4 RMW5, T2 RMW6,
T3 _RMW6, T4 RMW6, TS5 RMW6,

T2 RMW7, T3 RMW7, T4 RMW7 a,
T5 RMW7 a, T6 RMW7 a,

T4 RMW7 b, T5 RMW7 b);

-- Register to hold the current state
signal state : state type;

begin

-- Logic to advance to the next state
process (clk, reset)
begin
if reset = '1' then
state <= T1F T1; --yuchen0513
elsif (rising edge(clk)) then
case state is
when TO0=>
state <= TI1F T1;
when T1F Tl=>

if RMW='0' then --not read-modify-write instruction
if cycle number = 2 then
state <= T2 TO;
elsif cycle number = 3 then
state <= T2 3;
elsif cycle number = 4 then
state <= T2 4;
elsif cycle number = 5 then
state <= T2 5;
elsif cycle number = 6 then
state <= T2 6;
elsif cycle number = 7 then
state <= T2 7;
elsif cycle number = 0 then --input =0 stands

for the branch instruction
state <= T2 B;
elsif cycle number = 1 then
state <= T1F T1; --yuchen(0513
end 1if;

elsif RMW='1l' then --read-modify-write instruction
if cycle number = 2 then
state <= T2 TO0;
elsif cycle number = 5 then

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

state <= T2 RMW5;

elsif cycle number = 6 then
state <= T2 RMW6;
elsif cycle number = 7 then
state <= T2 RMW7;
end if;
end if;
when T2 TO0=>
state <= T1F T1;
when T2 3 =>
state <= TO;
when T2 4 =>
state <= T3 4;
when T3 4 =>
state <= TO;
when T2 5 =>
state <= T3 5;
when T3 5 =>
if ACR='1l"' then --judge page
state <= T4 5;
else
state <= TO;
end 1if;
when T4 5 =>
state <= TO;
when T2 6 =>
state <= T3 6;
when T3 6 =>
state <= T4 6;
when T4 6 =>
if ACR='1l' then --judge page
state <= T5 6;
else
state <= TO;
end 1if;
when T5 6 =>
state <= TO;
when T2 7 =>
state <= T3 7;
when T3 7 =>
state <= T4 7;
when T4 7 =>
state <= T5 7;
when T5 7 =>
state <= T6_7;
when T6 7 =>
state <= TO;
when T2 B =>
if BRC = 'l' then

state <= T3 B;
else

crossing or not

crossing or not

for the branch instruction

crossing

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

when

when

when

when

when

when

when

when

when

when

when

state <= T1F;
end 1if;
T3 B =>

if ACR='1l' then --judge page crossing or not

state <= TO;

else
state <= T1F;
end if;
TlF =>
if cycle number

state <= T2 TO;

elsif cycle number

state <= T2 3;

elsif cycle number

state <= T2 4;

elsif cycle number

state <= T2 5;

elsif cycle number

state <= T2 6;

elsif cycle number

state <= T2 7;

elsif cycle number

state <= T2 B;

then
then
then
then
then
then

then --input =0 stands

end 1if;
--Read-modify-write instruction

T2 RMW5 =>

state <= T3 RMW5;

T3 RMW5 =>

state <= T4 RMW5;

T4 RMW5 =>

state <= TO;

T2 RMW6 =>

state <= T3 RMW6;

T3 RMW6 =>

state <= T4 RMW6;

T4 RMW6 =>

state <= T5 RMW6;

T5 RMW6 =>

state <= TO;

T2 RMW7 =>

state <= T3 RMW7;

T3 RMW7 =>

if ACR ='l"' then state <= T4 RMW7 a; --page

else state <= T4 RMW7 b; --no page crossing

end 1if;

T4 RMW7 a =>

when

when

when

state <= T5 RMW7 a;
T5 RMW7 a =>
state <= T6 RMW/ a;
T6 RMW7 a =>

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

state <= TO;
when T4 RMW7 b =>
state <= T5 RMW7 b;
when T5 RMW7 b =>
state <= TO;
when others =>
state <= TO;
end case;
end if;
end process;

—-— Output depends solely on the current state
process (state)
begin
case state is
when TO =>
tcstate <= "111110";
SYNC <= '0';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T1F T1 =>
tcstate <= "111101";
SYNC <= '1"';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T2 TO =>
tcstate <= "111010";
SYNC <= '0';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T2 3 =>
tcstate <= "111011";
SYNC <= '0';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T2 4 =>
tcstate <= "111011";
SYNC <= '0';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T3 4 =>
tcstate <= "110111";
SYNC <= '0"';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T2 5 =>

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

when

when

when

when

when

when

when

when

tcstate
SYNC <=
VEC1 <=
SD1 <=
SD2 <=
T3 5 =>
tcstate
SYNC <=
VEC1 <=
SD1 <=
SD2 <=
T4 5 =>
tcstate
SYNC <=
VEC1 <=
SD1 <=
SD2 <=
T2 6 =>
tcstate
SYNC <=
VEC1 <=
SD1 <=
SD2 <=
T3 6 =>
tcstate
SYNC <=
VEC1 <=
SD1 <=
SD2 <=
T4 6 =>
tcstate
SYNC <=
VEC1 <=
SD1 <=
SD2 <=
5 6 =>
tcstate
SYNC <=
VEC1 <=
SD1 <=
SD2 <=
T2 7 =>
tcstate
SYNC <=
VEC1 <=
SD1 <=
SD2 <=
T3 7 =>
tcstate
SYNC <=
VEC1 <=
SD1 <=

<=

lO'.

lO'.
IOI;
lOl’.

<=

lol.

lol.
lOl’.
IOI;

<=

lO'.

lO'.
IOI;
'O';

<=

'Ol.

'Ol.
'O';
'O';

<=

lO'-

lO'-
IOI;
IOI;

<=

'O'o

'O'o
'O';
'O';

<=

lOl.

lOl.
IOII.
IOII.

<=

lO'o

lO'o
IOI;
IOI;

<=

lO'.
lO'.
IOI;

"111011";

14

14

"110111";

I4

I4

"101111";

14

14

"111011";

4

4

"110111";

4

4

"101111";

r

r

"011111";

4

4

"111011";

4

4

"110111";

’

’

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

SD2 <= '0"';
when T4 7 =>
tcstate <= "101111";
SYNC <= '0"';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T5 7 =>
tcstate <= "011111";
SYNC <= '0"';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T6 7 =>
tcstate <= "111111";
SYNC <= '0"';
VECl <= '1"';
SD1 <= '0"';
SD2 <= '0"';
when T2 B =>
tcstate <= "111011";
SYNC <= '0"';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T3 B =>
tcstate <= "110111";
SYNC <= '0';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T1F =>
tcstate <= "111111";
SYNC <= '1";
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T2 RMW5 =>
tcstate <= "111011";
SYNC <= '0"';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T3 RMWS =>
tcstate <= "110111";
SYNC <= '0';
VEC1 <= '0"';
SD1 <= '1"';
SD2 <= '0"';
when T4 RMW5 =>
tcstate <= "101111";
SYNC <= '0"';

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '1"';
when T2 RMW6 =>
tcstate <= "111011";
SYNC <= '0"';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T3 RMW6 =>
tcstate <= "110111";
SYNC <= '0';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T4 RMW6 =>
tcstate <= "101111";
SYNC <= '0"';
VEC1 <= '0"';
SDl <= '1"';
SD2 <= '0"';
when T5 RMW6 =>
tcstate <= "011111";
SYNC <= '0';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '1"';
when T2 RMW7 =>
tcstate <= "111011";
SYNC <= '0"';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T3 RMW7 =>
tcstate <= "110111";
SYNC <= '0';
VEC1l <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T4 RMW7 a =>
tcstate <= "101111";
SYNC <= '0"';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '0"';
when T5 RMW/ a =>
tcstate <= "011111";
SYNC <= '0';
VEC1l <= '0"';
SD1 <= '1"';
SD2 <= '0"';
when T6 RMW7 a =>

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

tcstate <= "111111";
SYNC <= '0';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '1"';
when T4 RMW7 b =>
tcstate <= "101111";
SYNC <= '0"';
VEC1 <= '0"';
SD1 <= '1"';
SD2 <= '0"';
when T5 RMW7 b =>
tcstate <= "011111";
SYNC <= '0"';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '1"';
when others =>
tcstate <= "111110";
SYNC <= '0"';
VEC1 <= '0"';
SD1 <= '0"';
SD2 <= '0"';

end case;
end process;

end rtl;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

DE2TQOP.vHD

-- DE2 top-level module

-- Stephen A. Edwards, Columbia University, sedwards@cs.columbia.edu

-- From an original by Terasic Technology, Inc.
-— (DE2 TOP.v, part of the DE2 system board CD supplied by Altera)

library ieee;
use leee.std logic 1164.all;
use leee.numeric std.all;

entity DE2 TOP 1is

port (
-— Clocks
CLOCK 27, -— 27 MHz
CLOCK 50, -— 50 MHz
EXT CLOCK : in std logic; -— External Clock

