Optical Mouse Scanner
Project Design

] 16_| SDIO
seek[1) O A2051
15 | PD
wal 3 XYYwWwZ
14_|R BIN
x8[3
| 13 | Vop
YB| 4
6%0%% Hz e
YA 5 O o
O = | 11] osc out
xleo[s | ©) ©
@, 10 | GND
rera 7 | © o O
| 9 |osc N
REFB| 8 | —

Embedded System Design - Prof. Stephen Edwards
CSEE 4840, Spring 2013

Group Name: optical-mouse-scanner
David Calhoun (dmc2202)

Kishore Padmaraju (kp2362)

Serge Yegiazarov (sy2464)

Overview

In our project, “Optical Mouse Scanner,” we will be implementing a system in which a user can create low
resolution scans of a document using an ordinary optical mouse. The mouse is operated as per usual, with
the user running it over the portion of the document he/she is interested in scanning. The aggregated results
of the current scan will be displayed on a computer monitor. By observing the aggregated scan on the
monitor, the user will be able to note which areas of the scan are missing or erroneous, and rescan the
document at those locations.

The user will be able to use the left-click and right-click functionality of the mouse to begin the scan and
reset the scan, respectively. The current image being read by the optical mouse will always be displayed in
a small inset box on the monitor display, next to the larger image of the aggregate scan up to that point.
The position of the mouse will also be indicated on the aggregate scan. The figure below depicts the
described visual output:

Computer Monitor

Current Image

from Mouse Aggregate Scan
Ivku Po sk P
= P L kol pocila alry bla
o o poboetim Jim podshaals & polith
jroioan sasalli nnis pa sl o vhecleind wes

imle jold w vl e

Kdyd Drasirei dovolonk vypeiela, maenk
iwnstel povemanteld & Muasil, Tdbau &e Mo
o d hrkind Frasse, Bl ded stedvil 1
v hrbmen diakow v Maseolla, a potom i
+ odsbenti s do Puliife, hum swtim plak o
—_—

Reku LESD stul e [ran gooerdles w velileh
tncki brighdy, k& mif palsiel takd kyryecic
&, v kienim o v Alfirs tak voliki ablry |
v

Figure 1: GUI for mouse scanner project.

A standard optical mouse transmits information about the location of the mouse in a serial, packetized
format. This information can be acquired using the USB, PS/2, or direct connection to a serial pin on the
processor—for the purposes of this project, the serial pin will be used. We will acquire image data from the
optical mouse via the ADNS-2051 optical processor, which is one of a series of common optical processors
distributed by Agilent for use in optical mice. This processor includes an 16x16 pixel CCD; the image data
and XY positional data is acquired via a synchronous, half-duplex serial port on the processor. By soldering
connections to the optical processor’s clock, serial 1/0, and power status pins, we can communicate with
and exchange data with the optical processor. The ADNS-2051 data sheet outlines communication/request
protocols that we must establish to access CCD and other information. All connections to the optical
processor will require soldering ribbon cables to the optical processor to establish custom GPIO (to connect
to the Altera DE2).

The following image is a high-level block diagram of all the hardware components and how they interact:

DE2

Nios II - > SRAM
1 t)
Polling |, s VGA VGA Di
- :) - > ispla
FSM Raster pay
GPIO - JTAG/UART
| A
{ X
| o]
o| x| =
a'=|l A o
o'l O) J
1’
VOl S
} z’
1 Software
Mouse

Figure 2: System architecture and hardware interconnection.

Interconnections within the DE2 block in Figure 2 indicate communication using the Avalon Bus (also known
as the Avalon Switch Fabric).

Critical Path

Potential timing failure might arise when communicating between the ADNS-2051 optical processor and the
DE2 board. Specifically, a polling FSM is required to communicate on the serial data line of the ADNS-2051,
which will control how registers on the ADNS-2051 are accessed. The timing of how information is collected
from these registers, how it is stored, and how it is used, is critical to this project design.

