

Break The Bricks
Project Design

CSEE 4840 Embedded System Design

Prof: Stephen A. Edwards

Lianhao Qu(lq2140)

Chong Li(cl3064)

 Bin Xie(bx2123)

 Zimeng Chen(zc2240)

Yuanhan Yang (yy2437)

I. High-level overview of the project

This project is aimed to build a classic video game named Break The

Bricks.

As shown in Figure 1, the game screen on the left part of the screen in

the game zone, the player can control the paddle with the incremental

rotary encoder to prevent the ball from hitting the bottom of the screen.

Remove all the bricks to level up.

On the right part of the screen is the status zone with scoreboard, life

bars and level mark. The scoreboard shows how many bricks the player

already broken; life bar shows the number of chances the player remains;

and the level mark shows the level of the game.

Figure 1. The game screen

Basic Realization

 Players control the paddle using rotary controller.

 Game interface is shown on the VGA.

 The player can start and pause during the game.

 The collision between the paddle and the ball is specular reflection.

 The initial start up speed is random.

 Theoretically, the ball can pass every site in the game zone; there is no

bug point.

II. A high-level block diagram of all the hardware components

and how they interact

Figure 2. The block diagram of the system

III. An analysis of the memory requirements of your system

This project uses ROM to store all shapes in this game except for the screen

frame. The ball, paddle, bricks, numbers and letters are all stored in ROM.

We use MegaWizard Plug-In Manager tool to create ROM by transferring

the .mif files.

IV. A detailed discussion of each unit

Main Logic Controller:

 This main logic controller can handle the input signal from the incremental

rotary encoder. They are left signal, right signal, start/pause signal and reset

signal. It can also control how the status of the game switches between start

status, pause status, reset status and stop status. Besides these, the main logic

controller will calculate the situation of the paddle and bricks by interactive with

Fly, Transfer and Brick controller.

 The incremental rotary encoder has two channels and one push switch. When

the rotary controller is rotated, A and B, as two input signals will produce a

sequence listed in the figure 3. Based on the rotation direction the signal on

encoder pin B will be either low for clockwise turns or high for counter clockwise

turns. [1]One click of the push button generates the start/pause signal. Double

click of the push button generates the reset signal. We define double click by

receiving exactly two push signals within 0.1 ms after a software denounce

process.

Figure 3

Fly Controller:

 This Fly controller will receive the 2D location of the ball, and check whether

the ball hits with the paddle or the bricks. And then calculate the moving

direction and the speed of the ball after any hitting.

Transfer Controller:

This Transfer controller will receive the 2D location of paddle and ball from

Main logic controller as well as 2D location of bricks from Brick controller. It

will also read the graphic data from ROM, According to these locations, generate

the corresponding RGB data with a 25Mhz’s clock.

Brick Controller:

 This Brick controller will receive the 2D position of the ball, and according to

the position of the bricks, handle the collision effect between the ball and brick,

and return the hitcase of collision.

VGA Controller:

 The VGA controller will be based on what we learned in Lab 3. It will receive

the RGB data from Transfer controller, draw the image and sync signals with a

25Mhz’s clock.

V. I/O peripherals and data paths

1. Main logic unit

This is the central part of the system. It handles all the signals coming

from outside peripherals and controls each part of the system. It also

deals with all the states such as pause, start and game over. There are 4

outputs and 4 inputs.

peripheral data type function

clk0 in std_logic 50MHz clock

pause in std_logic pause by hitting the button

left in std_logic left route

right in std_logic right route

R/G/B out std_logic color signal control

hs/vs out std_logic screen scan

state_led out std_logic_vector(2 downto 0) system state signal

hit_led out std_logic_vector(3 downto 0) ball hitting signal

2. Brick unit

peripheral data type function

clk in std_logic clock

life in std_logic_vector(1 downto 0) life bar

level in std_logic_vector(1 downto 0) level

state in std_logic_vector(2 downto 0) state

score in std_logic_vector(7 downto 0) score

bar_location in std_logic_vector(9 downto 0)
the x location of the left

terminal of the paddle

bar_length in std_logic_vector(9 downto 0) the length of the paddle

ball_x in std_logic_vector(9 downto 0) x location of the ball

ball_y in std_logic_vector(9 downto 0) y location of the ball

scan_x in std_logic_vector(9 downto 0) x location of the scan

scan_y in std_logic_vector(9 downto 0) y location of the scan

brick_dx in std_logic_vector(9 downto 0)
relative x location of the

brick

brick_dy in std_logic_vector(9 downto 0)
relative y location of the

brick

r0 out std_logic the r of this point

g0 out std_logic the g of this point

b0 out std_logic the b of this point

3. Transfer unit

The function of transfer unit is to control the VGA screen, transferring

the position of one pixel from (scan_x, scan_y) to the color of it by (R, G,

B). There are 7 inputs and 3 outputs.

peripheral data type function

clk in std_logic clock

velocity_dx in std_logic_vector(9 downto 0)
the horizontal component

of the velocity

velocity_dy in std_logic_vector(9 downto 0)
the vertical component of

the velocity

ball_x in std_logic_vector(9 downto 0) x location of the ball

ball_y in std_logic_vector(9 downto 0) y location of the ball

scan_x in std_logic_vector(9 downto 0) x location of the scan

scan_y in std_logic_vector(9 downto 0) y location of the scan

brick_dx out std_logic_vector(9 downto 0)
relative x location of the

brick

brick_dy out std_logic_vector(9 downto 0)
relative y location of the

brick

hitcase out std_logic_vector(3 downto 0) the situation of the hit