-— Buttons and switches

KEY : in std logic vector (3 downto 0); —-— Push buttons
SW : in std logic vector (17 downto 0); -— DPDT switches

-- LED displays

HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7 -- 7-segment displays
out std logic vector (6 downto 0); -— (active low)
LEDG : out std logic vector (8 downto 0); -— Green LEDs (active
high)
LEDR : out std logic vector (17 downto 0); -- Red LEDs (active high)

-— RS-232 interface

UART TXD : out std logic; -— UART transmitter
UART RXD : in std logic; -— UART receiver

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

-— IRDA interface

IRDA TXD : out std logic;
IRDA RXD : in std logic;

—-— SDRAM

DRAM DQ : inout std logic vector (15 downto 0);
DRAM ADDR : out std logic vector(ll downto 0);

DRAM LDQM,

DRAM UDQM,

DRAM WE N,

DRAM CAS N,

DRAM RAS N,

DRAM CS_ N,

DRAM BA 0,

DRAM BA 1,

DRAM CLK,

DRAM CKE : out std logic;

-—- FLASH

FL DQ : inout std logic vector (7 downto 0);
FL ADDR : out std logic vector (21 downto 0);

FL WE N,
FL RST N,
FL OE N,
FL CE N : out std logic;

-—- SRAM

SRAM DQ : inout unsigned (15 downto 0);
SRAM ADDR : out unsigned (17 downto 0);

SRAM UB N,
SRAM LB N,
SRAM WE N,
SRAM CE N,
SRAM OE N : out std logic;

-— USB controller

- IRDA Transmitter
- IRDA Receiver

- Data Bus

- Address Bus

- Low-byte Data Mask
- High-byte Data Mask
- Write Enable

- Column Address Strobe
- Row Address Strobe
- Chip Select

- Bank Address 0

- Bank Address O

- Clock

- Clock Enable

-- Data bus
Address bus

-— Write Enable
—-— Reset

—-— Output Enable
-- Chip Enable

- Data bus 16 Bits

— Address bus 18 Bits
- High-byte Data Mask
- Low-byte Data Mask
- Write Enable

- Chip Enable

- Output Enable

OTG _DATA : inout std logic vector (15 downto 0); -- Data bus

OTG _ADDR : out std logic vector (l downto 0); —-- Address

OTG CS N, -— Chip Select

OTG_RD N, -- Write

OTG_WR N, -- Read

OTG_RST N, -—- Reset

OTG_FSPEED, —-— USB Full Speed, 0 = Enable, Z =
Disable

OTG LSPEED out std logic; -- USB Low Speed, 0 = Enable, Z =
Disable

OTG_ INTO, -- Interrupt O

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

OTG INT1,
OTG_DREQO,
OTG_DREQI
OTG DACKO N,
OTG_DACK1 N

in std logic;
out std logic;

16 X 2 LCD Module

Interrupt 1

DMA Request O

DMA Request 1

DMA Acknowledge 0
DMA Acknowledge 1

LCD ON, -- Power ON/OFF

LCD BLON, -- Back Light ON/OFF

LCD_RW, -- Read/Write Select, 0 = Write, 1 = Read

LCD_EN, -- Enable

LCD RS out std logic; -- Command/Data Select, 0 = Command, 1 =
Data

LCD_DATA inout std logic vector (7 downto 0); -- Data bus 8 bits

-—- SD card interface

SD DAT in std logic; -- SD Card Data SD pin 7 "DAT
0/DataOut"

SD _DAT3 out std logic; -— SD Card Data 3 SD pin 1 "DAT 3/nCS"

SD _CMD out std logic; -- SD Card Command SD pin 2 "CMD/DataIn"

SD _CLK out std logic; -- SD Card Clock SD pin 5 "CLK"

-— USB JTAG link

TDI, -— CPLD -> FPGA (data in)

TCK, -—- CPLD -> FPGA (clk)

TCS in std logic; -— CPLD -> FPGA (CS)

TDO out std logic; -- FPGA -> CPLD (data out)

-- I2C bus

I2C SDAT inout std logic; -- I2C Data

I2C SCLK out std logic; -— I2C Clock

-- PS/2 port

PS2 DAT, -- Data

PS2 CLK in std logic; -- Clock

-—- VGA output

VGA CLK, -- Clock

VGA HS, -- H SYNC

VGA VS, -- V_SYNC

VGA_ BLANK, -—- BLANK

VGA SYNC out std logic; -- SYNC

VGA R, -— Red[9:0]

VGA G, -— Green[9:0]

VGA B out unsigned (9 downto 0); -— Blue[9:0]

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Fthernet Interface

ENET DATA : inout unsigned (15 downto 0); -— DATA bus 16 Bits
ENET CMD, —-—- Command/Data Select, 0 = Command, 1 = Data
ENET CS N, -— Chip Select

ENET WR N, -- Write

ENET RD N, -- Read

ENET RST N, -- Reset

ENET CLK : out std logic; -- Clock 25 MHz

ENET INT : in std logic; -- Interrupt

Audio CODEC

AUD ADCLRCK : inout std logic; -- ADC LR Clock

AUD ADCDAT : in std logic; -—- ADC Data

AUD DACLRCK : inout std logic; -- DAC LR Clock
AUD DACDAT : out std logic; -- DAC Data

AUD BCLK : inout std logic; -— Bit-Stream Clock
AUD XCK : out std logic; -— Chip Clock

Video Decoder

TD DATA : in std logic vector (7 downto 0); -- Data bus 8 bits
TD HS, -- H_SYNC

TD VS : in std logic; -—- V_SYNC

TD RESET : out std logic; -- Reset

General-purpose I/0

GPIO O, -— GPIO Connection 0
GPIO 1 : inout std logic vector (35 downto 0) -- GPIO Connection 1

) ;

end DE2 TOP;

architecture datapath of DE2 TOP is

signal Databus, DOR, ROM data, X, Y : std logic vector(7 downto 0);--
yuchen(0514

signal Addrbus, ROM address : std logic vector (15 downto 0);

signal W R : std logic;

signal reset : std logic; --JB0513

signal Sclk : std logic; --JB0513

signal clk25 : std logic := '0'; --yuchen(0514

component SixFiveO2

port (

Databus :in std logic vector (7 downto 0);
Addrbus :out std logic vector (15 downto 0);
DOR , P, X Reg out, Y Reg out : out std logic vector (7 downto 0);

reset, clk :in std logic;

XL, XH, YL, YH, ACCL, ACCH : out std logic vector (6 downto 0);
W R : out std logic);

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end component;

component rom is
port (addr : in std logic vector (15 downto 0);

data : out std logic vector (7 downto 0));
end component;

component SRAMCtrl is

port (
reset, clk, W R : in std logic;
ROM data, DOR : in std logic vector (7 downto 0);
databus : out std logic vector (7 downto 0);
AddressBus : in std logic vector (15 downto 0);
ROM address : out std logic vector (15 downto 0);
SRAM DQ : inout unsigned (15 downto 0);
SRAM ADDR : out unsigned(l7 downto 0);
SRAM UB N, -- High-byte Data Mask
SRAM LB N, -— Low-byte Data Mask
SRAM WE N, -— Write Enable
SRAM CE N, -— Chip Enable
SRAM OE N : out std logic -- Output Enable

) ;

end component;

component debounce --JB0513
port (
clk, resetsw : in std logic;
resetout : out std logic
);

end component debounce;

component slowclk --JB0513
port (
clkin : in std logic;
clkout : out std logic
) i

end component slowclk;

component de2 vga raster is

port (
reset : in std logic;
clk : in std logic; —-— Should be 25.125 MHz
center: in std logic vector (15 downto 0) := X"f0£f0"; -- circle center
VGA CLK, -— Clock
VGA HS, -- H SYNC
VGA VS, -- V_SYNC
VGA BLANK, —-— BLANK
VGA SYNC : out std logic; -— SYNC

VGA R, ~- Red[9:0]

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

VGA G, -— Green[9:0]
VGA B : out unsigned(9 downto 0) -- Blue[9:0]
) ;

end component;

begin
--HEX2 <= (others => '1"'");
HEX1 <= (others => '1");
HEXO <= (others => '1"); -- Rightmost
LEDG (8) <= '0";
LEDR <= (others => '0"');

LCD ON <= '1';
LCD BLON <= '1';
LCD RW <= '1';
LCD EN <= '0';
LCD RS <= '0';

SD_DAT3 <= '1';
SD CMD <= '1';
SD CLK <= '1';

UART TXD <= '0';

DRAM ADDR <= (others => '0');
DRAM LDQM <= '0';

DRAM UDQM <= '0';

DRAM WE N <= '1';

DRAM CAS N <= '1';