Specifically, the grayscale values of each pixel in a complete 16x16 scanned image sample are sequentially
accessed and stored. When accessing registers that store the 6-bit grayscale values of each pixel in the
16x16 CCD image matrix, it is necessary to store all 256 pixels of the image matrix to associate with a
given XY location. The given XY location itself must also be stored in a timely fashion, corresponding with
the image matrix. Both of these pieces of information are stored in SRAM and accessed by software. The
image and location information, stored in SRAM, is accessed via software for sorting and aggregation. This
sorting and aggregation consists of displaying the current image (256 pixels) according to the current
location information on the VGA display.

The exact critical path comes into play when associating the timing between polling the ADNS-2051
registers, storing/updating that information in SRAM, and accessing that information to aggregate on the
VGA display. Concern rises when considering how quickly information will be collected from the mouse and
updated in SRAM on the DE2, because that limits how quickly this information can be accessed and sent

3

to the VGA display. These timing issues can be remedied with the use of buffers.

Memory Management:

Pixel Address Map

The 16x16 CCD image pixel mapping corresponds to how data is read from the ADNS-2051, and how it
physically corresponds to the captured image. The captured image is addressed from bottom right (first
pixel), proceeding upwards with increasing address, eventually ending at the top left (last pixel) of the matrix
shown below. Eight bits are required to represent all 256 pixels.

LAST PIXEL
FF |EF | DF | CF |BF | AF | OF | 8F | 7F | 6F | 5F | 4F | 3F | 2F | 1F | OF

FE |EE |DE |CE |BE |AE|9E |8E |7E |6E | 5E |4E |3E | 2E [1E | OE
FD |[ED DD |CD|BD|AD|9D 8D (7D |6D|5D 4D (3D |2D (1D |0D
FC |[EC |DC|CC |BC|AC|9C |8C |7C|6C|5C |4C|3C|2C|1C|0OC

FB |EB|DB|CB BB|AB|9B 8B |7B |6B | 5B |4B |3B 2B |1B | 0B

FA|EA|DA|CA BA|AA|9A |8A|7A |6A |5A [4A |3A|2A |1A|0A
F9 |E9 |D9|C9|B9|A9 (99 |89 (79|69 |59|49 (39|29 (19|09
F8 |[E8 |[D8|C8 |[B8|A8 |98 |88 |78 |68 |58 |48 (38|28 (18|08
F7 |E7 |D7 |C7 |B7 |A7 |97 |87 |77 |67 | 57 |47 |37 |27 (17 |07

F6 |E6 (D6 |C6 |B6 |A6| 96 |86 |76 |66 | 56 |46 |36 | 26 | 16 | 06

F5|E5|D5|C5|B5|A5(95|85|75|65|55(45|35|25 (15|05
F4 |E4|D4|C4|B4|A4|94 |84 |74|64 (544434 (24|14 |04
F3 |E3 |D3|C3|B3|A3(93|83|73|63|53(43|33|23|13|03

F2 |E2 (D2 |C2|B2|A2|92 |82 |72 |62 |52 |42 32|22 12|02

F1|E1|(D1|{C1|B1|A1|91 |81 |71 |61|51|41|31|21|11]|01

FO |EO (DO |(CO |BO|AO |90 80|70 |60|50 |40 30|20 10|00
FIRST PIXEL

Figure 3: 16x16 CCD image, physical pixel map and addresses.
Registers

The Data_Out_Lower register holds the values associated with the current pixel address being read. The
most significant bit (MSB) of this register holds a flag that indicates whether the data is valid (meaning if it's
currently being read or not) - it is high when invalid. Once a read is completed, the register is loaded up with
the next pixel value and the most significant bit is set back to low, indicating that the first six bits are ready
to be read once again. This cycle continues until the entire pixel map is handled:

Data_Out_Lower Address: 0x0c
Access: Read Reset Value: undefined
Bit 7 6 5 4 3 2 1 0

Field DO DOg DOs D04 DO D02 DOy DOg

Figure 4: Data_Out_Lower Register.

