
iCalendar Language

Mengfei Ren(mr3258)

Chang Hu(ch2950)

Yu Kang(yk2540)

JiaCheng Chen(jc3940)

Yun Feng(yf2294)

Motivation

 Fast-paced modern life.

 Build our own event models.

 Manage events in our calendar.

Introduction To iCalendar Language

Simple language for event and calendar

processing.

 Simple, sparse syntax

 C- like structure

Provide simple structure for programmer to

manipulate event and calendar.

iCalendar Language Example

Event myEve{

int time;

string name;

string place;

}

void main(){

myEve e1 = [19,"plt presentation","cs building"];

print(e1.time);

}

Features of iCalendar

 Event and Calendar as two primary data

types.

 Full set of operators provided for building event

and store it in calendar.

Language Tutorial

-iCalendar Data Types

 Int

 Float

 String

 Bool

 Void

 Event_type

 Calendar

Language Tutorial

-iCalendar Expressions

 Literal

IntLit(i), FloatLit(f),

BoolLit(b), StringLit(s)

 Id

 Binop and Uniop

 Assign

 Call

 Noexpr

 ObjValue

myEvent e =[“2012”, “CS”];

Calendar c = [e1,e2,e3];

Language Tutorial

-iCalendar Statements

Statement:

 Block stmt list

 Expr expression

 Return expr

 ReturnVoid

 If if(expr * stmt) * {stmt}

 For for(expr * expr * expr)* {stmt}

 While while(expr) * {stmt}

 Vardecl var_decl

 Empty

Program:

 Event define list

 Global Variable declarations

 Function list

Language Implementation

 Scanner
 Recognizes language tokens

 Parser
 Consumes tokens and

validates program in
syntactically correct

 AST
 Generated with parsing

 Semantic analysis
 Semantic check according

to AST and generate SAST

 Java Code Generator
 Generate corresponding

Java Code on AST

iCalendar Compiler

Java Code
.java

Java Compiler

Executable Java File

Scanner
（Scanner.mll）

Parser
（parser.mly）

AST
(ast.ml)

Semantic
（semantic.ml）

SAST
(sast.mli）

Compile
（compile.ml）

true

Language Implementation

type symbol_table = {

parent : symbol_table option;

mutable vars : (t * string) list;

mutable funcs : (t * string * (t list)) list;

mutable events : event_table list;

is_loop : bool

}

type event_table = {

type_name : string;

member_list : (t * string) list

}

iCalendar Language Result

 After the implementation, we write two tests about

our language.

 The gcd function

 The event function

Lessons Learned

 At the beginning, we designed a language called

iChemi. However, we found two problems later:

 The chemical formula could not be expressed correctly, even

though we thought out some ways, but we could not get its

molecules after parser

 We thought about the language incorrectly at the beginning, just

mixed up the user and compiler

Lessons Learned

 Start early, even though it is hard at the beginning.

 Test with the compiler after each file.

 Keep things simple. More restrictive syntax, more

semantic analysis.

Thank You!