DRAM RAS N <= '1';
DRAM CS N <= '1';

DRAM BA 0 <= '0';

DRAM BA 1 <= '0';

DRAM CLK <= '0';

DRAM CKE <= '0';

FL ADDR <= (others => '0"');
FL WE N <= '1';

FL RST N <= '0';

FL OE N <= '1';

FL CE N <= '1';

OTG _ADDR <= (others => '0");
OTG CS N <= '1";

OTG RD N <= '1';

OTG RD N <= '1';

OTG WR N <= '1';

OTG_RST N <= '1';
OTG_FSPEED <= '1';

OTG _LSPEED <= '1';
OTG_DACKO N <= '1';
OTG_DACK1l N <= '1';

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

TDO <= '0"';

I2C SCLK <= '0';
IRDA TXD <= '0';
ENET CMD <= '0';
ENET CS N <= '1';
ENET WR N <= '1';
ENET RD N <= '1';
ENET RST N <= '1';
ENET CLK <= '0';

AUD_DACDAT <= '0';
AUD XCK <= '0';

TD RESET <= '0"';

—-—- Set all bidirectional ports to tri-state

DRAM DOQ <= (others => '72");
FL DQ <= (others => '72");
OTG_DATA <= (others => '72");
LCD DATA <= (others => '72");
I2C_SDAT <= '7';

ENET DATA <= (others => 'Z2");
AUD ADCLRCK <= 'Z';
AUD DACLRCK <= 'Z';

AUD_BCLK <= 'z7';
GPIO O <= (others => '72");
GPIO 1 <= (others => '72");

--JB0513: port map below changed to fit in debounce

debouncecode: debounce port map (clk=>CLOCK 50, resetsw=>SW(17),
resetout=>reset); --JB0513
slowclkcode: slowclk port map(clkin=>CLOCK 50, clkout=>Sclk); --JB0513

CPUConnect: SixFiveO2 port map (clk=>Sclk, reset=>reset, W R=>W R, XH=>HEX7,
XL=>HEX6, YH=>HEX5, YL=>HEX4, ACCH=>HEX3, ACCL=>HEX2,

X Reg out=>X,
Y Reg out=>Y, Databus=>Databus, DOR=>DOR, Addrbus=>Addrbus, P=>LEDG (7
downto 0));

InstructionROM: Rom port map (addr=>ROM address, data=>ROM data);

MemorySRAM: SRAMCtrl port map (reset=>reset, clk=>Sclk, W R=>W R,
ROM data=>ROM data, DOR=>DCR,

databus=>databus,
AddressBus=>Addrbus, ROM address=>ROM address,

SRAM DQ=>SRAM DQ,

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

SRAM ADDR=>SRAM ADDR,
SRAM UB N=>SRAM UB N,
SRAM LB N=>SRAM LB N,
SRAM WE N=>SRAM WE N,
SRAM CE N=>SRAM CE N,
SRAM OE N=>SRAM OE N) ;

VGAClock:
process (CLOCK 50)
begin
if rising edge (CLOCK 50) then
clk25 <= not clk25;
end if;
end process;

VGA: de2 vga raster port map (reset => reset, clk => clk25,
VGA CLK => VGA CLK,
VGA HS => VGA HS,
VGA VS => VGA VS,
VGA BLANK =>

VGA BLANK,
VGA SYNC => VGA SYNC,
VGA R => VGA R,
VGA G => VGA G,
VGA B => VGA B,
center (15 downto 8)
=> X,
center (7 downto
0)=>Y

)
end datapath;

CPU.VHD

library ieee;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

use ieee.std logic 1164.all;
use leee.numeric std.all;

entity CPU is
port (

clk, SD1, SD2, reset, VEC1 : in std logic;

opcode
tcstate
databus

ACR out,

output

ABL out,

std logic vector (7
)
end CPU;

in std logic vector (7 downto 0);
in std logic vector (5 downto 0);
in std logic vector (7 downto 0);

W R, BRC : out std logic; —--JB0510 added BRC as CPU

ABH out, DOR, X out, Y out, ACC out, P out
downto 0)

architecture rtl of CPU 1is
signal ABL, ABH : std logic vector (7 downto 0);

signal X, Y, ACC, S, AI, BI, ADD, P : unsigned(7 downto 0);

signal PC unsigned (15 downto 0) := (others=>'0");
signal SUMS, I ADDC, ORS, ANDS, EORS, SRS : std logic;
--signal opcode : std logic vector (7 downto 0);

signal ACR std logic;

begin

--ALU

--signal temp : unsigned(8 downto 0);
signal Mask shortcut :std logic;
--signal counter : unsigned(7 downto O0);
signal proceed : std logic; --JB0513

ACR out<=ACR;

Part: Combinational Logic

process (SUMS, ORS, ANDS, EORS, SRS, AI, BI, I ADDC, Mask shortcut,

opcode, P, ACR)

variable temp : unsigned (8 downto 0) ;
variable ACR : std logic;

out

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

begin

if SUMS='1l'"' then
temp :=('0'&AI)+('0"'&BI)+("0" & I ADDC);
ADD<=temp (7 downto 0);
ACR<=temp (8) or Mask shortcut;
elsif ORS='1l' then ADD<=AI or BI; ACR<='0'; temp:="000000000";
elsif ANDS='1l"' then ADD<=AI and BI; ACR<='0'; temp:="000000000";
elsif EORS='1l"' then ADD<=AI xor BI; ACR<='0'; temp:="000000000";
elsif SRS='1l'" then ADD(6 downto 0)<=BI (7 downto 1); ACR<=BI (0);
temp:="000000000";
if opcode (7 downto 5)="010" then ADD(7)<='0";
elsif opcode (7 downto 5)="011" then ADD(7)<=P(0);
else ADD<=x"00"; ACR<='0"';

end if;
else ADD<=x"00"; ACR<='Q'; temp:="000000000";
end if;

end process;

process (clk, reset)
begin

if rising edge(clk) then --JB0513 reset if statement is put into
rising edge (clk)

if reset = 'l' then PC<=x"0001"; ABL<=x"00"; ABH<=x"00"; X<=x"00";
Y<=x"00";
ACC<=x"11"; AI<=x"00"; BI<=x"00";
S<=x"00"; DOR<=x"00";
SUMS<='0"'; ORS<='Q'; ANDS<='0";
EORS<='0"'; SRS<='0";
I ADDC<='0'; W R<='1l'; SUMS<='1"';
Mask shortcut<='0'; P<=x"00";
—-—counter<=x"00";
elsif reset = '0' then

if opcode=x"00" then

PC<=PC+1;

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
end if;

--JB0513 STOP CODE: hex FF
if opcode=x"FF" then

PC <= PC;

ABL <= ABL;

ABH <= ABH;
end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

——=============—===—=—===pbbb is the only
concern=========================
if not (opcode (1l downto 0)="00") then --exclude the cc=00 part to

avoid overlapping
—-—-Address Mode: Absolute; aaa: don't care; cc: don't care.

--Timing: T2

if (opcode (4 downto 2)="011" and tcstate(2)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<='1l";
AI<=x"00";
BI<=unsigned (Databus) ;
I _ADDC<='0"';

end 1f;

—--Timing: T3
if (opcode (4 downto 2)="011" and tcstate(3)='0') then
PC<=PC;
ABL<=std logic_ vector (ADD) ;
ABH<=databus;
SUMS<="'0";
end 1if;

—-—-Address Mode: Zero page, X; aaa: don't care; cc: don't
care.
--Timing T2
if (opcode (4 downto 2)="101" and tcstate(2)='0' and
(not ((opcode (7 downto 5)="100" or opcode (7 downto 5)="101") and opcode (1
downto 0)="10"))) then
PC<=PC;
ABL<=Databus;
ABH<=x"00";
AI<=unsigned (X) ;
BI<=unsigned (Databus) ;
Sums<='1";
end 1if;

--Timing T3
if (opcode (4 downto 2)="101" and tcstate(3)='0") then
PC<=PC;
ABL<=std logic_vector (ADD) ;
ABH<=x"00";
SUMS<='0";
end if;

—-—Address Mode: Absolute X; aaa: don't care; cc: don't care.
--Timing T2

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (opcode (4 downto 2)="111" and tcstate(2)='0"' and

(not (opcode (7 downto 5)="101" and opcode(l downto 0)="10"))) then

ACR="0"

ACR="1"

)

)

then

then

PC<=PC+1;

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
AI<=unsigned (X) ;

BI<=unsigned (Databus) ;

Sums<='1";

if opcode (7 downto 5)="100" then
Mask shortcut<='1l";
end 1if;
end 1if;

--Timing T3
--no page Ccrossing
if (opcode (4 downto 2)="111" and tcstate(3)='0"' and

PC<=PC;
ABL<=std logic vector (ADD);
ABH<=Databus;
Mask shortcut<='0";
Sums<='0";
end 1if;
--page crossing
if (opcode (4 downto 2)="111" and tcstate(3)='0"' and

PC<=PC;
ABL<=std logic_ vector (ADD) ;
ABH<=x"00";
AT<=x"00";
BI<=unsigned (Databus) ;
I ADDC<='1"';
Sums<='1l";
Mask shortcut<='0";
end 1if;

--Timing T4

if (opcode (4 downto 2)="111" and tcstate(4)='0'") then

PC<=PC;
ABL<=ABL;
ABH<=std logic_vector (ADD) ;
I _ADDC<='0"';
SUMS<='0";
end 1if;

—-—-Address Mode: Zero Page; aaa: don't care; cc: don't care.