The Configuration_bits register allows us to trigger the pixel dump of the pixel array map:

Configuration_bits

Access: Read/Write

Address: 0x0a

Reset Value: 0x00

Bit

7

6

5

4

3

2

1

0

Field

RESET

LED_MODE

Sys Test

RES

PixDump

Reserved

Reserved

Sleep

Data Type: Bit field

USAGE: Register 0x0a allows the user to change the configuration of the sensor. Shown below are the bits, their default values,
and optional values.

Figure 5: Configuration_bits register.

Because we don’t want to waste buffer memory on pixel samples which match exactly previous pixel
samples (if the mouse has not moved since last polling), we will need to use the motion register to first
determine if any motion has occurred before reading:

Motion Address: 0x02
Access: Read Reset Value: 0x00
Bit 7 6 5 4 3 2 1 0
Field MOT Reserved FAULT OVFY OVFX Reserved | Reserved RES

Data Type: Bit field

USAGE: Register 0x02 allows the user to determine if motion has occurred since the last time it was read. If so, then the user
should read registers 0x03 and 0x04 to get the accumulated motion. It also tells if the motion buffers have overflowed and
whether or not an LED fault occurred since the last reading. The current resolution is also shown.

Figure 6: Motion register.

The Delta_X register provides a signed representation of the amount of x-axis movement that the mouse
experienced since last polling:

Delta_X Address: 0x03
Access: Read Reset Value: 0x00
Bit 7 6 5 4 3 2 1 0
Field X7 Xe Xs Xq X3 Xz X3 Xo
Data Type: Eight bit 2's complement number.
USAGE: X movement is counts since last report. Absolute value is determined by
resolution. Reading clears the register.

MOTION -128 127 2 - 0 +1 +2 +126 +127
| Lo | | | L |
| |)7 [I | [[2 | |

DELTA X 80 81 FE FF 00 o1 02 7E 7F

Figure 7: Delta_X Register.

The Delta_Y register provides a signed representation of the amount of y-axis movement that the mouse
experienced since last polling:

Delta_Y Address: 0x04

Access: Read Reset Value: 0x00
Bit 7 6 5 4 3 2 1 0
Field Y7 Ye Ys Ya Y3 Y, Y, Yo

Data Type: Eight bit 2s complement number.

USAGE: Y movement is counts since last report. Absolute value is determined by
resolution. Reading clears the register.

MOTION -128 -127 -2 -1 +1 +2 +126 +127

0
| | ((| | I | | ((| |

[[) [[I [7 I I
DELTAY 80 81 FE FF 00 o1 02 7E 7F

Figure 8: Delta_Y Register.

Pixel Sample Buffer Queue

In order to deal with the timing issues inherent in continual dumping of the pixels (the rest of the system
may not be able to keep up), some sort of backlog or history of pixel samples will be necessary so that they
may be referenced later. For this purpose, we have designed the concept of a pixel sample buffer queue.
One can picture this by thinking of each pixel sample as a piece of a jigsaw puzzle, and the buffer queue as
being a constantly shifting collection of these jigsaw pieces placed one atop the other. As the system
continues to poll the mouse, additional jigsaw pieces are placed on top of this collection (assuming the
mouse has moved). Simultaneously, jigsaw pieces are being pulled from the bottom of the collection and
being placed one by one into the main puzzle, or the aggregate image of the scan. This is basically a stack.

Numerical Analysis

Because the image being pulled from the CCD is in grayscale, we will only require 6 bits per pixel for each
of our pixel samples. The video frame buffer, or the aggregate image, is 128 by 128 pixels, meaning it will
support 98,304 bits and 12,288 bytes. Since we are also displaying a small inlet image corresponding to the
current pixel sample, we will need an additional 16 x 16 pixels = 1536 bits = 192 bytes. This comes out to a
total of 12,288 + 192 = 12,480 bytes. We now need to add to this the memory required by the pixel sample
buffer queue. We intend for the queue to hold at most five pixel samples - this corresponds to 192 x 5 = 960
bytes, plus one more for the 8 bits which correspond to the serial data input from the mouse peripheral.
Adding this to our previous total, we get a grand total of 13,441 bytes.

