COMS W4115 Project Proposal: ChordZ

Rafi Hasib

rah2175@columbia.edu

Due Date: June 6, 2012
Resubmitted: June 18, 2012

Introduction

Harmonizing offers a creative way to enhance songs, producing chords that align with the
melody. Many musicians either use their ear or a musical score to identify appropriate notes.
However, this requires considerable skill, memory, and some working knowledge of music
theory. Alternatively, one can use music notation software, but the tools that offer this
intelligent functionality require significant RAM, configuration by the user, and repeated point-

and-click entry to generate a simple output.

Language Overview

ChordZ simplifies the process by allowing the user to type notes of a melody in an intuitive
language. Based on the context of the notes and additional criteria provided by the user, it then

determines an appropriate harmony for the melody.

Output will first be specified with in an equivalent textual format, similar to the input. Once
converted to LaTeX, it can utilize the MusiXTeX suite to visually represent the melody and

harmony within a musical score.



Sample Tokens/Operators

e Notenames:a,b,c,d, e, £,g,r ('r' designates a rest)

e COctave: 1,2,3,4,5, ¢ (voices do not typically go above or below these limits)

e Notevalue: 1,2,4,8, ...,¢ (i.e. whole note, half note, quarter note, eighth note)
e Accidentals: ¢, #, ¢ (flat, sharp, none)

e Chord types: maj,min, 7,maj7,min7, ¢

¢ Roman Numerals: 1,11,111,1V,V,VII,VII,i,1ii,1ii,iv,v,vi,vii

e Group delimiters [], (), | (beaming, tying/slurring, barline)

e Function Calling: {}

Note Representation

In general, a note will be represented as: <value><name><accidental><octave>, using
whitespace as delimiters. For simplicity, if the expression does not include a value or operator,
it will carry the previous note value and octave. The collection of notes will be stored in a string

array.

Chord representation

Chords (either collected in parallel or calculated following note entry) will be stored in three
parallel string arrays. The user can provide chords using chord names or Roman numerals, but
the compiler will create the array of chord member lists to determine notes for the harmony.

e Array of chord names (e.g. Cmaj, Dmin)

e Array of chord members (e.g. {c,e,g}, {d,f,a})

e Array of Roman numerals (e.g. I, ii — with respect to C major)



Algorithms

Depending on addition information specified by the user (e.g. chord names, key, Roman
numerals), the compiler determines certain essential data before calculating harmonies that
align with the melody. The following descriptions and pseudocode outline the different type of

harmonization implemented by the compiler.

Chord Application

If the user does not specify chords for each note, the compiler uses the notes and key to attribute

chord names! and Roman numerals2.

get (key, chords) /* key determines valid chords */
apply (chords) /* favors tonic, (sub)dominants */
Standard Harmony

The user indicates the desired number of harmonizing voices, which affects how the compiler
generates voice parts. Where possible, the first harmonization will favor thirds and sixths with
respect to the melody. The inclusion of a second harmony will fill the chord to produce

complete triads.

get (key, chords)

calculate (tenor) /* favor thirds and sixths */
if hvoices = 2
£fill (voice) /* favor fifths over doubled root */

Four-Part Harmony

Given the melodic line and either (1) chords, or (2) key and Roman numerals, the compiler

attributes chords in a variant of classical and barbershop styles for soprano (melody), alto,

! Chord names (e.g. Cmaj, Emin) are absolute names, independent of the key.
2 Roman numerals (e.g. I, iii) are relative names, dependent on the key. Certain chords within the key are

more likely occur than others, allowing the compiler to probabilistically attribute chords.



tenor/baritone, and bass, following 18™ century style conventions of complete chords, contrary

motion, and avoidance of voice doubling.

get (key, chords)

calculate (bass) /* favor roots and fifths */
fill (voice) /* £1l1ll remainder of chord */
Example
Input

The following input represents an excerpt of the tune “Twinkle, Twinkle, Little Star”.

key{cmaj} 4c4d cgg | aagr | £ffeedd?2c

Output

The output shown satisfies the basic, single-voice standard harmony under minimal conditions.
Without any additional information (such as key signature or chords), the program uses the
notes provided to determine a key (C major) before approximating chords (e.g. C major, F
major, G major). Based on the chords, it finds members of prevalent chords that generate a

musical line and produces the voice on its own staff.

ded eee | £ffer | ddccb3bg]

H | |
A ! I ] i ! & I I f f T T
o9+ ¢ o < o7 | —
- P o
[Y) o s S
i . . . . T I .
y 4 | f | f i | f & I I . .
{en— i | i | | i P i | f | I I
ANS" P P & r r & | ] I | | |
[Y) L4 v 4 4 - &
T