--Timing T2

if (opcode (4 downto 2)="001" and tcstate(2)='0'") then

PC<=PC;
ABL<=Databus;
ABH<=x"00";

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end 1if;
end if; --exclude the cc=00 part to avoid overlapping
——======================pbb 1is the only concern
ends=====================x=
——======================pbb and cc=01 are
concernegd==============================

—-—-Address Mode: Absolute Y; aaa: don't care; cc: 01
--Timing T2
if (opcode (4 downto 2)="110" and opcode (1l downto 0)="01" and
tcstate(2)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
AI<=unsigned(Y) ;
BI<=unsigned (Databus) ;
Sums<='1";
if opcode(7 downto 5)="100" then Mask shortcut<='l';
end 1f;
end 1if;

--Timing T3

--no page Ccrossing

if (opcode (4 downto 2)="110" and opcode (1l downto 0)="01" and

tcstate(3)='0'" and ACR='0') then

PC<=PC;
ABL<=std logic vector (ADD);
ABH<=Databus;
Sums<='0";
Mask shortcut<='l"';

end 1if;

--page crossing

if (opcode (4 downto 2)="110" and opcode (1l downto 0)="01" and

tcstate(3)='0' and ACR='1l') then

PC<=PC;
ABL<=std logic vector (ADD);
ABH<=x"00";
AT<=x"00";
BI<=unsigned (Databus) ;
I ADDC<='1"';
Sums<='1l";
Mask shortcut<='l"';

end if;

--Timing T4
if (opcode (4 downto 2)="110" and opcode (1l downto 0)="01" and
tcstate(4)='0"') then
PC<=PC;
ABL<=ABL;
ABH<=std logic vector (ADD);
I _ADDC<='0"';

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Sums<='0";
end if;
--Address Mode: (Zero page, X)/Indirect, X; aaa: don't care; cc:

01
-=T2
if (opcode (4 downto 2)="000" and opcode(l downto 0)="01" and
tcstate (2)='0") then
PC<=PC;
ABH<=x"00";
ABL<=Databus;
AI<=X;
BI<=unsigned (Databus) ;
Sums<='1";
end if;

--T3
if (opcode (4 downto 2)="000" and opcode (1l downto 0)="01" and
tcstate(3)='0"') then
PC<=PC;
ABH<=x"00";
ABL<=std logic_vector (ADD);
AT<=x"00";
BI<=ADD;
I _ADDC<='1";
Sums<='1l";
Mask shortcut<='1l";
end if;

--T4
if (opcode (4 downto 2)="000" and opcode (1l downto 0)="01" and
tcstate(4)="'0"') then
PC<=PC;
ABH<=x"00";
ABL<=std logic_vector (ADD) ;
AT<=x"00";
BI<=unsigned (Databus) ;
Sums<='1";
I _ADDC<='0"';
Mask shortcut<='0";
end if;

--T5
if (opcode (4 downto 2)="000" and opcode (1l downto 0)="01" and
tcstate(5)='0"') then
PC<=PC;
ABH<=Databus;
ABL<=std logic_vector (ADD) ;
Sums<='0";
end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--Address Mode: (Zero page), Y/Indirect, Y; aaa: don't care; cc:
01
--T2
if (opcode (4 downto 2)="100" and opcode (1l downto 0)="01" and
tcstate (2)='0") then
PC<=PC;
ABH<=x"00";
ABL<=Databus;
AI<=x"00";
BI<=unsigned (Databus) ;
Sums<='1";
I ADDC<='1";
end if;

--T3
if (opcode (4 downto 2)="100" and opcode(l downto 0)="01" and
tcstate(3)='0"') then
PC<=PC;
ABH<=x"00";
ABL<=std logic vector (ADD);
AI<=Y;
BI<=unsigned (Databus) ;
Sums<='1";
I _ADDC<='0"';
if opcode (7 downto 5)="100" then
Mask shortcut<='1l";

end 1if;

end if;

--T4
--no page crossing
if (opcode (4 downto 2)="100" and opcode (1l downto 0)="01" and
tcstate(4)="'0"' and ACR='0"') then
PC<=PC;
ABH<=Databus;
ABL<=std logic vector (ADD);
Mask shortcut<='0";
Sums<='0";
end if;

--page crossing
if (opcode (4 downto 2)="100" and opcode (1l downto 0)="01" and
tcstate(4)="'0"' and ACR='1l"') then
PC<=PC;
ABH<=Databus;
ABL<=std logic_vector (ADD) ;
AT<=x"00";
BI<=unsigned (Databus) ;
Sums<='1";
I ADDC<='1"';
Mask shortcut<='0";
end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--T5
if (opcode (4 downto 2)="100" and opcode (1l downto 0)="01" and
tcstate(5)='0"') then

PC<=PC;
ABH<=std logic vector (ADD);
ABL<=ABL;
I _ADDC<='0";
Sums<='0";
end 1if;
- -======================ppb and cc=01 are concerned
ends==s=======s==s===================
- -======================3aa and cc=01 are
concerned==s==========s=s=s==s===================

--Instruction: LDA; aaa: 101; bbb: don't care; cc: 01
--T0
if (opcode (7 downto 5)="101" and opcode(l downto 0)="01" and
tcstate(0)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
ACC<=unsigned (Databus) ;
end if;

--T1
if (opcode (7 downto 5)="101" and opcode (1l downto 0)="01" and
tcstate(1)="'0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
P(7)<=ACC(7);

SUMS<='0";
if ACC=x"00" then
P(l)<="1";
else
P(l)<="'0";
end 1if;
end if;

--Instruction: ORA; aaa: 000; bbb: don't care; cc: 01
--TO0
if (opcode (7 downto 5)="000" and opcode (1l downto 0)="01" and
tcstate(0)="'0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
ATI<=ACC;
BI<=unsigned (Databus) ;
ORS<="'1";
SUMS<='0";
end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--T1
if (opcode (7 downto 5)="000" and opcode (1l downto 0)="01" and
tcstate(1)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));

4

ACC<=ADD;
ORS<='0";
if ADD(7)='1l"'" then
P(7)<="1";
else
P(7)<="'0";
end 1if;

if ADD=x"00" then

P(l)<="1";
else
P(1)<='0";
end 1f;
end 1if;

-—-Instruction: AND; aaa: 001; bbb: don't care; cc: 01
--TO
if (opcode (7 downto 5)="001" and opcode (1l downto 0)="01" and
tcstate (0)="'0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
AI<=ACC;
BI<=unsigned (Databus) ;
ANDS<="'1";
SUMS<="'0";
end 1if;

--T1

if (opcode (7 downto 5)="001" and opcode (1l downto 0)="01" and
tcstate(1)="'0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));

ACC<=ADD;
ANDS<='0";
if ADD(7)="1" then
P(7)<="1";
else
P(7)<="'0";
end 1if;

if ADD=x"00" then
P(l)<="1";
else

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

P(l)<="'0";
end 1if;
end if;

--Instruction: EOR; aaa: 010; bbb: don't care; cc: 01
--TO
if (opcode (7 downto 5)="010" and opcode(l downto 0)="01" and
tcstate (0)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
ATI<=ACC;
BI<=unsigned (Databus) ;
EORS<='1";
SUMS<="'0";
end if;

if (opcode (7 downto 5)="010" and opcode(l downto 0)="01" and
tcstate(1)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
ACC<=ADD;
EORS<='0";

if ADD(7)="'1l"' then

P(7)<="1";
else

P(7)<="0";
end 1f;

if ADD=x"00" then

P(l)<="1";
else
P(1)<="'0";
end 1if;
end if;

--Instruction: ADC; aaa: 011; bbb: don't care; cc: 01
--TO
if (opcode (7 downto 5)="011" and opcode (1l downto 0)="01" and
tcstate(0)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
ATI<=ACC;
BI<=unsigned (Databus) ;
SUMS<="1";
I ADDC<=P(0);
end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (opcode (7 downto 5)="011" and opcode (1l downto 0)="01" and
tcstate(1)="'0"') then

PC<=PC+1;

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));

ACC<=ADD;

SUMS<='0";