Polling State Machine

)

Image Samples

Image Aggregate

128 x 128 px

Figure 9: The polling state machine generates image samples, which are then processed into the image
aggregate.

Aggregate and Inset Image Dynamics

There are essentially two groups of registers which handle all the imaging data required for display. The first
group of registers handles the 64 x 64 pixel inset screen which displays the current pixel dump of whatever
image the mouse is sitting on. The second group of registers handles the 128 x 128 pixel accumulation of
all these pixel dumps, which is built up as the user progresses over the to-be-scanned image.

This procedure is handled with a relatively simple algorithm:

while (true){
/Iwe first fetch the front most pixel sample in the buffer queue
pixelDump = fetchNewPixelDump();

/Iwe get the x coordinate corresponding to the center of the pixel sample
pixeIDumpCenterXCoordinate = getXCoordinatePixelDumpCenter(pixelDump);

/Iwe get the y coordinate corresponding to the center of the pixel sample
pixelDumpCenterYCoordinate = getYCoordinatePixelDumpCenter(pixelDump);

/lwe add the pixel sample to the aggregate in the location corresponding to the center of the sample
aggregatelmage.addToAggregatelmage(pixelDumpCenterXCoordinate,
pixelDumpCenterYCoordinate, pixelDump);

VGA Display

64

Pixel Dump 450

128 Aggregate

128

640

Figure 10: VGA Display—resolution for frame buffer memory allocation.

Peripherals

Optical Mouse Input Peripheral and GPIO

To connect to the optical mouse hardware peripheral shown in Figure 11, we must use the general purpose
input output (GPIO) peripheral. The GPIO peripheral provides several configurable analog and digital 1O pins
for use with external hardware. These pins are configurable as inputs, outputs, or inouts, and can be
mapped to memory. To connect the image, position, and set/reset information for capturing and displaying
images to the VGA display, we required connecting several pins from the optical mouse’s ADNS-2051
processor to the Altera DE2 Board via GPIO.

Five GPIO pins are required to connect to SCLK, PD, and SDIO on the ADNS-2051, and the left and right
click buttons (L/R) of the mouse. These serial pins are addressed according to their physical location on a

40-pin connector on the DE2. The exact address mapping—which pins we will use—is still under
consideration.

Each pin is a serial connection—SCLK and SDIO are part of a serial peripheral interface (SPI) protocol
connection/communication, and PD, L, and R are enables for the polling state machine. PD is a device

enable that is always set high—some optical mice can use this enable to enable low power mode. L and R

will be low/high depending on if the left and right mouse buttons are pressed/not pressed (active low). The
GPIO will communicate all values obtained/written to its pins via the Avalon Bus to/with other peripherals.

These communications include sending PD, L, and R to the polling state machine, and writing/reading data

to and from SRAM over SDIO. The typical operating frequency for the serial clock port on the ADNS-2051 is
4.5 MHz, which means that a PLL will be used to communicate a 4.5MHz clock over SCLK on the GPIO to

the ADNS-2051. Figure 12 shows the interconnection of GPIO to the mouse hardware.

Left and right click controls three states of operation for the system: idle, scanning, and reset. When the left
button is pressed on the mouse, the mouse will enter a scanning state, where image and position
information is relayed through the GPIO to SRAM. When the right mouse button is pressed, the system
resets, clearing the VGA display—this takes precedence over left click. When neither button is pressed, the
system is in an idle state, where is does not poll the ADNS-2051 for new image or position data. These
states are shown in Figure 13.

TOP X-RAY VIEW OF MOUSE

LB RB

POSITIVE ¥

POSITIVE X

Figure 11: Mouse peripheral with embedded ADNS-2051 optical processor.

