

Ah-Ah-Piu
Spring 2012 CSEE 4840 Embedded System Design

Department of Electrical Engineering
School of Engineering and Applied Science,

Columbia University in the City of New York

Ji Pei
jp3242@columbia.edu

Xiaolong Jiang
xj2137@columbia.edu

Junlin Lu
Jl3925@columbia.edu

Nan Li
nl2411@columbia.edu

Hongsen Yu
Yh2340@columbia.edu

March 2012

Overview

The goal of our project is to build an old-fashioned voice-controlled
video game as suggested in the picture, in which a FPGA, a voice sensor
and a monitor might be used.

Description
The whole idea of the game is about one character (maybe us, or like the
aircraft in the picture) traveling through all the incoming enemies
(probably all the amazing lab sessions and fabulous codes assigned by
be-loved Edwards). The movement of the character is controlled by the
voice of the player. As the name suggested, the player either makes
continues noise like ”Ah…Ah” to keep the character rising up or be quiet
to drop down the character a little bit. Besides just avoiding the collision
with enemies, the player can shout out “Piu” to fire a bullet to destroy the
incoming enemies. During the game, all the enemies travel towards the
character in a pre-programmed way while the character just moving up
and down alongside the left edge of the screen.

To be specific, our system requires a VGA monitor output to display the
progressing game, and a microphone to take in the voice instruction of

	 Figure1	 The	 Ah-‐Ah-‐Piu	 Game	 Scene	

the player. The received audio data is preprocessed on the hardware to
determine what action should be taken by the character on the screen, our
hardware logic will examine the input audio signal (after A/D convert)
periodically on a base of 500ms, if it decides it is a long voice (longer
than 500ms), a 11 flag will be sent to software, if there is no input, the
flag is 00, besides, if it is a short burst, 01 will be sent. Then the software
will invoke the C-coded program accordingly which enable the character
to go up, drop down or fire a shot. Moreover, the software also have to
handle the test of whether a collision occurs, calculate the score, and keep
track of the player’s game status. On-board memory space might be
needed to store the models of our character, the background picture and
the source C code.

Diagram

	
	
	

	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	
	
	
	
	

SRAM	

SRAM	
CONTROLLER	

	
AVALON	 BUS	

NIOS	 II	 	
PROCESSOR	

VGA	
CONTROLLER	

AUDIO	
CONTROLLER	

MIC	 VGA	
DISPLAY	

	 	 	 	 	 	 Figure2	 The	 Design	 Diagram	

Hardware	 Peripheral
Our system is mainly based on the Altera DE2 board, it takes a VGA
monitor for display, and a microphone for game control input. Besides,
audio components within the DE2 board as well as memory are also
needed. The diagram shows above give a general idea about the
interconnection logic of our design. As we can see in here, the NIOS II
processor has the control over the whole system, while the Avalon bus
serves as the communicating medium between different hardware
components. Further detail about each hardware components and the
memory space they require are as follows.

1. VGA controller
The VGA raster component within the VGA controller communicates
with the Avalon bus and display the video on the monitor during the
whole process. Within our design, the video content continuously appears
on the screen is generated picture by picture along the time. The
resolution of the monitor is 640*480, as a compromise of the limited
on-board memory space and a better appearance, we decide to divide the
screen into basic block of 4*4 pixels, thus there will be 160 blocks
horizontally and 120 blocks vertically. Each colorful pixel has a 3-bit
RGB vector.

RED GREEN BLUE YELLOW CYAN WHITE BLACK
100 010 001 110 011 111 000

There are three image modules in total should be stored within the Flash
memory: firstly, our character is 10*10 blocks figure, which will take up
approximately 10*10*2*2*2/8/1024=0.1KB; secondly, the obstacles
moving towards the character also is with the same size; thirdly, the
BOSS which will show up at the end of the game enlarge to 40*40 blocks,
so it needs 6.4KB to store in the Flash. Besides the modules, a
background picture and a GameOver scene will also be kept in the Flash
memory, where each will use 20KB space.

As the game goes on, the hardware logic will send an instruction to the
software every 500ms, in order to make the game display looks

	 	 	 	 	 	 	 	 	 Table1	 RGB	 Vector	 	

seamlessly, 30 pictures will be drawn to the screen within the interval. So
a 20KB buffer will be required in the SRAM.

2. Audio Controller
2.1 Audio Output:
As we learned in lab3, the WM8731 Audio CODEC provided on the DE2
board, including ADC and DAC parts, can be used to analyze or change
the scales of tunes. In our design, however, we just need it to load and
play the music we stored on the board. Our games need five different
tunes:

	
	
	
	
	
	
	
Since the expensive SRAM memory space should be saved for real-time

Tune1 Background audio
Tune2 Fire a shot
Tune3 Collision
Tune4 Bullet explore an obstacle
Tune5 Boss laugh

Figure3	 VGA	 Display	 Distribution	

	 	 	 	 	 Table2	 On-‐board	 Stored	 Music	

video storage which will be accessed more frequently, we plan to store
the audio data in the Flash.
	
	
	
2.2 Audio Input
Within our design, both microphone-in and line-out ports will be used for
player’s voice input. Here The Wolfson WM8731 audio CODEC is
configured in the master mode, where the audio CODEC generates
AD/DA serial bit clock and the left/right channel clock automatically. To
set the sample rate (typically at 48kHz) the WM8731 is controlled by a
serial I2C bus interface. We will choose Microphone that collect data
with frequency from 30hz to 16khz, which is tailored for human voice.
The board input has +6dB to -34dB volume level adjustment. In the case
of large white noise, we will then filter the audio input by a volume
threshold.
	
	

Software	 Peripheral
For the purpose to run the game more fluently, we should carry out most
calculation on the hardware side. As discussed above in the description,
after the hardware logic make the decision about the input audio signal, a
flag will be sent to the software to instruct what it should do. At normal
case, the software should generate the distribution of obstacles on the
screen in real time, which will appear likes moving towards the character
in a configured lane. Besides, the software will test whether a collision
between the character and an obstacle occurs instantly. It will be the same
logic to test whether a fired bullet will eliminate an incoming obstacle.
Every time a collision or an explosion happens, The software should
conduct the hardware to play the according tune. Further more, during the
game, the player’s score and status will be shown on top of the screen,
these figures will be also calculated by related codes.
	
	

Critical Path Of Design
Our critical path is when our character collides with obstacles. Since that
when this situation occurs, at first, the software have to invoke the images
about collision then hardware have to transfer tune 3 instead the
background sound from flash. In other words, the hardware should wait
for the signal from software to make a change. It’s reading data from
memory and put a signal into bus that limit the speed.

Milestones
	
Milestone1:
1.Create and edit image for different models
2.Build sprite structure
	
Milestone2:
1.Create and edit various sound effect and BGM
2.Complete the component for collection of sound data
3.Finish game logic design (going up/down, enemy engaging, fire,
collision)
4.Display the graphic into screen

Milestone3:
1.Finish noise filtering
2.Create menu and miscellaneous object in the screen
3.Add sound effect to the game
	
	
	

