
COMS 4115 ChartLan Final Report

1

ChartLan Final Report

Yibo Zhu (yz2486)

Xiuming Dou (xd2138)

Xiao Xu (xx2165)

Ziyue Chen (zc2239)

Xiang Ma (xm2151)

December 18th 2012

COMS 4115 ChartLan Final Report

2

Catalogue

1. Introduction to ChartLan .. 4

1.1 Motivation ... 4

1.2 Overview ... 4

2. Language Tutorial.. 6

3. Language Reference Manual .. 10

3.1 Lexical conventions ... 10

3.2 Declarations .. 11

3.3 Expression ... 11

3.4 Operators .. 11

3.5 Statements .. 14

3.6 Scope Rules ... 16

3.7 Sample programs .. 16

4. Project Plan ... 18

4.1 Processes ... 18

4.2 Programming Style Guide ... 19

4.3 Project Timeline .. 19

4.4 Roles and Responsibilities ... 20

4.5 Software Development Environment ... 21

4.6 Project log ... 21

5. Architecture Design .. 23

5.1 Translator Construction .. 23

5.2 Components and Interfaces .. 23

6. Test Plan .. 25

6.1 Representative program code: ... 25

6.2 Test suites ... 29

6.3 Test detail .. 31

7. Lessons Learned .. 32

7.1 Xiao Xu .. 32

7.2 Xiuming Dou .. 32

COMS 4115 ChartLan Final Report

3

7.3 Yibo Zhu .. 32

7.4 Xiang Ma ... 33

7.5 Ziyue Chen ... 33

8. Appendix ... 33

8.1 Makefile .. 33

8.2 Scanner.. 34

8.3 Parser .. 36

8.4 AST .. 41

8.5 Semantics Checking... 45

8.6 Compiler .. 57

8.7 Bytecode ... 65

8.8 Bytecode Interpreter .. 69

COMS 4115 ChartLan Final Report

4

1. Introduction to ChartLan

1.1 Motivation

Today, we live in a society composed of large quantities of data. Therefore, data processing is

extremely important in everyday life. However, in many programming languages, there are not

many features designed for convenience of data processing. Hence, programmers may need a

large block codes to deal with a single group of data. Our programming language, ChartLan, is

proposed for easier manipulation of data. With the help of new data type and new defined

operators, users can simplify the process of inserting, modifying and deleting data based on C-

style syntax. In ChartLan, the new data type is somewhat like array in Java or C++, but it has its

own unique definitions and characteristics.

1.2 Overview

ChartLan is an imperative language with a C-like structure and it is mainly designed to enhance

the ability of dealing with groups of data. It incorporates constants, variables, expressions,

blocks, conditionals (if…else…), loops (while) and built-in or user-defined functions. The new

data type we add for data processing is Array, which is omitted in the syntax of micro-c

language. With ChartLan, users can manage a group of related data by creating array, inserting

the data into array, modifying data, deleting unwanted items and conducting operations

between arrays. The function of indexing can also help users quickly pinpoint the data they

need.

The structure of ChartLan strictly follows micro-c while it has its own style, semantics and

syntax. In ChartLan, we add a process in the compiler so it can check errors and bugs which

can’t be easily captured by Scanner and Parser like data type, the logical order of data, etc.

So far, we finish ChartLan mainly by writing Scanner, Parser, AST, Semantics Checking Part,

Compiler, Bytecode and Bytecode Interpreter. This will be further specified in the following

sections.

The list of our program files:

COMS 4115 ChartLan Final Report

5

COMS 4115 ChartLan Final Report

6

2. Language Tutorial

ChartLan was designed to manipulate array in a more convenient way. Each program can be
writed in a plain text file. ChartLan is C-like language. The main difference is as follows:

 When we define a function we should use the keyword, “def”, to declare a function:

 The type and return type should int, string or array.

 There is no Boolean or Bool type in ChartLan. We use “1” or “0”standing for “true” or
“false”.

 The declaration should be placed in the front of a function, and the action of assign and
other statement should be after the declaration. :

 According to the type which you want to print, you should choose different print function.

 The variable of string type should define the length of string during the declaration period.
The double quotes take For example:

COMS 4115 ChartLan Final Report

7

 The type of array in ChartLan must be int. One constant of a array should start from “%(”
and end with “)%”, for example:

 We can manipulate the array in a more efficient and more convenient way. For example,
we can use “+” to insert a value to the head or end of a array.

