CSEE W4840 Embedded System Design Lab 3

Stephen A. Edwards

Due March 28, 2013.

Abstract

Use Quartus and SOPC builder to create one of two mixed hard-
ware/software designs: an FM sound synthesizer or a bouncing
video ball.

1 Introduction

This lab is about combining your own hardware and software
components. You have a choice of implementing one of two
“canned” designs that we started for you: an FM sound syn-
thesizer that generates pleasing-sounding notes under keyboard
control or a bouncing video ball in which software controls the
trajectory of a circle on the screen displayed by custom video
hardware.

First, follow the instructions in Section 2 to gain some prac-
tice building a simple system using SOPC Builder. Then, choose
one of the two projects described in Sections 3 and 4.

2 Building a Nios II System with SOPC Builder

SOPC Builder is an Altera-supplied program for quickly as-
sembling Nios II-based processor systems. It effectively writes
VHDL for you.

The tutorial below explains how to make a simple “bouncing
ball” LED display using SOPC Builder. Go though this tutorial
first to see how the tools work, then start working on one of the
three designs.

2.1 Quartus, part 1

Create a new directory (e.g., “lab3”), cd into it, and start quar-
tus.

Select File—New Project Wizard.

In the new project wizard dialog, select the directory (e.g.,
“lab3”) you just created. Name the project something like
“lab3.” The two names do not have to match, but only use let-
ters, digits, and underscores in the project name. See Figure 1.

Don’t add any files to the project yet.

For for the device, select the “Cyclone II” family and the
“EP2C35F672C6” chip. See Figure 2.

Click “Finish” to create the project.

2.2 SOPC Builder

Inside Quartus, select Tools—SOPC Builder. This will probably
ask you to start creating an SOPC builder system (if not, select
File—New System). Name it differently than the project, e.g.,
“nios_system,” and select VHDL as the language. See Figure 3.

You should now be at the SOPC Builder main window (Fig-
ure 4). Make sure the Device Family is set to Cyclone II and
that there is a single external 50 MHz clock listed.

Work together in project groups on this lab ~ Submit one solution per group

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?
fhome/sedwards/svn/classes/2013/4840/labs/lab3 E]
What is the name of this project?

lab3 [

What is the name of the top-level design entity for this project? This name is case sensitive
and must exactly match the entity name in the design file.

lab3

Igse Existing Project Settings...

[< Back H Next > H Finish H Cancel

Figure 1: Naming a new Quartus project

Family & Device Settings [page 3 of 5]
Select the family and device you want to target for compilation.

Device family Show in 'Available devices' list

Eamily: | Cyclone Il Package: [Any

oo

Devices: Pin count: [Any

ERDERD

Target device Speed grade: [Any

Auto device selected by the Fitter Name filter: | ep2c35f672

@ Specific device selected in ‘Available devices' list | Show advanced devices [| HardCopy compatible only

Other: nfa
Available devices:
Name Core Voltage LEs User 1/Os Memory Bits Embedded multiplier 9-bi
EP2CISFEICOILV ______|3%216 475 483840
EP2C35F672C7 1.2V 33216 475 483840 70
(K1 I D]
HardCopy: 3
Limit DSP & RAM to HardCopy device resources
[<Back |[Next> |[Finish |[cancel

Figure 2: Selecting the device in Quartus

System Name:|nios_system |

Target HDL: () Verilog
) VHOL

Figure 3: Naming a new system in SOPC Builder

Fie Edi Moce System View Tooks Hep

System Corterts. | System Generstion |

Componert Library Target TR
= N T == iz
4 K| ;| [pevieeF one ! D [External |5n.n had

Project

8 New Component
Library

\” RoBtogreyscaleconverior

o= Bridges Use [Con..] Name Description [Clock | Base
&= Configurafion & Programming

=
& Inferface Protocols
& Legacy Companents
&= Viemories and Wemary Cortroler|
& Wicrogortrolier Peripherals
& Peripherals
oL
& Processors
~sis
& Verification
= Window Bridge
< i D] e 1] I D

Figure 4: The SOPC Builder main window. Available compo-
nents are listed on the left.

Add the processor by opening Processors and double-clicking
“Nios II Processor.” This should bring up the Nios II dialog in
Figure 5. Select the Nios II/e, the smallest of the three and click
“Finish.” You don’t need to adjust the other parameters.

