
MASL
Multi-Agent

Simulation

Language

Jiatian Li jl3930

Wei Wang ww2315

Chong Zhang cz2276

Dale Zhao dz2242

COMSW4115 Programming Language & Translators

Final Project

MASL OVERVIEW

WHAT & WHY

Motivation

 A system where the interactions between autonomous

agents (individuals) are simulated

 Global patterns and effects of such interactions as a whole

can be observed and assessed

 Example: Game of Life (as a cellular automaton), Boids,

Heatbugs

 Applications: Physical world reality simulation, cryptology,

etc.

The Agent-Based Model (ABM)

Motivation

Examples of cellular automata

 Conway’s Game of Life Heatbugs

Motivation

 Facilitate building ABMs without having to start from

scratch or engaging complex domain toolkits

 Particularly, we focus on developing cellular automata.

MASL – Multi-Agent Simulation Language

 Imperative programming language

 Static and strong typing system

 Functions as first class objects

 Compound types supported: objects and lists

 Objects as state machines

 Simple simulation environment

Features of MASL

 Each individual in the system will act according its

observation of local environment as well as its inner

state. State machines are a perfect model for this.

Features of MASL

Why state machines?

 In a simulation, individuals will update themselves

(take actions) and visually illustrated. All these

individuals will be represented using objects and

stored in lists for the simulation environment to

step through.

What is a simulation?

A SHORT TUTORIAL

ON MASL

Basic Data Types & Lists

 Integer (32-bit) int i = 19;

 Double (64-bit) double pi = 31.4e-1;

 Char char c = ‘a’;

 Boolean bool flag = true;

Basic Data Types

Lists

 Defining a list [int] fib = [int] {1, 1, 2, 3, 5, 8};

 A string is essentially a list of char elements:

[char] str = “hello world”;

Functions as First Class Objects

Functions in MASL can be stored in variables, and used

like a variable.

int max(int a, int b) {

 if (a > b) {

 return a;

 }

 return b;

}

fun ((int, int):int) f = max;

Objects as State Machines

An class consists of

 Any number of statements that defines members of its

instances and does initialization upon instantiation

(equivalent to a constructor), and

 Any number of states.

An object is an instance of a class.

class Guard {

 state Defend {

 if(enemySighted()) this->Attack;

 }

 state Attack {

 if(!enemyEliminated()) shot();

 else this->Defend;

 }

 bool enemySighted() { /*...*/ }

 bool enemyEliminated() { /*...*/ }

}

Class Guard g = class Guard();

if(g@Attack) { /*...*/ }

More on Lists

Lists are able to accommodate elements of any data types.

[class Programmer] team = /*...*/;

[[double]] matrix = {

 [double] { 1, 0, 0}

 [double] { 0, 1, 0}

 [double] { 0, 0, 1}

};

Functions can be applied to elements of a list.

int n = list:.count(fun (int n):bool { return n > 3; });

A for-loop using list iterator:

for (int n : list) {

 sum = sum + n;

}

for (int i = 0; i < list.size(); i = i + 1) {

 sum = sum + list:[i];

}

Equivalent to:

MASL Simulation

A MASL program is essentially a simulation. Currently we

only support the simulation of cellular machines.

class Cell {

 /* ... */

}

[class Cell] container;

/* Fill in the container. */

// Set the attributes of the simulation environment.

cellSize = 10;

nx = 100;

ny = 100;

interval = 100;

run(container);

Code Sample

int gcd(int a, int b) {

 if (b == 0) {

 return a;

 }

 else {

 return gcd(b, a % b);

 }

}

printInt(gcd(2,14));

Greatest Common Divider

bool isEvenNum(int num) {

 return (num%2 == 0);

}

[int] list = [int]{1, 2, 3, 4, 5, 6};

[int] evenList = list:.filter(isEvenNum);

for(int i : evenList) {

 printInt(i);

}

Filtering a list

DEVELOPING

MASL

Scanner

Parser

AST

Semantic Check

Translator

Compiler Implementation

 Scanner recognizes the tokens

 Parser checks the syntax correctness of the

token strings building up the program

 AST is generated after parsing

 Check the semantic correctness of the program

 Translate MASL into Java source, and then

compile it into Java bytecode

 MaslList Base class of all MASL list types.

 MaslFunction Base class of all MASL function types.

 MaslClass Base class of all MASL class types.

 MaslSimulation Base class of MASL simulation environment.

Java Classes for Runtime Support

Unit Tests for Individual Features

SUMMARY

LESSONS LEARNED

 A repository on GitHub was established for the collaboration of

this project.

 Establish code framework and module-wide interfaces first, then

divide the work and develop in parallel.

 Exchange ideas in group meetings or communicate with instant

messaging tools while coding.

 Each member is responsible for an individual part and has good

knowledge about others’ work.

COLLABORATION

 Start simple. Start early.

 Experiment with code while designing the language.

 Interfaces between modules should be well defined from

the beginning.

 Perform unit tests frequently and thoroughly.

 Expect failure to implement some features…

PROJECT PLAN