The above program will output %(12,3,4,5).

COMS 4115 ChartLan Final Report

8

The above program will output %(3,4,5,12).

 There is no “for loop” in ChartLan. We can only use “while” as loop function.

 We can compile the language by the following instruction(test.txt is the name of file of
program):

There is also some useful instruction:

 make:

 Show the Ast result

 Show the Ast to Sast result

COMS 4115 ChartLan Final Report

9

 Show the Bytecode result

 If we want to recompile the compiler, we should use the clean instruction before make.

COMS 4115 ChartLan Final Report

10

3. Language Reference Manual

3.1 Lexical conventions

(1)Comments

The characters #~ introduce a comment, which terminates with the characters ~#.

(2)Identifiers

An identifier is a sequence of letters and digits; the first character must be alphabetic. Upper

and lower case letters are considered different.

(3)Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

Int Integer number

String Serial of characters

Array List of integers

If…else… Conditional control

Def Function definition

While Loop identifier

intarray integer array constructor

Return Return a value

Print Print a integer

Printstring Print a string

Printarray Print an array

(4)Constants

Integer constants …-2 -1 0 1 2…

Boolean constants integer 1 for Boolean true, 0 for Boolean false

String constants “abcedf “ or “@$%^&” not including any “ in between

Array constants %(integer constants separated by “,”)%

 e.g. %(1,2,3)%

COMS 4115 ChartLan Final Report

11

3.2 Declarations

General rule: Type-specifier identifier;

Where type-specifier can be int, string[numofchars including double quotes] , intarray[length]

Eg: int x; string[6] c; (later can be assigned to “haha”) intarray[3] x;

3.3 Expression

(1) Identifier : Its type is specified by its declaration.

(2) Constants : A integer, string, array, index is an expression.

(3) (expression): A parenthesized expression is a primary expression whose type and value are

identical to those of the unadorned expression.

(4) expression binary operator expression

 binary operators can be: +, - , * , / , && , ||, .+ , .- , .* , ./

(5) Identifier [expression]: The intuitive meaning is that of a subscript, the subscript expression

is int.

3.4 Operators

(1)Addition operators:

The addition operator + and group left to right

Expression + expression

The binary ‘+’ operator indicates addition.

Integer + integer gives integer addition value.

Intarray + integer inserts the integer at the end of array

Integer + Intarray inserts the integer at the head of array

COMS 4115 ChartLan Final Report

12

(2)Subtraction operator:

The addition operator - and group left to right, and it is like the inverse operation of addition.

Expression - expression

The binary - operator indicates subtraction.

Integer - integer gives integer subtraction value.

(3)Multiplication operator:

The multiplication operators * group left to right

Expression * expression

The binary * operator indicates multiplication.

Integer * integer gives integer multiplication value.

Intarray1 * intarray2 gives the concatenation of two arrays.

(4)Division operator:

The division operators / group left to right, the division is like the inverse operation of

multiplication.

Expression/expression

The binary / operator indicates division.

The integer data type can perform division as commonly use, and divisor cannot be zero.

(5)Arithmetic operator:

Intarray .+ integer

Intarray .- integer

Intarray .*integer

Intarray ./ integer

COMS 4115 ChartLan Final Report

13

The arithmetic operators are used when users want to do the operation to the every element in

array or table.

E.g.: %(2,3,1)%.+3= %(5,6,4)%;

%(2,3,4)%.-1 =%(1,2,3)%;

(6)Equality operator:

Expression == expression

 returns 1 (Boolean constants true)if the two expressions are identical and false otherwise.

Expression != expression

 returns 0 (Boolean constants false) if the two expressions are identical and true otherwise.

Expression1 >(>=) expression2

 returns 1 (Boolean constants true) if expression1 is greater (not less than) expression2

and false otherwise.

Expression <(<=) expression

 returns 1 (Boolean constants true) if expression 1 is less (not greater than) expression2

and false otherwise.

(7)Assignment operator:

Identifier = expression.

Assigns an expression’s value to the identifier.

(8)Logical operator:

Expression && expression

 returns 1 (Boolean constants true) if the two expressions are both true and false

otherwise.

Expression || expression

COMS 4115 ChartLan Final Report

14

 returns 0 (Boolean constants true) if the one of the two expressions is true and false

otherwise.