At this point (Figure 6), you have a single processor with a
JTAG debug module connected to it. By itself, this is useless
because it has no memory.

We will use the off-chip 512K SRAM by creating a new com-
ponent (peripheral) that does the nearly-trivial translation from
the protocol spoken by the Avalon bus (i.e., that is connected to
the Nios II) to that for the SRAM.

First, you need a VHDL file for the component called
de2_sram_controller.vhd. Its contents are shown in Figure 7.

This does almost nothing: it connects and inverts the various
Avalon signals (named avs_s1_...) for the SRAM chip and con-
trols the tri-state output drivers by indicating the SRAM_DQ bus
should only be driven when the Avalon write signal is asserted.

Create a new SOPC Builder component by selecting
File—New Component... Under HDL Files, select this .vhd
file. A dialog will come up showing the file is being parsed and
give you a bunch of warnings about signals having type “ex-
port,” which is fine. Make sure the Top Level Module is set to
“de2_sram_controller.”

Go to the “Signals” tab and change the interface for
each SRAM signal (e.g., SRAM_DQ, SRAM_ADDR) from
“avalon_slave_0” to “conduit_end.” Select “New Conduit...”
when you change the first signal. This will create “con-
duit_end,” which you can select for the remaining signals. For
each signal changed, set the signal type to “export.” This tells

Nios Il Processor

MMU and MPU Settings JTAG Debug Module >

Core Nios Il
Select allios Il core:
©Nios llfe ONios ll/s ONios Ilf
: Risc = RISC
Nios Il mw 2t 2t
Selector Guide Instruction Cache Instruction Cache
i — Branch Prediction Branch Prediction
Hardware Multiply Hardware Wutply
Feystem: 50.01Hz Hardware Divide Harciware Divide
Barvel Shifter
spuid 0 Data Cache
Dynamic Branch Prediction
Performance ai S0.0MHz Upto S DMPS Upto 25 DMPS Upto 51 DMPS
Logic Usage 600.700 LEs 12004400 LEs 1400-1800 LES
Memory Usage Two M4Ks (or equiv.) Two MdKs + cache Three M4Ks + cache
Herdware Mtinly: O
Resst Vector: Hiemory| [w]offset [or0
Exception Vector. Memory. [<]otset [0]
[m]
Only include the MM when using an operating system that explicily supports an 1A
Fast TLB Miss Exception Vector: Memory: Offset
[m]
Warning. Reset vector Vector canmot be set comectadto

Figure 5: Adding an Nios II processor in SOPC Builder

Altera SOPC Builder - nios_system. sopc (fhome/userl/faculty/sedwards/4840-2008/lab3/nios_system.50pc)
Fle Edt Modue System View Tools Mol Help

System Cantents | System Generation |

10 aitera S0P Buker| | Terget Clock Setiings
7 Creste now co

e ; e T Saree T 3 e
T xternat N

=
o= Bridges and Adaptey
o= Iterface Fratocols

o= Legacy Corponert:

o= Memories and Mernol
o= Peripherais

Use [Connec.
o= User Logic B cpu

o= Video and Inage e E instruction_master

Madle Newnz

INios Il Processar
|evealan Master ik
data_master

fag_riebug_mactie

|avealan Master
|awalon Slave

RO 31—
Ox00000S00 (0X00000FFF

Dessipton ook Bess £ Fa ’_\

© To Do cpur Naresst vector for this CRU. Flesse
) To Do opu N exception vestor has been specifed fortis CPLL Flesse perameterizs the CPUto resclve s issus

CPUT0 resoivethis issue

. Warming. cpu: Reset vector and Exception vector cannot be st untl memary devices are comnectecHtothe Nos I processor

Figure 6: The system with only the Nios II processor

SOPC to defer this signal’s behavior to the next level of your
design hierarchy. That is, to create an endpoint for this signal so
that it can be used in your custom VHDL. The list should look
like Figure 8.

Next, go to the “Interfaces” tab and click on “Remove Inter-
faces With No Signals.”

Also in the Interfaces tab, under the avalon_slave_O interface,
click the “Assignments: Edit...” button. Change the value of
isMemoryDevice from O to 1. Figure 9 shows this. Click on
“Finish” and save your new component. This creates the file
de2_sram_controller_hw.tcl, which contains information about
the component and its assignments.