I _ADDC<='0"';

if ADD(7)='1l"' then

P(7)<="1";
else

P(7)<="'0";
end 1if;

if ADD=x"00" then

P(l)<="1";
else

P(1)<='0";
end 1f;

if ACR='1l' then

P(O)<="1";
else
P(0)<="'0";
end 1if;
end if;

—--Instruction: CMP; aaa: 110; bbb: don't care; cc: 01
--TO0
if (opcode (7 downto 5)="110" and opcode (1l downto 0)="01" and
tcstate(0)="'0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
AI<=ACC;
BI<=not (unsigned(Databus)); --yuchen0513
I _ADDC<='l"';
SUMS<="1";
end if;

--T1
if (opcode (7 downto 5)="110" and opcode (1l downto 0)="01" and
tcstate(1)="'0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
--ACC<=ADD; --yuchen0513
I _ADDC<='0"';
SUMS<='0";
if ADD(7)='"1" then

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

P(7)<="1";
else

P(7)<="'0";
end 1if;

if ADD=x"00" then

P(l)<="1";
else
P(l)<="'0";
end if;
P (0) <=ACR;
end if;

—--Instruction: SBC; aaa: 111; bbb: don't care; cc: 01
--TO
if (opcode (7 downto 5)="111" and opcode (1l downto 0)="01" and
tcstate(0)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
AI<=ACC;
BI<=unsigned (not (Databus)) ;
I _ADDC<=P (0) ;
SUMS<="1";
end if;

--T1
if (opcode (7 downto 5)="111" and opcode (1l downto 0)="01" and
tcstate(1)="'0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
ACC<=ADD;
SUMS<="'0";
I _ADDC<='0"';

if ADD(7)='1l"' then

P(7)<="1";
else

P(7)<="'0";
end 1if;

if ADD=x"00" then

P(l)<="1";
else P(1l)<='0";
end 1if;

if ACR='0' then
P(O)<="1";
else
P(0)<="0";
end 1f;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end if;

—--Instruction: STA; aaa: 100; bbb: don't care; cc: 01

--TO0

if (opcode (7 downto 5)="100" and opcode(l downto 0)="01" and
tcstate(0)='0"'") then

PC<=PC+1;

ABL<=std logic vector (PC(7 Downto 0));

ABH<=std logic vector (PC(15 Downto 8));

W R<="1";
end if;
--T1

if (opcode (7 downto 5)="100" and opcode (1l downto 0)="01" and
tcstate(1)="'0"') then

PC<=PC+1;

ABL<=std logic_vector (PC(7 Downto 0));

ABH<=std logic vector (PC(15 Downto 8));

end 1if;

--Last cycle, write value to memory
if (opcode (7 downto 5)="100" and opcode(l downto 0)="01") then

if ((opcode (4 downto 2)="000" and tcstate(5)='0") --(zero
page, X)
or (opcode (4 downto 2)="001" and tcstate(2)='0"') --zero
page
or (opcode (4 downto 2)="011" and tcstate(3)='0") --
absolute
or (opcode (4 downto 2)="100" and ((tcstate(4)='0") or
(tcstate(5)='0"))) --(zero page), Y
or (opcode (4 downto 2)="101" and tcstate(3)='0"') --zero
page, X
or (opcode (4 downto 2)="110" and ((tcstate(3)='0") or
(tcstate(4)='0"))) --absolute, Y
or (opcode (4 downto 2)="111" and ((tcstate(3)='0") or
(tcstate(4)='0")))) --absolute, X
then
DOR<=std logic vector (ACC); W R<='0";
end 1if;
end if;
——======================gaa and cc=01 are concerned
ends===============================

--STX and LDX address mode special cases

--1) Address Mode: Zero page, X==> Zero page, Y; Instructions:
STX and LDX

--Timing T2

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (opcode (4 downto 2)="101" and tcstate(2)='0"'" and (((opcode (7
downto 5)="100" or opcode (7 downto 5)="101") and opcode(l downto 0)="10"))
then

)

PC<=PC;

ABL<=Databus;
ABH<=x"00";
AI<=unsigned(Y) ;
BI<=unsigned (Databus) ;

Sums<='1";
end if;
--2) Address Mode: absolute X==> absolute Y; Instruction: LDX
--Timing T2
if (opcode (4 downto 2)="111" and tcstate(2)='0"'" and ((opcode (7
downto 5)="101" and opcode (1l downto 0)="10"))) then
PC<=PC+1;

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
AI<=unsigned(Y) ;
BI<=unsigned (Databus) ;
Sums<='1";

end 1if;

--JB0511 To avoid conflict with Arthy's, avoid hex1>=8 and hex2=A.
if opcode (1l downto 0)="10" and not (opcode(7)="'1l"'" and opcode (3
downto 2)="10") then

-—-For all the instructions in this section (cc=10), TO and
Tl has the same behaviors

--TO0
if tcstate(0)='0" then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
W R<="1";
--LDX needs one more operation
if opcode (7 downto 5)="101" then
X<=unsigned (Databus) ;
end 1if;
end 1f;
--T1
if tcstate(l)='0" then
PC<=PC+1;

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
--LDX affects the flags
if opcode (7 downto 5)="101" then

if X(7)='1"'" then P(7)<="1";

else P(7)<="'0";

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end 1if;
if X=x"00" then P(l)<='1l";
else P(1)<='0";
end 1if;
end if;
end if;

--Instruction: ASL; aaa: 000; bbb: don't care; cc: 10
--SD1
if (opcode (7 downto 5)="000" and SD1='1l"') then
PC<=PC;
ABH<=ABH;
ABL<=ABRL;
AI<=unsigned (Databus); --JB0511 correct? Why is W R
'0'" while Databus=>DOR?
BI<=unsigned (Databus) ;
DOR<=Databus;
SUMS<="1";
W R<="0";
I _ADDC<='0"';
end 1f;

--Instruction: ROL; aaa: 001; bbb: don't care; cc: 10
--SD1
if (opcode (7 downto 5)="001" and SD1='1") then
PC<=PC;
ABH<=ABH;
ABL<=ABL;
AI<=unsigned (Databus) ;
BI<=unsigned (Databus) ;
Sums<='1l";
I _ADDC<=P (0) ;
DOR<=Databus;
W R<="0";
end 1f;

--Instruction: LSR; aaa: 010; bbb: don't care; cc: 10
--SD1
if (opcode (7 downto 5)="010" and SD1='1"') then
PC<=PC;
ABH<=ABH;
ABL<=ABL;
BI<=unsigned (Databus) ;
AT<=x"00";
DOR<=std logic_vector (ADD);
SUMS<='0";
SRS<="1";
W R<="0";
--ADD(7)<='0";
end if;

--SD2

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (opcode (7 downto 5)="010" and SD2='1")
PC<=PC;
ABH<=ABH;
ABL<=ABRL;
DOR<=std logic vector (ADD);
I ADDC<='0";
W R<='0";
SRS<='0";
if ADD=x"00" then
P(l)<="1";
else
P(l)<="'0";
end if;

if ACR='1l"' then
P(O)<="1";
else
P(O)<="'0";
end 1f;
end 1f;

-—-Instruction: ROR; aaa: 011l; bbb: don't care;
--SD1
if (opcode (7 downto 5)="011" and SD1='1")
PC<=PC;
ABH<=ABH;
ABL<=ABL;
BI<=unsigned (Databus) ;
AI<=x"00";
DOR<=Databus;
SRS<="1";
W R<="0";
SUMS<="'0";
--ADD (7)<=P (0) ;
end 1f;

--Instruction ASL or ROL or ROR
--SD2
if ((opcode (7 downto 5)="011" or opcode (7
or opcode (7 downto 5)="001") and SD2='1l') then
PC<=PC;
ABH<=ABH;
ABL<=ABL;
DOR<=std logic_vector (ADD);
W R<="0";
SRS<='0";
SUMS<='0";

if ADD(7)="'1" then
P(7)<="1";
else
P(7)<="0";

then

cc: 10

then

downto 5)="000"

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end 1if;

if ADD=x"00" then

P(l)<="1";
else

P(l)<="'0";
end if;

if ACR='1"' then

P(O)<="1";
else
P(0)<="'0";
end 1if;
end 1if;

--Instruction: INC; aaa: 111; bbb: don't care; cc: 10
--SD1
if (opcode (7 downto 5)="111" and SD1='1l"') then
PC<=PC;
ABH<=ABH;
ABL<=ABL;
BI<=unsigned (Databus) ;
AT<=x"00";
I _ADDC<='1"';
SUMS<="1";
DOR<=Databus;
W R<="0";
end 1if;

--SD2
if (opcode (7 downto 5)="111" and SD2='1l") then
PC<=PC;
ABH<=ABH;
ABL<=ABL;
DOR<=std logic vector (ADD) ;
W R<='0";
I _ADDC<='0"';
SUMS<='0";
if ADD(7)='1" then
P(7)<="1";
else
P(7)<="'0";
end 1f;
if ADD=x"00" then
P(l)<="1";
else
P(l)<="'0";
end 1if;
end 1f;