3.5 Statements

(1)Expression statement:

Most statements are expression statements, which have the form expression;

(2)Compound statement:

So that several statements can be used where one is expected, the compound statement is

provided:

compound statement

{statement-list}

statement-list:

statement

statement statement-list

(3)Conditional statement:

The two forms of the conditional statement are

if (expression) {statement}

if (expression) {statement1} else {statement2}

In both cases the expression is evaluated and if it is nonzero, the statement1 is executed. In the

second case, the statement2 is executed if the expression is 0.

(4)While statement:

The while statement has the form

COMS 4115 ChartLan Final Report

15

while (expression) statement

The statement is executed repeatedly so long as the value of the expression remains nonzero.

The test takes place before each execution of the statement.

(5)Return statement:

A function returns to its caller by means of the return statement, which has one of the forms

return ;

return (expression);

(6)Function Statement:

The function-statement is a compound statement which has declarations at the start.

functionstatement:

{ variable declarationlist statementlist }

Def typespecifier functionname (typespecifer identifier1, typespecifer identifier2 …)

{ function body}

Where typespecifier indicates the return type of the function which could be either int,

string, array.

Arguments consists of arguments of the function which are identifiers with their type

specified in the front.

Def is the keyword that specifies a function definition.

Functionname is a combination of any letters or integers but the first must be a letter.

Eg: Def int max(int a, int b){ #~gives back the bigger one of the two integers~#

 If (a > b) {

 Return a;

 }

 Else{

COMS 4115 ChartLan Final Report

16

 Return b;

 }
Some of built-in functions:

Print(x): print a integer

Printarray(x): print an integer array

Printstring(x): print a string

3.6 Scope Rules

An identifier's lexical scope, which is essentially the region of a program during which the

identifier can be used directly without drawing "undefined identifier" diagnostics. There are

two kinds of identifiers in ChartLan’s lexical scope.

Global variable is a variable that is accessible in every scope. That is to say, in our language, a

global variable can be used anywhere in the program once it is defined.

Local variable is a variable that is given local scope. Such a variable is accessible only from the

function or block in which it is declared.

3.7 Sample programs
(1)GCD function

#~GCD Test~#

def int gcd(int a, int b){

while (a != b) {

If (a > b) a = a-b;

else b = b-a;

}

return a;

}

COMS 4115 ChartLan Final Report

17

def int main(){ int x; x=gcd(5,10); print(x); return 2;}

(2) Dot operation function

#~Dot Test~#

def int main() {

 intarray[3] x;

 intarray[3] y;

 intarray[3] z;

 x=%(1,2,3)%;

 y=x.+2;

 z=y.*2;

 printarray(z);

 return 1;

}

COMS 4115 ChartLan Final Report

18

4. Project Plan

4.1 Processes

The ChartLan team is made up of 5 members and we held the first regular group meeting right

after the class in which the professor released the project. Regularly, we met weekly on Friday

morning at CS lounge. Yibo Zhu became the group leader after the first meeting.

In the planning period, on weekly meeting, everyone would give a short description of his or

her workload of the week before. Usually, we might concentrate on several attracting points

and kept a more detailed discussion. If no point was admired by all team members, brainstorm

was also introduced to generate other novel concepts. Actually, Chartlan combines the

thoughts of several proposals and was revised by every team member.

After we submitted the project proposal and got comments from the professor and TA, we

continued to write specifications (a.k.a. LRM) and make more detailed design of our language.

In this stage, we also met weekly and the topics usually followed language style, syntax and

semantics. Meanwhile, as part of our team concluded all the points into LRM, other members

initiated our programming assignment by writing the first version of scanner and parser.

We developed the scanner, parser and AST around Mid-term. In this period, we met in CLIC to

do these coding assignments two or three times a week. At the beginning of November, our

fixed weekly meeting paused for two weeks because of the Hurricane Sandy and Mid-term

exams. These files were finished without syntax error before December. The works were

relatively elementary and could be seen as the introduction to the translator of the Ocaml

version.

Development was the core of the whole project. Due to the superiority of the number of team

members, we separated our tasks into three parts: AST to SAST, Compiler and Bytecode

interpreter. Each member was responsible for the comprehension of one part referring to the

slides provided by the professor. We conducted our programming work directed by the team

members in charge of that part and our team became more efficient due to this mode.

While the main structure was finally done, Chartlan was tested in different scenarios. Three

members verified ChartLan with various test cases while the other two men began the

conclusion of the whole-semester-long project and started the final report.