Return to the main SOPC builder window, select the new
“de2_sram_controller” component in the left pane, and click on
“Add...”” and then “Finish.” Right-click on the module name (it
defaults to “de2_sram_controller_inst”’) and rename it to “sram.”
Make sure both the instruction_master and data_master connec-
tions from cpu_0 lead to the avalon_slave_0 connection on the
sram component; this allows the CPU to store both programs
and data in the SRAM. Clicking in the “Connec...” panel will
let you adjust these connections if necessary.

Congratulations: your processor system now has some mem-
ory and could actually run programs.

library ieee;
use ieee.std_logic_1164.all;

entity de2_sram_controller is

File Templates

Component Type | HDL Files | Parameters | Signals y' Interfaces |

Interface

Signal Type

port (
signal chipselect in std_logic; e
signal write, read : in std_logic; e
signal address in std_logic_vector(17 downto 0); jorite
signal readdata : out std_logic_vector(1l5 downto 0); |w%e=
signal writedata : in std_logic_vector(1l5 downto 0); ket
signal byteenable : in std_logic_vector(l downto 0); soAu D0
signal SRAM_DQ : inout std_logic_vector(l5 downto 0); [®amisn
signal SRAM_ADDR : out std_logic_vector(1l7 downto 0); ::::EE::
signal SRAM_UB_N, SRAM_LB_N : out std_logic; o
signal SRAM_WE_N, SRAM_CE_N : out std_logic;
signal SRAM_OE_N : out std_logic
);

end de2_sram_controller;

architecture dp of de2_sram_controller is
begin

SRAM_DQ <= writedata when write = 1’
else (others => ’Z’);

readdata <= SRAM_DQ;

SRAM_ADDR <= address;
SRAM_UB_N <= not byteenable(1l);
SRAM_LB_N <= not byteenable(0);
SRAM_WE_N <= not write;
SRAM_CE_N <= not chipselect;
SRAM_OE_N <= not read;

end dp;

Figure 7: de2_sram_controller.vhd: VHDL source for the
SRAM controller (inverters and a tristate buffer).

If you later change the VHDL code for your component (e.g.,
during the development process), you must re-edit the compo-
nent by right-clicking the component on the left menu and se-
lecting “Edit.”

Double-click on the cpu component and choose the “sram”
memory for both the reset vector and the exception vector. This
should turn off some warnings. If you can’t select sram as the
memory, you probably forgot to change the “isMemoryDevice”
setting in the avalon_slave_0 interface for the SRAM controller.

Using the same procedure, create a new component called
“de2_led_flasher.” The VHDL for this is shown in Figure 11.
Again, remember to change the interface of the “leds” signal to
“conduit_end” and its signal type to “export.” Connect the “clk”
and “reset_n” signals the “clock” interface and set their types
to “clk” and “reset_n" respectively. The signals tab should look
like Figure 10.

Add an instance of your new “led_flasher” component to the
system and rename it to “leds.”

For debugging output, add a Interface Protocols/Serial/JTAG
UART component from the library. Just click “Finish” to accept
the default parameters.

Run System— Assign Base Addresses to locate each compo-
nent in memory. The completed system configuration is shown
in Figure 12.

Finally, click on the “System Generation” tab, make sure

‘avalon_slave_0
‘avalon_slave_0
‘avalon_slave_0
‘avalon_slave_0
‘avalon_slave_0
avalon_slave_0
avalon_slave_0
conduit_end
conduit_end
conduit_end
conduit_end
conduit_end
conduit_end
conduit_end

lehipselect
fwrite

read
laddress:
readdata
writedata
lbyteenable
export
iexport
iexport
\export
\export
lexport
lexport

Wickth |_ Direction
1 input

1 input

1 input
(E] input
i loutput
6 input
R input
16 licir
(] output
1 output
1 output
1 output
1 outpit
h joutput

() Error: avalon_slave _0: Interface must have an associated clock

‘ Help ‘ | 4 Prev H Next | ‘ ‘ Finish.

Figure 8: Associating the signals with interfaces

File Iemplates

Component Type | HOL Files | Parameters | Signals | Interfaces |

b About Interfaces

~ “avalon_slave_0" (Aval

lon Memory Mapped Slave)

Name: [avalo

n_slave_0

J ‘ Documertation

Type |Avalun Memory Mapped Slave

-

Associated Clock: |F\nr\a

Associsted Reset |nm’ve

-]

-

Assignments:

~ Block Diagram

Edit...