-—-Instruction: DEC; aaa: 110; bbb: don't care; cc:

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--SD1
if (opcode (7 downto 5)="110" and SD1='1l") then
PC<=PC;
ABH<=ABH;
ABL<=ABL;
BI<=unsigned (Databus) ;
AI<=x"ff";
I _ADDC<='0"';
DOR<=Databus;
W R<='0"; --JB0510 W R=0 signal should happen at the
following cycle, not when DOR is loaded??
SUMS<="'1";
end 1if;

--3D2
if (opcode (7 downto 5)="110" and SD2='1"') then
PC<=PC;
ABH<=ABH;
ABL<=ABL;
DOR<=std logic vector (ADD);
W R<='0"; --JB0510 W R=0 signal should happen at the
following cycle, not when DOR is loaded??
I_ADDC<='0";
SUMS<="'0";

if ADD(7)="'1l" then P(7)<='1";
else P(7)<="'0";
end 1if;

if ADD=x"00" then P(l)<='1l";
else P(1)<='0";
end 1f;
end 1f;

-—-Instruction: STX; aaa: 100; bbb: don't care; cc: 10

--Last cycle, write value to memory
if opcode (7 downto 5)="100" then
if ((opcode (4 downto 2)="001" and tcstate(2)='0") --
zero page
or (opcode (4 downto 2)="011" and tcstate(3)='0")
-—absolute
or (opcode (4 downto 2)="101" and tcstate(3)='0"))
—-—zero page, Y
then
DOR<=std logic_vector (X);
W R<='0"; --JB0510 W R=0 signal should happen at
the following cycle, not when DOR is loaded??
end 1f;
end if;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

—-—-Address mode:
not (hex1>=8 and hex2=A)
if opcode (4 downto 2)="010"
—--Instruction: ASL aaa=000
—--T2+TO

if (opcode (7 downto 5)="000"

then
PC<=PC;
ABL<=ABL;
ABH<=ABH;
AI<=ACC;
BI<=ACC;
I _ADDC<='0";
SUMS<="1";
end 1if;
—--Instruction: ROL aaa=001
--T2+TO0

accumulator cc:10
to distinguish from Arthy's.
then

--JB0511 this lies inside

and tcstate="111010")

if (opcode (7 downto 5)="001" and tcstate="111010")

then
PC<=PC;
ABL<=ABL;
ABH<=ABH;
ATI<=ACC;
BI<=ACC;
I ADDC<=P(0);
SUMS<="'1";

end 1if;

--Instruction:
--T2+TO

LSR or ROR aaa=010 or 011

if ((opcode (7 downto 5)="010" or opcode (7 downto

and tcstate="111010") then
PC<=PC;
ABL<=ABL;
ABH<=ABH;
BI<=ACC;
AT<=x"00";
SUMS<='0";
SRS<="1";

end 1if;

5)21101111)

--Instruction:
--T1
if tcstate(1)='0"
PC<=PC+1;

then

ASL or ROL or LSR or ROR

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));

ACC<=ADD;

SUMS<='0";

I ADDC<='0'; --JB0512
W R<='1'; --JB0512

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

SRS<='0";
if ADD(7)="'1" then P(7)<='1";
else P(7)<="'0";
end 1if;
if ADD=x"00" then P(l)<='1l";
else P(1)<="'0";
end if;
if ACR="'1l"' then P(0)<="1";
else P(0)<="'0";
end if;
end 1if;
end 1if;
end if;
—-—-==cc=10 AND aaa=0xx are concerned

--cc=00
if (opcode(l downto 0)="00") then

—————————— branch: xxyl0000-----------------——--—————————————

if (opcode (4 downto 2)="100") then --bbb=100 does not
overlab with anything else.

--T2

if (tcstate(2)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
BI<=unsigned (Databus) ;
AI<=PC (7 Downto 0);
Sums<='1";

end 1f;

--T1

if tcstate="111111" then --yuchen0514
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
sums<='0";

end 1if;

--T3

if (tcstate(3)='0") then
ABL<=std logic_vector (ADD) ;
PC(7 downto 0)<=ADD+1;
Sums<='0";

end 1f;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--TO
if (tcstate(0)='0"') then
PC (15 downto 8)<=PC(1l5 downto 8)+1;
ABH<=std logic vector (PC(15 downto 8)+1);
end if;

——————————— interrupts: 0xx00000-----------—"—-"-"—-"—-—-"———————
-—four total, JSR, RTS, BRK, RTI.
elsif (opcode (4 downto 2)="000" and opcode(7)='0") then

--1/4. JSR abs. hex:20
if (opcode (6 downto 5)="01") then
--T2
if (tcstate(2)='0") then
S<=unsigned (Databus) ;
ABL<=std logic_vector(S);
ABH<=x"01";

BI<=S;

AI<=x"00";

Sums<='1";
end if;

if (tcstate(3)='0') then
ABL<=std logic vector (ADD) ;
ABH<=x"01";
DOR<=std logic vector (PC(15 Downto 8));
BI<=ADD;
AT<=x"ff";
Sums<='1";

end 1f;

--T4

1if (tcstate(4)='0') then
—--Databus<=DOR;
W R<='0";
ABL<=std logic vector (ADD) ;
ABH<=x"01";
DOR<=std logic vector (PC(7 Downto 0));
BI<=ADD;
AT<=x"ff";
Sums<='1";

end 1if;

--T5

if (tcstate(5)='0") then
—--Databus<=DOR;
W R<='0";
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

BI<=ADD;
AI<=x"00";
Sums<='"'1l";

end if;

-=T0

if (tcstate(0)='0") then
W R<="1";

ABL<=std logic_ vector(S);
ABH<=Databus;
PC<= (unsigned(Databus) & S) + 1;
S<=ADD;
Sums<='0";

end 1if;

--T1

if (tcstate(l)='0') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<='0";

end 1f;

end 1f;

--—-2/4. RTS. hex:60
if (opcode (6 downto 5)="11") then

--T2

if (tcstate(2)='0') then
ABL<=std logic vector(S);
ABH<=x"01";
BI<=S;
AI<=x"00";
I _ADDC<='1"';
Sums<='1";

end 1f;

--T3

if (tcstate(3)='0") then
ABL<=std logic vector (ADD) ;
ABH<=x"01";
BI<=ADD;
AI<=x"00";
I _ADDC<='1"';
Sums<='1";

end 1f;

--T4

if (tcstate(4)='0"') then
ABL<=std logic vector (ADD);
ABH<=x"01";
S<=ADD;
I ADDC<='0";
Sums<='0";

end 1f;

--T5

1f (tcstate(5)='0"') then

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

ABL<=std logic vector (PC(7 downto 0));
ABH<=Databus;
PC<=(unsigned(Databus) & PC(7 downto 0))+1;
Sums<='0";

end if;

-=T0

if (tcstate(0)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<='0";

end 1if;

--T1

if (tcstate(l)='0') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
Sums<='0";

end 1f;

end 1f;

--—-4/4., RTI. hex:40
if (opcode (6 downto 5)="10") then

--T2

if (tcstate(2)='0') then
ABL<=std logic vector(S);
ABH<=x"01";
BI<=S;
ATI<=x"00";
I _ADDC<='1"';
Sums<='1";

end 1f;

--T3

if (tcstate(3)='0") then
ABL<=std logic_ vector (ADD) ;
ABH<=x"01";
BI<=ADD;
AI<=x"00";
I _ADDC<='1"';
Sums<='1";

end 1if;

--T4

if (tcstate(4)='0") then
P<=unsigned (Databus) ;
ABL<=std logic vector (ADD) ;
ABH<=x"01";
BI<=ADD;
AI<:X"OO";
I _ADDC<='1"';
Sums<='1";

end 1f;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (tcstate(5)='0") then
PC (7 downto 0)<=unsigned(Databus)
ABL<=std logic vector (ADD) ;
ABH<=x"01";
S<=ADD;
I _ADDC<='0";
Sums<='0";

end if;

--T0

if (tcstate(0)='0") then
ABL<=std logic vector (PC(7 downto 0));
ABH<=Databus;
PC<=(unsigned(Databus) & PC(7 downto 0))+1;
Sums<='0";

end 1if;

--T1

if (tcstate(1)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
Sums<='0";

end 1f;

end 1f;

————————— the rest of cc=00, excluding branch and interrupt-

--no overlap with Arthy's, because Arthy's only have
bbb=010 and bbb=110.
else

--1.bbb=000 AND aaa=lxx. immediate.
if (opcode (4 downto 2)="000" and opcode(7)='1") then

--TO

1if (tcstate(2)='0') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));

end 1f;

--T1

if (tcstate(l)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
Sums<='0";

end 1f;

end 1f;