OUT_pint PD,
INOUT_pin1 | SDIO
GPIO our_pinz SCLK= Mouse
IN_pin1 |« L
IN_pin2 | R

Figure 12: Mouse peripheral hardware to GPIO interconnection.

[Reset,Scan] = [XX]

Figure 13: FSM for left and right click.

Polling State Machine

To interface with the mouse peripheral a polling state machine (PSM) is implemented in hardware on the
DE2 board. The details of the PSM are given in Figure 14. As described before, the PSM communicates
with the ADNS-2051 using the GPIO peripheral of the DE2. Implemented in hardware will be a serial
peripheral interface (SPI) protocol for writing to and reading the registers of the ADNS-2051. The registers of

9

interest have already been described in the prior text. As shown in Figure 14, the main loop of the PSM
continually polls the Motion register of the mouse. Within the Motion register, the MOT bit is raised high to
indicate that the mouse has moved. The PSM then reads the relative X and Y movement of the mouse and
transcribes the information to a new image sample stored in the SRAM. The PixDump bit in the Pixel Dump
register is then set high to initiate the Pixel Dump from the ADNS-2051. As described before, the
Data_Out_Lower register will continually feed the progressing pixel values for the pixel map (Figure 3).
These pixel values are stored in the appropriate location of the image sample in the SRAM. Once the full
pixel map has been read the PixDump bit is reset and the loop reiterates.

write Configurations_bits register:
Sleep = 1 [Always awake]
Y
o
> read Motion register MOT ==
i MOT ==
A
signed -
read Delta_X register +—> ert}t(a I;noigrginsaatgnple
L . d
signe .
read Delta_Y register +—> Wnt$ I&i?gi: aatg'ple
Y
write Configuration_bits register:
PixDump = 1
A
read Data_Out_Lower register; __
init pix_addr = 0X00 Data_Out_Lower(MSB) ==
]
pix_addr != OxFF ! Data_Out_Lower(MSB) ==
. . Write Image Sample
PIX_addr ++ 7 (pix_addr, pix_value)
! pix_addr == OxFF
write Configuration_bits register:
PixDump =0

Figure 14: Algorithm for acquiring image samples from ADNS-2051
VGA Monitor Output

To display the image information on the VGA display, we require a VGA raster controller similar to the one
implemented in Lab 3. The controller will update pertinent VGA signals, including the clock (~25 MHz,

H_SYNC, V_SYNC, BLANK, SYNC, and the RGB level of the current VGA pixel. Once implemented in

hardware (via VHDL), this peripheral will be controlled with software that updates the VGA signals. The VGA
signals are stored and accessed as registers and/or counters. This peripheral communicates to the SRAM

peripheral via the Avalon Bus.

10

Input obtained from the SRAM includes XY location and the current grayscale pixel value. Software is
required to convert the grayscale pixel to 10-bit RGB (as required by the VGA hardware controller) and
associate this pixel with its XY location according to the VGA signals. XY location is translated to VGA
signals via counters for horizontal and vertical position. These counters, and other internal signals required
for translating XY position to VGA display position are internal to the VGA controller. The following diagram
outlines the basic VGA controller structure:

—— VGA_CLK
—— VGA_HS
clk —]
—— VGA_VS
reset
VGA_SYNC
X_position ﬁr VGA Controller
—— VGA_BLANK

Y_position Agh

v~ VGA R
grayscale ?ﬁ 10 -

o\~ VGA G
o\ VGA_B

Figure 15: Block diagram of the VGA module.

References

[1] Avago ADNS-2051 Optical Mouse Sensor/Processor Data Sheet.
http://www.avagotech.com/docs/AV02-1364EN

11

http://www.google.com/url?q=http%3A%2F%2Fwww.avagotech.com%2Fdocs%2FAV02-1364EN&sa=D&sntz=1&usg=AFQjCNEbnKMO9SrJ_pjsbSNjqS3efHhBsA