COMS 4115 ChartLan Final Report

19

4.2 Programming Style Guide

As we make up a team, all the members comply with the following guides when we carry on

team work:

(1)Each paper or electronic material must be submitted with the signature of the drafter, and

the other members must view the material and make comments on it before it is finally

approved. Double-check is needed for the final-version of all documents.

(2)For each block of reference code, team member should make comments on it for the

convenience of other members, using formal comment format. Each modification of the source

code should be saved as a new version, with the team-member name as part of the file name,

like “filename-3rd version-member name.xx”.

(3)We share files and blocks of code using Google Drive with a common account. We also use

instant online-contact software to keep in touch with each other, or hold temporary meeting.

(4)Neat and Style coding is needed. As we write all codes using Ocaml, every block of code must

keep consistent with the Ocaml style. We all use the same programming environment to

guarantee the minimum of text-style conflicts with each other.

(5)Since ChartLan is based on micro-c syntax, we also make the style of ChartLan similar to that

of micro-c for the convenience of the users. Also we leave our distinct grammars and make

proper modifications from the degree of developing.

(6)We make a set of regulations for the naming of constants, variables and function names.

Thus, every can easily take a better comprehension of that block of code.

4.3 Project Timeline

COMS 4115 ChartLan Final Report

20

4.4 Roles and Responsibilities

 Yibo Zhu performs as the team leader, and really has done outstanding job from designing

to programming.

 Proposal was drafted by Yibo Zhu, and was finally decided with everybody’s view.

 LRM was open discussed in group meeting and was summarized, revised and finished by

Ziyue Chen.

 Scanner, Parser, AST were completed together as group study cases.

 Semantics Checking (AST to SAST), SAST were preprocessed by Ziyue Chen and Yibo Zhu.

 Compiler was preprocessed by Xiang Ma and Xiao Xu.

 Yibo Zhu wrote the main part of Semantics Checking with the assist of Ziyue Chen, and also

wrote Compiler with the assist of Xiang Ma.

 Xiuming Dou was fully responsible for the programming and debugging of Bytecode and

Bytecode Interpreter.

 Debugging and Testing involved everyone, conducted by Yibo Zhu. (Xiuming individually

responsible for Bytecode Interpreter)

 Arrangements of group meeting, preservation and updates of all kinds of files are done by

Ziyue Chen.

 Project Log, Presentation materials and Final Report were kept and finished by Xiao Xu,

assisted by Xiang Ma and Ziyue Chen, with everybody’s comments.

COMS 4115 ChartLan Final Report

21

4.5 Software Development Environment

ChartLan is built on a Window 7-compatible environment. We include a Makefile to ensure all

files can be compiled automatically. The configuration and all the files related to the translator

are written in Ocaml. So, ocamlc, ocamllex and ocamlyacc from OCaml were the main tools we

used when we developed Chartlan. All members used Eclipse with an OCaml plugin as the only

code editor to make the code style compatible and consistent. All codes were tested under 64-

bit computer with Windows 7 environment.

4.6 Project log

The project log keeps all the main events of our project, as described in the following chart.

COMS 4115 ChartLan Final Report

22

Date Event

09/19/2012 ChartLan Team Founded.

09/19/2012

First group meeting, discussed the general concepts of a

language construction and some novel concepts about the

language design.

09/21/2012
Second group meeting, named our language as ChartLan,

finished the first version on language proposal.

09/28/2012 Final version of proposal finished

10/05/2012
Fourth group meeting, modified proposal according to the

feedback of professor and TA

10/12/2012
Fifth group meeting, discussed the data type, key words,

expressions and operators about ChartLan.

10/19/2012

Sixth group meeting, formed the whole configuration of

ChartLan, made comments on the first version of LRM, and

studied the code of scanner in the slides.

10/26/2012
Seventh group meetin, LRM submitted, debugged scanner,

and kept on with parser.

10/29/2012
Scanner and parser were completed with no conflicts and

syntax errors.

11/16/2012

Eighth group meeting, The configuration of AST was finished

and we seperated the remaining workload into three parts.

Every menber kept track one of the three.

11/21/2012 Semantic-check part(AST to SAST) and Compiler part began.

11/23/2012
Nineth group meeting, Discussed problems each member

faced when reading or writing the codes.

11/30/2012
Tenth group meeting, regularly meeting, shared experience

along with problems regarding Ocaml.

12/08/2012
Semantic-check part(AST to SAST) finished with coding and

began debugging

12/12/2012 Compiler finished with coding and begin debugging.