--2.bbb=001. zeropage. common to all aaa within cc=00

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (opcode (4 downto 2)="001") then
--T2
if (tcstate(2)='0') then
ABL<=Databus;
ABH<=x"00";
Sums<='0";
end if;
--both TO and T1
if (tcstate(0)='0O'or tcstate(l)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<='0";
end 1if;
end 1if;

-—--3.bbb=011. absolute. exceptions to JMP ABS (aaa=010)

and JMP IND (aaa=011)

5)="010")

5)="011")

-——exception 1/2: JMP ABS. bbb=011, aaa=010
if (opcode (4 downto 2)="011" and opcode (7 downto

then
--T2
if (tcstate(2)='0") then
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
PC (7 Downto 0)<=unsigned (Databus)
Sums<="'0";
end if;
--TO
if (tcstate(0)='0") then
ABL<=std logic vector (PC(7 Downto 0));
ABH<=Databus;
PC<=(unsigned(Databus) & PC(7 downto 0))+1;
Sums<='0";
end 1f;
--T1
1if (tcstate(l)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<='0";
end 1f;
end 1f;
---exception 2/2: JMP IND. bbb=011, aaa=011
if (opcode (4 downto 2)="011" and opcode (7 downto
then

--both T2 and T4

1f (tcstate(2)='0'" or tcstate(4)='0") then
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
PC (7 Downto 0)<=unsigned (Databus) ;

5)="010")

cc=00

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Sums<='0";
end 1if;
--both T3 and TO
if (tcstate(3)='0' and tcstate(0)='0") then
ABL<=std logic vector (PC(7 Downto 0));
ABH<=Databus;
PC<= (unsigned (Databus) & PC(7 downto 0))+1;
end if;
--T1
if (tcstate(l)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
end 1if;
end 1if;

-——the rest of bbb=011 absolute.
if (opcode (4 downto 2)="011" and not (opcode (7 downto

and not (opcode (7 downto 5)="011")) then
--T2
if (tcstate(2)='0") then
PC<=PC+1;

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
BI<=unsigned (Databus) ;

ATI<=x"00";

Sums<='1";

if (tcstate(3)='0") then
ABH<=Databus;
ABL<=std logic vector (ADD);
Sums<='0";

end 1f;

--TO0

1if (tcstate(0)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<='0";

if (tcstate(l)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
Sums<='0";
end 1if;
end 1f;

-——4 .bbb=101. zeropage,X. common to all aaa within

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (opcode (4 downto 2)="101") then

--T2

if (tcstate(2)='0') then
BI<=unsigned (Databus) ;
AI<=unsigned (X) ;
Sums<='1";

end if;

--T3

if (tcstate(3)='0") then
ABL<=std logic vector (ADD);
ABH<=x"00";
Sums<='0";

end 1if;

--TO

if (tcstate(0)='0"') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<='0";

end 1f;

--T1

if (tcstate(1)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<="'0";

end 1if;

end 1if;

---5.bbb=111. absolute,X. common to all aaa within
cc=00
if (opcode (4 downto 2)="111") then
--T2
if (tcstate(2)='0") then
PC<=PC+1;
ABL<=std logic vector (PC
ABH<=std logic vector (PC
BI<=unsigned (Databus) ;
AI<=unsigned (X) ;
Sums<='1";
if opcode (7 downto 5)="100" then

(7 Downto 0));
(15 Downto 8));

Mask shortcut<='l';--Yuchen

end 1f;

end 1if;

--T3

if (tcstate(3)='0") then
ABH<=Databus;
ABL<=std logic vector (ADD) ;
BI<=unsigned (Databus) ;
I_ADDC<=ACR;
Mask shortcut<='0';--Yuchen

end 1f;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--T4

if (tcstate(4)='0"') then
ABH<=std logic vector (ADD) ;
Sums<='0";

end if;

-=T0

if (tcstate(0)='0") then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
Sums<='0";

end 1if;

--T1

if (tcstate(l)='0') then
PC<=PC+1;
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));

end 1f;

end 1f;

———————————— bbb taken care of. now aaa.-—-————-————--—-—

-—--1.aaa=101. LDY. common to all bbb within cc=00
if (opcode (7 downto 5)="101") then
--TO
if (tcstate(0)='0"') then
Y<=unsigned (Databus) ;
BI<=unsigned (Databus) ;

AT<=x"00";
Sums<='1";
end 1f;

--T1

if (tcstate(l)='0") then
P(7)<=ADD(7); --JB set N. P is the

processor status register (1 byte)

if ADD=x"00" then P(l)<="'1";
else P(1)<='0";
end 1if;

end 1if;

end 1if;

-—--2.aaa=111. CPX. common to all bbb within cc=00
if (opcode (7 downto 5)="111") then
--TO
if (tcstate(0)='0") then
BI<=not (unsigned (Databus)); --JB0511 need
to invert!!ltirrrrrnl
AI<=unsigned (X) ;
Sums<='1";
I ADDC<='1l'; --yuchen0513
end 1f;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

--T1
if (tcstate(l)='0"') then
P(7)<=ADD(7) ;
if ADD=x"00" then P(l)<='1";
else P(1)<="'0";
end if;
P (0) <=ACR;
Sums<='0";
I ADDC<='0'; --yuchen0513
end if;
end 1if;

---3.aaa=110. CPY. common to all bbb within cc=00
if (opcode (7 downto 5)="110") then
--TO
if (tcstate(0)='0"') then
BI<=unsigned (not (Databus)); --JB0511 need
to invert!!litirrrrrnl
AI<=unsigned(Y) ;
Sums<='1";
I ADDC<='1'; --yuchen0513
end 1f;
--T1
if (tcstate(l)='0"') then
P(7)<=ADD(7) ;
if ADD=x"00" then P(l)<='1l";
else P(1)<="'0";
end 1if;
P (0) <=ACR;
Sums<='0";
I ADDC<='0"'; --yuchen0513
end 1f;
end 1f;

---4.aaa=001. BIT. common to all bbb within cc=00
if (opcode (7 downto 5)="001") then
--TO
1if (tcstate(0)='0"') then
BI<=unsigned (Databus) ;
ATI<=ACC;
Sums<='1";
end 1f;
--T1
if (tcstate(l)='0") then
P(7)<=ADD(7) ;
if ADD=x"00" then P(l)<='1";
else P(1)<='0";
end 1if;
P (0) <=ACR;
Sums<='0";
end 1f;
end 1f;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

---5.aaa=100. STY. common to all bbb within cc=00
if (opcode (7 downto 5)="100") then
--both T2 and T3
if (tcstate(2)='0'" or tcstate(3)='0"'") then --JB
Y->DOR happenes at T2 in zeropage, and at T3 in the rest.
DOR<=std logic vector(Y);
end if;
--T0
if (tcstate(0)='0") then
—--Databus<=DOR;
W R<="0";
end 1if;
--T1
if (tcstate(0)='0"') then
Sums<="'0";

W R<="1";
end 1f;
end 1if;
———————————————————————————— aaa taken care of.-——--—-———-—-—-
end 1if;
end if;
————————————————————————————— JAEBIN's code ends here-------——------
—————————————————————————— ARTHY's code starts here------——--—----—-—-————————-—
——======—==================STNGLE BYTE
INSTRUCTIONS====BEGIN==========
--NOP
if (opcode (7 downto 0) = x"EA") then
-—-if (tcstate(2) = '0') then --JB0511 deleted "and tcstate (0)
= Q"
--PC <= PC; -- this also not required
-—end if;
if (tcstate(l) = '0') then

PC <=PC+1;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
end 1if;
end if; --NOP ends.

-—-PHA/PLA/PHP/PLP
if ((opcode (7 downto 0) = x"48") or (opcode(7 downto 0) = x"68")
or (opcode (7 downto 0) = x"08") or
(opcode (7 downto 0) = x"28")) then --PHA/PLA/PHP/PLP
--T2
if(tcstate(2)='0") then
PC <= PC - 1; --JB0511 PC-1?72727?7
ABL<=std logic vector(S(7 downto 0));
ABH<= x"01";
BI <= S;
SUMS<="1";
—— Push PHA / PHP
if (opcode(5) = '0') then --subtract.
ATl <= x"ff";
WR<="'0";
if (opcode(6) = '"1") then
-- PHA put the acc onto databus
DOR <= std logic vector (ACC);
else
-— (opcode (6) == '0') then
-- PHP put the status reg unto db
DOR <= std logic vector (P);
end 1f;
-— Pull PLA / PLP
else —--sum.
ATl <= x"01";
end 1if;
end 1f;
--T3
if(tcstate(3) = '0'") then -- assume only PLA and PLP get
here
WR <= '"l"; -- back to read
PC<=PC;
S<=ADD;
SUMS <= '0"';
ABL<=std logic_vector (ADD) ;
ABH<=x"01";
end 1f;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (tcstate(0)= '0'") then
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
PC <= PC + 1;

--PLA/PLP
if (opcode(5) = '"1'") then
--PLA
if (opcode(6) = '"1") then
ACC <= unsigned (Databus) ;
if (ACC = 0) then
P(l) <= '"1'; --set zero flag
end 1if;
P(7) <= ACC(7); -- set negative flag
-—-PLP
elsif (opcode(6) = '0'") then
P <= unsigned(Databus) ;
end 1f;
-—PHA/PHP
elsif (opcode(5) = '0'") then

--SUBS <= 'l'; --JB0511 Subtracts WHAT? Nothing
goes in to AI or BI.

