
Language Reference Manual

1 Program source

1.1Whitespace

Whitespace characters such as spaces and tabs are used to separate tokens in the
input and are discarded during parsing.

1.2Comments

 Single line and multi-line comments are supported. Single line comments are
 denoted by the characters // and continue to the end of the line. These may be
 placed on the same line as the source code.

 Multi-line comments begin with a /* and end with a */. They may not be embedded
 within each other.

1.2Semicolons

 Semicolons are used to terminate statements. Multiple statements may be placed
 on the same line by placing semicolons between them. Multiple consecutive
 semicolons are considered as a single statement terminator.

1.4Identifiers

All identifiers begin with a letter and may be followed by zero or more letters, digits
or underscores. Identifiers are case sensitive.

1.5 Literals

 Literals in the language can be integers, characters, strings, booleans or floating
 point numbers.

1.6Keywords

 The following identifiers are reserved as keywords in the language:

 char int float string boolean

 for while if else break

 continue true false return function

 Attribute Part Composite

1.7Other tokens

 The following characters have meaning in the language:

+ - / * = > < >= <= ==

! != || && { } () []

, .

2 Fundamental types

2.1Integers

An integer consists of one or more consecutive digits. Integers are assumed to be
base 10 and may not begin with a zero.

2.2 Floats

 These are arbitrary precision decimals and are composed of three parts, all of
 which are optional:

• An integer part composed of digits
• A decimal part consisting of a period followed by digits
• An exponent part consisting of an e or E, followed by an optional + or -, followed

by digits

 Either the integer or the decimal part must be present.

2.3Characters

 Characters consist of a single character enclosed in single quotes

2.4Strings

 These are sequences of characters. String literals are sequences of characters
 enclosed in double quotes. The double quote character is escaped with a \

2.5Booleans

 The boolean constants true and false are language keywords and represent logical
 truth and falsehood

2.6Attributes

 Attributes are labels for primitives associated with parts. Attribute definitions must
 specify a primitive type.

 Examples of attribute definitions are:

Attribute Sequence string;
Attribute Strength float;

3 Composite types

3.1Arrays

 These are one dimensional fixed length zero indexed arrays. Arrays are
 homogeneous ie. they may consist of objects of a single type. Array literals may
 be declared by enclosing a list of objects in square brackets and separating the
 elements by commas.

3.2Parts

 Part definitions define prototypes for standard biological parts. Parts can be
 instantiated only after the prototypes are defined. Parts have attributes which
 must be defined before parts can be defined.

 Attribute Sequence string;
 Attribute Name string ;
 Attribute Compatibility string;
 Attribute Strength float;

 // define the prototype for promoters
 Part Promoter(Name, Sequence, Compatibility, Strength);

3.3Composites

 Composites represent composites of biological parts or other composites. The
 same part or composite can be reused in a composite declaration.

 // instantiate the BioBricks promoter BBa_I14018 based on the prototype
 // declared above
 Promoter Bba_I14018(“BBa_I14018”, “tgtaagtttatacataggcgagtactctgttatgg”,
 “RFC21”, 0.5);

 // instantiate the BioBricks RBS Bba_J63003
 RBS Bba_J63003(“BBa_J63003”, “cccgccgccaccatggag”, “RFC21”);

 // instantiate the BioBricks terminator BBa_B1002
 Terminator Bba_B1002(“BBa_B1002”, “cgcaaaaaaccccgcttcggcggggttttttcgc”,
 “RFC21”);

 // create an assembly, represented by a composite; composites may contain other
 //composites
 Composite Assembly1(Bba_I14018, Bba_J63003, Bba_B1002);

4 Expressions

4.1Arithmetic expressions

 Arithmetic expressions consist of binary operators, the unary negation operator and
 parenthesis. Parentheses have the highest precedence, followed by the unary
 negation operator, followed by * and /, and then + and -. Arithmetic operations may
 be performed on integers as well as floats.

4.2String concatenation

 The + operator is overloaded for performing string concatenation.