Ke

Hi

Value

embeddedsw.configuration.isFlash
embeddedsw configuration.isMemoryDevice

ghipselect

avalon_{ |embeddedsw.configuration.ishonValatileStorage

BERE

embeddedsw configuration.isPrintableDevice

grila
ead
dress[1]

E;Eddalﬁ 1
griladata['

byteenablelT 01

(][]

=1
=]
=]
=]
=]
=

i

L

| Add Interface |

4, Warning: avalon_slave_0: Interface must have an associated clock

3 Error: avalon_slave_0: Interface must have an associated clock

L] [aom][=

| Finish

Figure 9: Editing the assignments

File Templatss

Component Type | HOL Files | Parameters | Signals | Interfaces |

¥ About Signals

Name Interface
el clock clk
reset_n clock reset_n
read avalon_slave_0 read
Iwrite avalon_slave_0 write input
chipselect avalon_slave_0 chipselect input
address address 5 input

Signal Type Width Direction
input
input

input

avalon_slave_0

readdata avalon_slave_0 readdata 16 output
writedata avalon_slave_0 writedata i input
leds conduit_end export 16 output

@) Info: Mo srrors or warnings

‘ Help | | 4 Prev H Next | ‘ ‘ Finish... ‘

Figure 10: Signals for the LED flasher

“Simulation. Create simulator project files” is disabled (sim-
ulation with the DE2 does not work well without models for
the various off-chip peripherals) and click “Generate.” You may
save your SOPC system as “nios_system.sopc” (an XML file).
Running “Generate” should fill your project directory with many
.vhd files.

When system generation completes (this takes a while), click
on Exit and return to the Quartus II GUI.

2.3 Quartus, part 2

Once SOPC Builder has generated the system, we need to im-
port it into a Quartus II project.

First, you need to create a top-level VHDL file that instan-
tiates the Nios II system that was just generated and whatever
hardware you want to connect to it. In this case, we only need
to wire the Nios II to the external clock and connect the SRAM
and LED:s to their pins.

The nios_system entity was generated by the SOPC Builder
and is defined in nios_system.vhd (along with a lot of other
things). As usual, its component definition is essentially just
the ports on the entity, which were named by SOPC Builder.

Figure 13 shows the top-level VHDL file. Put this in the
project directory and add it to the Quartus project. Also add the
“nios_system.vhd” file. Finally, make sure the nios_system.qip
file is also part of project; it contains other files generated by
SOPC builder. Make sure you put “lab3.vhd” below the others
(it won’t find the nios_system entity otherwise).

By default, the name of the top-level entity is the name of
the project2. Open lab3.vhd in Quartus and use Project— Set as
Top-Level Entity to change this.

Match the pin names to locations by selecting
Assignments—Import Assignments and choosing the DE2.qsf

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_led_flasher is

port (

clk : in std_logic;

reset_n : in std_logic;

read : in std_logic;

write : in std_logic;

chipselect : in std_logic;

address : in std_logic_vector(4 downto 0);
readdata : out std_logic_vector(1l5 downto 0);
writedata : in std_logic_vector(1l5 downto 0);
leds : out std_logic_vector(1l5 downto 0)
)3

end de2_led_flasher;
architecture rtl of de2_led_flasher is

type ram_type is array(1l5 downto 0) of
std_logic_vector(1l5 downto 0);

signal RAM : ram_type;

signal ram_address, display_address :

signal counter_delay :

signal counter

unsigned(15 downto 0);
: unsigned(31 downto 0);

begin
ram_address <= unsigned(address(3 downto 0));

process (clk)
begin
if rising_edge(clk) then
if reset_n = ’0’ then
readdata <= (others => '0’);
display_address <= (others => ’'0’);
counter <= (others => ’0’);
counter_delay <= (others => ’1’);
else
if chipselect = ’1’ then
if address(4) = ’0’ then
if read = ’1’ then
readdata <= RAM(to_integer(ram_address));
elsif write = '1’ then
RAM(to_integer(ram_address)) <= writedata;

end if;
else
if write = ’1’ then

counter_delay <= unsigned(writedata);
counter <= unsigned(writedata) & x"0000";
end if;
end if;
else
leds <= RAM(to_integer(display_address));
if counter = x"00000000" then
counter <= counter_delay & x"0000";
display_address <= display_address + 1;
else
counter <= counter
end if;
end if;
end if;
end if;
end process;