S<= ADD;
WR <= '"l"; -- read
end 1if;
end 1if;
--T1
if (tcstate(l)= '0') then -- PHA/PHP/PLA/PLP

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
PC <= PC + 1;

end 1f;

end 1f; --PHA/PLA/PHP/PLP end.

-- INX, INY, DEX, DEY
--1/4 DEX: CA

if opcode (7 downto 0) = x"CA" then
--T24+TO0
if (tcstate(2) = '0'") then

SUMS <= '1"';
BI <= X; AI <= x"ff";

end 1if;

--T1

if (tcstate(l) = '0') then
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
PC <= PC + 1;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

if (ADD = 0) then

P(l) <= '"1'"; --7Z flag
end 1if;
P(7) <= ADD(7); --N flag

X <= ADD;
SUMS <= '0"';
end if;
end if;
--2/4 INX: E8
if opcode (7 downto 0) = x"E8" then
--T24+TO
if (tcstate(2) = '0') then
SUMS <= '1"';
BI <= X; AI <= x"01";
I ADDC<='0'; --yuchen(0514
end 1f;
--T1
if (tcstate(l) = '0'") then
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
PC <= PC + 1;
if (ADD = 0) then
P(l) <= '"1'"; --7Z flag
end 1if;
P(7) <= ADD(7); --N flag
X <= ADD;
SUMS <= '0"';
I ADDC<='0"'; --yuchen0514
end 1f;
end 1if;
--3/4 DEY: 88
if opcode (7 downto 0) = x"88" then
--T24+TO0
if (tcstate(2) = '0'") then
SUMS <= '1"';
BI <= Y; AI <= x"ff";
end if;
--T1
if (tcstate(l) = '0') then

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(1l5 Downto 8));
PC <= PC + 1;
if (ADD = 0) then

P(l) <= '"1'"; --7Z flag
end 1if;
P(7) <= ADD(7); --N flag

Y <= ADD;
SUMS <= '0"';
end 1f;

lOl"

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end if;
--4/4 INY: C8
if opcode (7 downto 0) = x"c8" then --yuchen0514
--T24+TO
if (tcstate(2) = '0') then
SUMS <= '1"';
BI <= Y; AI <= x"01";
I ADDC<='0"'; --yuchen0514
end if;
--T1
if (tcstate(l) = '0') then

ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8)

PC <= PC + 1;
if (ADD = 0) then
P(l) <= '"1'"; --7Z flag
end 1f;
P(7) <= ADD(7); --N flag

Y <= ADD;

SUMS <= '0"';

I ADDC<='0"; --yuchen0514
end 1f;

end if;
-—- INX, INY, DEX, DEY ends.

--Register instructions

if opcode (4 downto 2) = "110" and opcode(0) = '0' then
--T2 + TO
if tcstate(2) = '0' then --JB0511 deleted "and tcstate (0)
-—-PC <= PC;
CASE opcode (7 downto 5)IS
when "000" => P(0) <= '0'; -- CLC
when "001" => P(0) <= '1'; -- SEC
when "010" => P(2) <= '0'; ---CLI
when "011" => P(2) <= '1l'; -- SEI
when "101" => P(6) <= '0'; -- CLV
when "110" => P(3) <= '0'; -- CLD
when "111" => P(3) <= '1'; -- SED
when others => null;
END CASE;
end 1if;
--T1
if (tcstate(l) = '0'") then

ABL<=std logic vector (PC(7 Downto 0));

ABH<=std logic vector (PC(15 Downto 8));

PC <= PC + 1;
end 1f;

) ;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

end if; --Register instructions end.

-— Transfer instructions

if ((opcode (7 downto 0) = x"8A")

or (opcode (7 downto 0) = x"9A")
or

(opcode (7 downto 0) x"AA") or (opcode (7 downto 0)
x"BA") or

(opcode (7 downto 0) = x"98"™)

or (opcode (7 downto 0)
x"A8")) then

--T2 + TO
if (tcstate(2) '0') then --JB0511 removed "and
tcstate (0)="'0""
--PC <= PC;
if ((opcode (7 downto 0)) = x"8A") then -- TXA
ACC <= X;
if (X = 0) then
P(l) <= '1"';
end 1f;
P(7) <= X(7);
end 1f;
if ((opcode (7 downto 0)) x"9A") then --TXS
S <= X;
end 1if;
if ((opcode (7 downto 0)) = x"AA") then -- TAX
X <= ACC;
if (ACC 0) then
P(l) <= '1"';
end 1f;
P(7) <= ACC(7);
end 1f;
if ((opcode (7 downto 0)) = x"BA") then -- TSX
X <= S;
if (S 0) then
P(l) <= '1"';
end 1if;
P(7) <= S(7);
end 1f;
if ((opcode (7 downto 0)) x"98") then --TYA
ACC <= Y;

if (Y = 0) then
P(l) <= '1"';

end 1if;
P(7) <= Y(7);
end 1if;

if ((opcode (7 downto 0))
Y <= ACC; --TAY
if (ACC = 0) then
P(l) <= '"1"';
end 1f;

= x"A8") then -- TAY

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

P(7) <= ACC(7);

end 1if;
end 1if;
--T1
if (tcstate(l) = '0') then
ABL<=std logic vector (PC(7 Downto 0));
ABH<=std logic vector (PC(15 Downto 8));
PC <= PC + 1;
end if;
end if; —-- Transfer instructions end.
————————————————————————————— Arthy's code ends here--——————--—-———-
end if; --clk rising edge

end if; --reset
end process;

--branch conditions are judged combinationally so that it can supply
information to TG on time.
process (opcode, P)
begin
if (opcode (1l downto 0)="00") then

———————————————————————————————— branch: xxyl0000-------——-—-

if (opcode (4 downto 2)="100") then --bbb=100 does not
overlab with anything else.
-- xx=00. N flag. P(7)

if ((opcode (7 downto 6)="00" and
P(7)=opcode(5)) or -- xx=00. N flag. P(7)
(opcode (7 downto 6)="01" and
P(6)=opcode (5)) or —-- xx=01. V(0) flag. P(6)
(opcode (7 downto 6)="10" and
P(0)=opcode (5)) or -- xx=10. C flag. P(0)
(opcode (7 downto 6)="11" and
P(l)=opcode (5))) -- xx=11. Z flag. P(1)
then
BRC<="1";
else BRC<='0'; --yuchen 0514
end 1f;
else BRC<='0"; -—-yuchen 0514
end 1if;
else BRC<='0'; --yuchen 0514

end if;
end process;

process (ABH, ABL, ACC, X, Y, P)
begin
ABH out<=ABH;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

ABL out<=ABL;

ACC out<=std logic vector (ACC);
X out<=std logic vector (X);

Y out<=std logic vector(Y);

P out<=std logic vector (P);

end process;

end rtl;

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

'\..;"1 >

Mdese Mde, fsbee X, Tiotudion Gele gpobbbec 44 cdes

Dor
s

- — ——— o XXX VXY
AR T W KMGIM e (—_m :
DATR uﬂﬁ:x AL b([7 _X._Q("_ML J\
be XCloed (L QT - — ST
noL \ I
o) , . |
0B | | |
sB ! |
:‘ l ' |
IR 1 >~'7>Fm(z
! oY
eT
xon
Re
Gm‘d;m pLu
| e 1"“;1 e aayrem———— _—
- wéperl | pes pord |
&va»r .MLQPQ- poLE Pl |
JieHE PO | pem< Pt
ot s
81 & PP
i
D
skt

Reconstruction of the MOS 6502 on the Cyclone 1l FPGA

Tnspurtton e oaabbbce 5 DRR (9D)
000 xrxol \/\4 ’Qm
i‘”l — =
NOPR m_—” L L L.];.._. L.
_L%___Cfu@(&@z_. 1005 X ponamoL X [eoik)EC
Duto. X DPCOD'F;_—XAD\L AvH M*—X7 » : e
PC—)\ |°0' < 'DDL- b0l ‘__;\T— - r‘:'.f”‘ s
(ﬁ\ 100t | ;L‘__‘_2< /oofj‘\;/// i
IR | /'""
X__opCovt ”
AT a
ot Y o X
- X _RoL_ X
m N
L_RoL |
Ree .
o
A R P v
KL et | preper

'AQ‘{(‘WO» RBN";PO#
RBL&BDD | BpL & pel