4.3Relational expressions

 These consist of expressions involving >, <, >=, ==, != and <=. These operations
 may be performed on integers or floats, however operations on floats may not yield
 expected results.

4.4Logical expressions

Logical expressions involve the !, || or && operators. These are performed on
boolean operands and return the boolean values of true or false.

4.5 Attribute access expressions

 Part attributes may be accessed using the dot operator as in:

 if (promoter1.RelativeStrengh > 5.0) ….

4.6 Composite part access expressions

 Parts within a composite may be accessed using the square bracket notation.
 Parts within a composite are zero indexed. Using the declarations in 3.3,

 Promoter Bba_I14018 = Assembly1[0];

4.7Array access expressions

 Array are zero indexed, and their elements can be accessed using the square
 bracket notation.

4.8Function calls

 Functions are invoked by specifying the name of the function followed by a comma-
 separated list of parameters contained within “(“ and “)”. The parameter list is
 optional but the parentheses are not. Functions may have return types, in which
 case, the expression has the same type as the function.

4.9Identifiers and literals

 As specified in 1.4 and 1.5

5 Statements

Statements could be expressions or one or more of the statement types described
below and terminated by a semicolon. If the statement consists of an expression only,
its value is discarded. Statements may be grouped in blocks. Program flow proceeds
from top to bottom, unless a conditional or iterative statement is encountered.

5.1Statement blocks

 Statements may be grouped between { and }. Each statement within the block must
 be terminated with a semicolon.

5.2Prototype definitions

 As defined in 3.2

5.3 Declarations

 All variables must be declared before they can be used. Declaration may be
accomplished in conjunction with assignment. The declaration syntax is:

 <type> <identifier>;

 To declare an array, use:

 <type> <identifier>[<size>];

 For declaration with assignment:

 <type> <identifier> = <expression>;

 examples:

int myVar;
int myVar2 = 10;
int myArray[5];

int myArray2[5] = [1,2,3,4,5];

5.4Assignment

 The assignment operator = is used to assign an expression to an identifier.

 Identifiers must be declared before they can be assigned. Declaration and
 assignment may be performed in the same statement.

 For the variable declared in 5.3, we have:

 myVar = 10;

5.5Conditional statements

 The if statement may have an optional else part. The two forms of the if statement
 are:

 if <boolean expression> <statement>
 if <boolean expression> <statement> else <statement>

 If-else semantics follow C semantics. <statement> may include multiple statements
 within { and }.

5.6Iterative statements

 These have two forms:

 while (<boolean expression>) <statement>

 for (<expression-1>; <expression-2>; <expression-3>) <statement>

 These follow C semantics.

5.7Function definitions

 These follow the syntax:

 <type> function_name <variable list> {
<statement>

 }

 Functions may not be nested or recursive. The return type may also be an array
 or a user defined type. Functions may return void.

5.8Return

 The return statement occurs within function definitions and may return void or
 an expression.

5.9Break

 The break statement occurs in loops and returns control to the statement following
 the loop.

5.10 Continue

 The continue statement occurs within loops and causes program flow to begin
 the next iteration.

5.11 Constraints

Constraints define rules for constructing assemblies. Composites are parsed
 and validated against constraints.

// examples of constraints
Start → <PlasmidBackbone><Prefix><Cassette><Suffix>
Cassette → <Promoter><Cistron><Terminator>
Cistron → <RBS><Gene>

In this manner the programmer is constrained to build only meaningful
 assemblies.

6 Predefined functions

6.1validate()

 The validate function validates composite assemblies against the constraints that
 have been defined.

6.2printSequence()

 Prints the genetic sequence of a part or an assembly of parts.

6.3printDiagram()

 Prints a schematic diagram of an assembly by associating an icon with each part.

6.4generateMarkup()

 Generates XML markup representing the assembly, which can be input to external
 simulation software.

Example usage of these function is as follows:

// validate the assembly against the declared constraints and then print sequence, print
// diagram and generate markup

 if (Assembly1.validate()) {
Assembly1.printSequence();
Assembly1.printDiagram();
Assembly1.generateMarkup(“/usr/local/home/user1/assembly1markup.xml”);

}