- 1;

end rtl;

Figure 11: de2_led_flasher.vhd: VHDL source for the LED
flash controller. This memory-maps a 16 x 16 RAM into 16 half-
words and a single “delay” register into another 16. When the
RAM is not being written, a counter steps through the contents
of the RAM, displaying it on the LEDs. The delay register sets

4 the hold time for each address.

unsigned(3 downto

= 1R o 1RO 31
ci] 0x0010_0300 (0x0010_0f £
0x0002_0000 ox000F_ff£f
flock] |
etk 0 0x0010_1000 x0010_1031
=
o 0x0010_1040 x0010_1

n
B EAlE]] S o
=

Figure 12: The final configuration of the LED flasher system

file, which is included in lab3.tar.gz.

Impose a global timing constraint by choosing
Assignments—Time Quest Timing Analyzer Wizard. Cre-
ate a clock named “CLOCK_50” on input pin “CLOCK_50”
and set its period to 20 ns (50 MHz). See Figure 14. You don’t
have to set anything else.

Compile the project and download it to the board. Congratu-
lations! You just built a computer.

2.4 Nios Il IDE

Next, create a new software project for your new computer sys-
tem. Since each system is different (e.g., different memory lay-
out, different peripherals), the software is tied to the system.

Run nios2-ide and switch the workspace to your project di-
rectory.

Select File—New—Nios Application and BSP from tem-
plate.

For the SOPC Information File name, select the
nios_system.sopcinfo file that SOPC builder generated as
part of your system. This describes the processor, memory map,
etc. of your system. When you select this file, it should set the
CPU name to “cpu_0.” Incidentally, “BSP” stands for Board
Support Package.

Name the new (software) project something like
lab3_software (this is arbitrary—it creates a directory with this
name in your project directory).

Finally, select the “Hello World” template and click Finish.
Figure 15 illustrates this.

To compile, download, and run the software, program the
FPGA using the Quartus II downloader then instruct the Nios II
IDE to download and run the program. Once you have pro-
grammed the FPGA, you can download and run new software
as many times as you like.

Program the FPGA from the Nios II IDE by selecting
Nios [I—Quartus IT Programmer. Click the Hardware Setup but-
ton, select USB-Blaster, and close the window. Click “Auto De-
tect” to make sure the EP2C35 FPGA is detected. Next, select
output_files/lab3.sof for the file to download. Select Program/-
Configure, then click “Start.” The progress meter should quickly
indicate “Successful” and the LEDs on the board should change.
You may quit the Quartus II programmer at this point.

Note that if the Nios II IDE is running and communicating
with the board, FPGA programming will fail.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity lab3 is

port (
signal CLOCK_50 : in std_logic; -- 50 MHz
signal LEDR : out std_logic_vector(1l7 downto 0); -- LEDs

SRAM_DQ : inout std_logic_vector(1l5 downto 0);

SRAM_ADDR : out std_logic_vector(17 downto 0);
SRAM_UB_N, -- High-byte Data Mask
SRAM_LB_N, -- Low-byte Data Mask
SRAM_WE_N, -- Write Enable
SRAM_CE_N, -- Chip Enable
SRAM_OE_N : out std_logic -- Output Enable
);

end lab3;

architecture rtl of lab3 is

unsigned(15 downto 0);
std_logic;

signal counter :
signal reset_n :

begin

LEDR(17) <= '1’;
LEDR(16) <= '1’;

process (CLOCK_50)
begin
if rising_edge(CLOCK_50) then
if counter = x"ffff" then
reset_n <= '1’;
else
reset_n <= '0’;
counter <= counter + 1;
end if;
end if;
end process;

nios : entity work.nios_system port map (

clk_0 => CLOCK_50,
reset_n => reset_n,
leds_from_the_leds => LEDR(15 downto 0),
SRAM_ADDR_from_the_sram => SRAM_ADDR,
SRAM_CE_N_from_the_sram => SRAM_CE_N,
SRAM_DQ_to_and_from_the_sram => SRAM_DQ,
SRAM_LB_N_from_the_sram => SRAM_LB_N,
SRAM_OE_N_from_the_sram => SRAM_OE_N,
SRAM_UB_N_from_the_sram => SRAM_UB_N,
SRAM_WE_N_from_the_sram => SRAM_WE_N
);

end rtl;