12/14/2012

Bytecode Interpreter finished, debugging finished, and the

main construction of translator finished. Started test and

final report.

12/17/2012 All works were nearly finished.

12/18/2012 Final Presentation

 *We met daily as possible as we could in December.

COMS 4115 ChartLan Final Report

23

5. Architecture Design

5.1 Translator Construction

The following graph shows the construction of our translator:

5.2 Components and Interfaces

 Scanner: The input is a sequence of ChartLan sentences (think these like you type a

series of C commands). The scanner will grasp the meaningful parts of these sentences,

conducts lexical analysis and give a stream of tokens. Whitespaces and comments will

be removed in this process. The streams of tokens are the interface between scanner

and parser.

 Parser: Parser accepts the list of tokens given by scanner and then parses these tokens

and generates an abstract syntax tree (AST) with the format specified in the ast file we

COMS 4115 ChartLan Final Report

24

have formerly written. The abstract syntax tree is the interface between parser and

semantics checking part.

 Semantics Checking: This part accepts the abstract syntax tree passed by parser, and

checks the type of the components in the AST. For example, it checks whether the

function or variable has a declaration, whether the value of a variable has the same type

as declaration, whether indexing can be performed. Finally it gives SAST and passes it to

compiler.

 Compiler: Compiler accepts the SAST and generates a stack-based bytecode

representation of code. The format and the commands of bytecode was previously

setup by a Bytecode file and this list of bytecode commands will be passed to Bytecode

Interpreter.

 Bytecode Interpreter: Bytecode Interpreter accepts the bytecode commands generated

by the compiler, runs and executes them, then, it will output the results and gives back

to the user.

 As was described in the previous section, Scanner, Parser and AST were completed

together in October and November as group study cases. Semantics Checking was

written by Yibo Zhu and Ziyue Chen. Compiler was written by Yibo Zhu, assisted by Xiang

Ma and Xiao Xu. Xiuming Dou was responsible for Bytecode and Bytecode Interpreter.

COMS 4115 ChartLan Final Report

25

6. Test Plan

6.1 Representative program code:
(1)GCD function

#~GCD Test~#

def int gcd(int a, int b){

while (a != b) {

If (a > b) a = a-b;

else b = b-a;

}

return a;

}

def int main(){ int x; x=gcd(5,10); print(x); return 2;}

Ast output(./toplevel –a < gcd.txt):

COMS 4115 ChartLan Final Report

26

Sast output(./toplevel –s < gcd.txt):

Target language program(./toplevel –b <gcd.txt):

COMS 4115 ChartLan Final Report

27

Program output(./toplevel –c <gcd.txt):

(2) Dot operation function

#~Dot Test~#

def int main() {

 intarray[3] x;

 intarray[3] y;

 intarray[3] z;

 x=%(1,2,3)%;

 y=x.+2;

 z=y.*2;

 printarray(z);

 return 1;

COMS 4115 ChartLan Final Report

28

}

Ast output(./toplevel –a< functiondot.txt)

Sast output(./toplevel –s< functiondot.txt)

Target language program (./toplevel –b< functiondot.txt):

COMS 4115 ChartLan Final Report

29

Program output(./toplevel –c < functiondot.txt):

6.2 Test suites

Our tests are broken up into two main groups: functionality tests and semantic tests.
Functionality tests (located in the /myplt_test folder) are used to test the functionality of our
code. Each of these tests should pass. Semantic tests are used to ensure that code that does
not pass the semantics required by the LRM do not get through to the compilation stage. All
these tests should fail and print out the corresponding error message(located in the
/error_test).

COMS 4115 ChartLan Final Report

30

Functionality tests:

Semantic tests:

COMS 4115 ChartLan Final Report

31

6.3 Test detail

We choose our functionality tests based on complier which includes all the functionalities our
language should support; we choose our semantic tests based on asttosast.ml which performs
intensive type checking.

We use shell script to automate our tests.

Our test cases were written by all members, separating by parts. They covered primitive type
operations, statement control flow, array operations, and expressions. The test cases are as
simple and independent as possible, so that we can identify where the problem is.

COMS 4115 ChartLan Final Report

32

7. Lessons Learned

7.1 Xiao Xu

I feel lucky to pick this hard but always meaningful and cheerful class this semester. For the first

time, I experienced a huge project all along the semester and I followed the project from the

birth of it until it was finally done, rather than concentrate on some parts of it.