Figure 13: lab3.vhd: The top-level entity

Specify base clock settings:

Clock Name |
1 CLOCK 50
2 <<New>>

Input pin
CLOCK 50

period | Rising
20.000n5

Falling |

Equivalent SDC commands

SDC Command
create_clock -name "CLOCK_50" -period 20.000ns [get_ports {CLOCK_50}]

prev || Next || concel Help

Figure 14: Imposing a clock timing constraint

Nios Il Software Examples

Create a new application and board support package based ona software
example template

Target hardware information

SOPC Information File name: ‘/home/sedwards/svn/classes/zm3/4840/lab5/ J

CPU name: cpu_o -

Application project

Project name: [13b3 software

Use default location

Project location: ‘ J

Project template

Templates
Blank Project

Template description
Hello World prints 'Hello from Nios II" to

Board Diagnostics STDOUT.

Count Binary

Hello Freestanding

Hello MicroC/O5-1l

Hello world

R

[This example runs with or without the MicroC/OS-|
IIRTOS and requires an STOOUT device in your
system's hardware.

For details, click Finish to create the project and
- Jﬂ refer to the readme.txt file in the project L
3 [E

Next> | cancel | Finish |

Figure 15: Creating a new application and BSP from a template

#include <io.h>
#include <system.h>
#include <stdio.h>

#define IOWR_LED_DATA(base, offset, data) \
IOWR_16DIRECT(base, (offset) * 2, data)

#define IORD_LED_DATA(base, offset) \
IORD_16DIRECT (base, (offset) = 2)

#define IOWR_LED_SPEED(base, data) \
IOWR_16DIRECT(base + 32, 0, data)

int main()

{
int i;
printf("Welcome_to_Lab_3\n");

TOWR_LED_SPEED(LEDS_BASE, 0x0040);

for (i =0 ; i< 8 ; i++) {
TIOWR_LED_DATA(LEDS_BASE, i, 3 << (i * 2));
printf("writing_%x\n", i);

for (i =8 ; i <16 ; i++) {
TOWR_LED_DATA(LEDS_BASE, i, 3 << (32 - (i * 2)));
printf("writing %x\n", 1i);

}

for (i =0 ; i <16 ; i++) {
printf("reading_%x_=_%x\n", i,

TORD_LED_DATA(LEDS_BASE, 1i));
}

printf("Goodbye\n");

return O;

Figure 16: A hello_world.c file that imitates KITT from Knight
Rider (yes, I lived through the 80s). It sets the cycling speed, fills

the LED_flasher peripheral with a pattern, then reads it back to
verify it works as memory.

Run the program from the Nios II IDE by selecting the
lab3_software project, then Run—Run As—Nios II Hardware.
The first time, this should compile a number of files, download
the program to the Nios II processor system on the FPGA, and
finally run the program. The stock “Hello World” code prints
“Hello from Nios II!” on the Nios II console.

Now, replace “hello_world.c” in the software/lab3 directory
(i.e., the name of the software project you specified) with the

code in Figure 16, which exercises the LED flasher peripheral
we added earlier.

If you change the hardware and regenerate the SOPC project,
you need to update the BSP. Right-click the lab3_bsp project
in the Nios II IDE and select Nios II—+Generate BSP. Then re-
compile in the IDE and run again. Run—Run Configurations...

can help you get around mismatched system ID and timestamp
issues.

3 An FM Sound Synthesizer

This project is a stripped-down version of Ron Weiss, Gabriel
Glaser, and Scott Arfin’s Terrormouse project from 4840 in
spring 2004. Feel free to use it as reference and adapt what
VHDL you can, but make sure you understand what you are

using.

In 1973, John Chowing introduced the idea of FM synthesis
and the world has not sounded the same since. His basic in-
sight is that FM waveforms are easy to produce and are “natural
sounding.” The basic FM equation is

x(t) = sin (@t + I sin(wyt))

where x(¢) is the amplitude at time ¢, @, is the carrier frequency
(the fundamental tone we hear), @), is the modulating frequency,
and / is the modulation depth. The timbre of the sound is largely
determined by the ratio ®,/®,,, which is generally set to an in-
teger ratio (e.g., @, = 3®y,).