OCaml is a powerful language. I learn a lot about OCaml, about how a programming language is

generated through the project. Here, I must feel exceedingly thankful to my teammates. We

really make up an extraordinary team and have a great job. I enjoy the time we worked

together, helped and trust each other.

7.2 Xiuming Dou

I learned a lot from the project. Listening carefully in class helped us understand how to do the

project quickly. The examples in slides give us a good start. Good understanding of Ocaml will

speed up the project. And I think doing homework 2 is effective way to understand Ocaml.

We communicated a lot in the meeting, this brain storm not only help everyone to understand

the project thoroughly, but also boost some good ideas to solve problems. The work division to

each member accelerates the project efficiently.

7.3 Yibo Zhu

We would be able to implement much more functionalities if we start earlier. Well, to start

early is itself challenging. Since our understanding of the project is shallow and unknowns are

lot. If I am to take this course again, I would look ahead of the lectures and try the most difficult

parts (semantic checking/compiler) as soon as possible.

Another thing is that designing a suitable language for the project is crucial. It largely

determines how much work you might do: static typed, scoped … stuffs are generally easier

then dynamic stuffs; Strongly typed requires intensive type checking …

COMS 4115 ChartLan Final Report

33

7.4 Xiang Ma

Through the course of this project, there are several things that I learned. First, I have an insight

understanding of how scanner and parser work together to build the Ast tree. Second, I learned

how to type checking to generate Sast tree from Ast. Third, I know how compile and interpreter

implement. Forth, the skill of programming in ocaml has been improved largely. I have a deep

understanding of recursive.

To sum up, by the project, I know how a program is solved by compiler. I think it is very useful

for me in the future.

7.5 Ziyue Chen

It is my first time to design a language and write a complier for that. And Ocaml is a new

language for me. Although, it is hard, I find it very interesting and powerful. I learn that I should

practice more with Ocaml before I start to write our code. During the project, I gradually

learned how the whole complier works and start to write Ast and semantic check for our

language with my teammate. I think semantic check, complier and bytecode interpreter are

most challenging part. Overall, I feel great to finish this project with my teammates.

8. Appendix

8.1 Makefile

(*Written by Yibo Zhu*)

OBJS = Types.cmo ast.cmo sast.cmo asttosast.cmo parser.cmo scanner.cmo bytecode.cmo

compile.cmo execute.cmo toplevel.cmo

TARFILES = scanner.mll parser.mly \

 ast.ml bytecode.ml compile.ml execute.ml toplevel.ml

toplevel : $(OBJS)

 ocamlc -g -o toplevel $(OBJS)

COMS 4115 ChartLan Final Report

34

scanner.ml : scanner.mll

 ocamllex scanner.mll

parser.ml: parser.mli

 ocamlc -c parser.mli

parser.mli: parser.mly

 ocamlyacc -v parser.mly

%.cmo : %.ml

 ocamlc -g -c $<

%.cmi : %.mli

 ocamlc -g -c $<

toplevel.tar.gz : $(TARFILES)

 cd .. && tar czf toplevel.tar.gz $(TARFILES:%=toplevel/%)

8.2 Scanner
(*Written by team as group study case*)

{ open Parser }

let letter =['a'-'z' 'A'-'Z']

let digit = ['0'-'9']

rule token = parse

 [' ' '\t' '\r' '\n'] {token lexbuf}

| '=' { ASSIGN}

| '+' { PLUS }

| '-' { MINUS}

COMS 4115 ChartLan Final Report

35

| '*' { TIMES}

| '/' { DIVIDE}

| ".+" { DADD}

| ".-" { DSUB}

| ".*" { DMULT}

| "./" { DDIV}

| "&&" { AND }

| "||" { OR}

| "==" { EQ }

| "!=" { NEQ }

| ">" { GT }

| "<" { LT }

| ">=" { GEQ }

| "<=" { LEQ }

| '(' { LPAREN }

| ')' { RPAREN }

| '[' { LBRACKET}

| ']' { RBRACKET}

| '{' { LBRACE}

| '}' { RBRACE}

| ';' { SEMI}

| ',' { COMMA}

| '%' { PERCENT}

| '\"'[^'\"']*'\"' as lxm { STRING(lxm) }

COMS 4115 ChartLan Final Report

36

| "if" { IF}

| "while" { WHILE}

| "else" { ELSE}

| "int" { INT }

| "Creatarray"{CREATEARRAY}

| "string" {STR}

| "intarray" {INTARRAY}

(*| "strarray" {STRARRAY} *)