The fundamental frequency of musical notes follow an expo-
nential scale. The A above middle C is 440 Hz, and going up an
octave doubles the frequency.

Western music is built on a scale of twelve semitones, each in
equal ratio. Thus, the frequencies of a standard scale are of the
form

f=440.20/12

where f is the frequency in Hertz, p = 0 is the A above middle
C,p=1lisAf, p=2isB, p=3isC, p=12is the A the octave
above, p = —12 is the A the octave below, etc.

3.1 Starting Points

In the lab3.tar.gz file, we have supplied some helpful files
you should use as a starting point. The most interesting is
de2_wm8731_audio.vhd, which implements an interface to the
Wolfson WM8371 audio codec on the DE2 board. This operates
either in a test mode that generates a sinewave (a pure tone), or
as a parallel-to-serial converter.

We included two Verilog files that configure the WMS8371:
de2_i2c_controller.v and de2_i2c_av_config.v. You should be
able to just instantiate them without modification. They send
initialization commands through the two-wire I°C bus.

lab3_audio.vhd is a simple top-level module that instantiates
the audio controller in test mode and the two I>C bus compo-
nents. You can build a new Quartus project with this as a starting
point and should hear a tone on line out.

Finally, we have included a PS/2 keyboard controller.

3.2 The PS/2 Controller

The file de2_ps2.vhd is the core of an Avalon peripheral that can
read data coming from a PS/2 keyboard. This is simpler than the
one you used in lab 2 (e.g., it cannot send data to the keyboard),
but will suffice. Use SOPC Builder to create a new component
around it and connect the two PS/2 lines (clock and data) to the
appropriate pins.

This peripheral presents a simple two-word interface: reading
the first byte of the first word returns 1 if a byte is available and
zero otherwise. Reading the first byte of the second word returns
the byte received from the keyboard.

Thus, if DE2_PS2_BASE is the base address of the PS/2 con-
troller peripheral, you can wait for the next data byte using

unsigned char code;

3.3 What To Do

You have two things to design: an Avalon peripheral that can
generate an FM waveform under software control that you feed
to the supplied WMS8371 audio controller, and a C program that
translates key events from the PS/2 keyboard into commands for
your FM oscillator. Basically, make the PS/2 keyboard behave
like a dumb piano keyboard.

Using the LED flasher example peripheral, build an Avalon
peripheral that presents registers that control the oscillation fre-
quency, the modulation depth, and a simple volume control
(on/off) that lets you turn off the oscillator when no key is
pressed.

Use a sinewave lookup table to generate the waveform. Step
through it at different rates to generate the different tones.

First, develop the oscillator functionality first using Model-
Sim to test that your waveform is as you expect. Then, in-
tegrate it with the supplied audio codec controller and make a
VHDL-only design that actually generates sound. Finally, add
an Avalon interface to your oscillator, use SOPC Builder to inte-
grate a Nios II, the supplied PS/2 keyboard controller, and your
new component, and develop the software.

4 A Bouncing Video Ball

After you implement this project, you will feel a much stronger
connection with Nolan Bushnell, the inventor of the first
commercially-successful videogame, Pong. Of course, you
won’t find it quite as lucrative.

You have two things to design: an Avalon component that dis-
plays a small white circle on the screen under software control,
and a C program that controls the position of this circle.

Use the code in de2_vga_raster.vhd as a starting point for
your Avalon component. It is a simple VGA controller that
displays a large white rectangle against a blue background. It
currently does not have a bus interface. You need to add one
and change its behavior so that it displays a small circle. The
lab3_vga.vhd file holds a simple top-level for this component
that can be used to build a skeleton project.

First, adapt the video generator to display a circle instead of a
rectangle. Make sure you add signals that control where on the
screen the circle appears. While developing this, you can just
set these to constants; later software will supply them.

Your other challenge is building an Avalon peripheral. Use
the LED flasher from the tutorial as a basis for building a pe-
ripheral. First, get an Avalon peripheral working by building
the registers you plan to use in the end for your video controller
and connect them to some LEDs to verify you can communicate
from the software to the hardware.

Once you have a working peripheral, integrate your modified
video controller with it.

Finally, write a simple C program that bounces the ball around
the screen.

while (!IORD_8DIRECT(DE2_PS2_BASE, 0)) ; /* Poll the status =/

code = IORD_8DIRECT(DE2_PS2_BASE, 4);
/* Get received byte =/