| "def" {DEF}

| "return" {RETURN}

| letter(letter|digit|'_')* as id {ID(id)}

| digit+ as lit {INTEGER(int_of_string lit)}

| "#~" {comment lexbuf}

| eof {EOF}

| _ as invaildchar {raise (Failure("illegal character "^ Char.escaped invaildchar))}

and comment =

 parse "~#" {token lexbuf}

 |_ {comment lexbuf}

8.3 Parser
(*Written by team as group study case*)

%{ open Ast%}

%{ open Types%}

COMS 4115 ChartLan Final Report

37

%token ASSIGN LPAREN RPAREN LBRACKET RBRACKET LBRACE RBRACE SEMI COMMA PERCENT

DEF EOF

%token IF WHILE ELSE INT STR INTARRAY RETURN

%token PLUS MINUS TIMES DIVIDE DADD DSUB DMULT DDIV AND OR EQ NEQ GT LT GEQ LEQ

%token INTARRAY CREATEARRAY

%token <int> INTEGER

%token <string> STRING ID

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

%left EQ NEQ

%left OR

%left AND

%left LT GT LEQ GEQ

%left PLUS MINUS DADD DSUB

%left TIMES DIVIDE DMULT DDIV

%start program

%type <Ast.program> program

%%

program:

/* nothing */ { [], [] }

| program vdecl { ($2 :: fst $1), snd $1 }

| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:

COMS 4115 ChartLan Final Report

38

DEF types ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE

{ { fname = $3;

formals = $5;

locals = List.rev $8;

body = List.rev $9;

returntype = $2; } }

formals_opt:

/* nothing */ { [] }

| formal_list { List.rev $1 }

formal_decl:

 types ID {($2, $1)}

formal_list:

 formal_decl { [{vname=fst $1; vtype=snd $1;vsize=1;}]}

| formal_list COMMA formal_decl{ {vname= fst $3; vtype=snd $3;vsize=1;}::$1}

types:

 INT {Types.Int}

| STR {Types.Str}

| INTARRAY {Types.Arr}

vdecl_list:

/* nothing */ { [] }

| vdecl_list vdecl { $2 :: $1 }

COMS 4115 ChartLan Final Report

39

vdecl:

 INT ID SEMI { {vname = $2; vtype=Types.Int; vsize=1;} }

| STR LBRACKET INTEGER RBRACKET ID SEMI { {vname = $5; vtype=Types.Str; vsize=$3;} }

|INTARRAY LBRACKET INTEGER RBRACKET ID SEMI {{vname = $5; vtype=Types.Arr;vsize =$3;}}

/*| INTARRAY ID ASSIGN listvalue SEMI { {vname = $2; vtype=Types.Arr; vvalue=Array(fst

$4);vsize = snd $4;} }*/

stmt_list:

/* nothing */ { [] }

| stmt_list stmt { $2 :: $1 }

stmt:

expr SEMI { Expr($1) }

| RETURN expr SEMI { Return($2) }

| LBRACE stmt_list RBRACE { Block(List.rev $2) }

| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

| WHILE LPAREN expr RPAREN stmt { While($3, $5) }

expr:

 INTEGER { Integer($1) }

| STRING { String ($1)}

| ID { Id($1) }

| expr PLUS expr { Binop($1, Add, $3) }

| expr MINUS expr { Binop($1, Sub, $3) }

| expr TIMES expr { Binop($1, Mult, $3) }

COMS 4115 ChartLan Final Report

40

| expr DIVIDE expr { Binop($1, Div, $3) }

| expr EQ expr { Binop($1, Equal, $3) }

| expr NEQ expr { Binop($1, Neq, $3) }

| expr LT expr { Binop($1, Less, $3) }

| expr LEQ expr { Binop($1, Leq, $3) }

| expr GT expr { Binop($1, Greater, $3) }

| expr GEQ expr { Binop($1, Geq, $3) }

| ID ASSIGN expr { Assign($1, $3) }

| ID LPAREN actuals_opt RPAREN { Call($1, $3) }

| LPAREN expr RPAREN { $2 }

| listvalue {Array(List.rev(fst $1))}

/*| ID LBRACKET INTEGER RBRACKET {Index($1,Integer($3))} */ /*match index*/

| ID LBRACKET expr RBRACKET {Index($1,$3)}

/*our version*/

| expr DADD expr {Binop($1, Dadd, $3)}

| expr DSUB expr {Binop($1, Dsub, $3)}

| expr DMULT expr {Binop($1, Dmult, $3)}

| expr DDIV expr {Binop($1, Ddiv, $3)}

| expr AND expr {Binop($1, And, $3)}

| expr OR expr {Binop($1, Or, $3)}

listvalue:

PERCENT LPAREN listintelement RPAREN PERCENT{(fst $3,snd $3)} /*int array*/

COMS 4115 ChartLan Final Report

41

listintelement:

| INTEGER {([Integer($1)],1)}

| listintelement COMMA INTEGER {(Integer($3)::(fst $1),snd $1 + 1)}

actuals_opt:

/* nothing */ { [] }

| actuals_list { List.rev $1 }

actuals_list:

expr { [$1] }

| actuals_list COMMA expr { $3 :: $1 }

8.4 AST
(*Written by team as group study case*)

type op = Add|Sub|Mult|Div|Equal|Neq|Less|Leq|Greater| Geq| Dadd| Dsub|Dmult| Ddiv|

And| Or

type expr =

 Integer of int

| String of string

| Array of expr list

| Id of string

| Binop of expr * op * expr

| Assign of string * expr

COMS 4115 ChartLan Final Report

42

| Call of string * expr list

| Index of string * expr

| Noexpr

(*type constant_type =

 Integer of int

 |String of string

 | Array of expr list

*)

type stmt =

 Block of stmt list

 | Expr of expr

 | Return of expr

 | If of expr * stmt * stmt

 | While of expr * stmt

type variable_decl = {

 vname: string;

 vtype: Types.t;

 (*value: expr;*)

 vsize: int;

}

COMS 4115 ChartLan Final Report

43

type func_decl = {

 fname : string;

 formals : variable_decl list;

 locals : variable_decl list;

 body : stmt list;

 returntype : Types.t;

}

type program = variable_decl list * func_decl list

(*test if the parser and ast is correct*)

let string_of_op = function

 Add -> "+"

 | Sub -> "-"

 | Mult -> "*"

 | Div -> "/"

 | Equal -> "=="

 | Neq -> "!="

 | Less -> "<"

 | Leq -> "<="

 | Greater -> ">"

 | Geq -> ">="

 | And -> "&&"

 | Or -> "||"

COMS 4115 ChartLan Final Report

44

 | Dadd ->".+"

 | Dsub -> ".-"

 | Dmult ->".*"

 | Ddiv -> "./"

let rec string_of_expr = function

 Integer(i) -> string_of_int i

 | String(s) -> s

 | Array(a) -> "("^ String.concat "," (List.map string_of_expr a)^")"

 | Id (i) -> i

 | Binop(e1,o,e2) -> string_of_expr e1 ^" "^ string_of_op o^" "^ string_of_expr e2

 | Assign(l, e) -> l ^ "=" ^ string_of_expr e

 | Call(f, e) -> f^ "(" ^String.concat ", " (List.map string_of_expr e) ^ ")"

 | Index(i, e) -> i ^ "[" ^ string_of_expr e ^ "]"

 | Noexpr ->""

let rec string_of_obj_type t =match t with

 Types.Int-> "int"

| Types.Str ->"string"

| Types.Arr -> "array"

let string_of_vdecl id =

 string_of_obj_type id.vtype ^ " " ^ id.vname ^ " = " ^ string_of_int id.vsize ^ ";\n"

let rec string_of_stmt = function

COMS 4115 ChartLan Final Report

45

 Block(stmts) ->

 "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

 | Expr(e) -> string_of_expr e ^ ";\n";

 | Return(e) -> "return " ^ string_of_expr e ^ ";\n";

 | If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

 string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2

 | While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s

let string_of_fdecl fdecl =

 string_of_obj_type fdecl.returntype ^ " " ^

 fdecl.fname ^ "(" ^ String.concat ", " (List.map string_of_vdecl

 fdecl.formals) ^ ")\n{\n" ^

 String.concat "" (List.map string_of_vdecl fdecl.locals) ^

 String.concat "" (List.map string_of_stmt fdecl.body) ^

 "}\n"

let string_of_program (vars, funcs) =

 String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^

 String.concat "\n" (List.map string_of_fdecl funcs)

8.5 Semantics Checking
(*Written by Yibo Zhu, assisted by Ziyue Chen*)

open Ast

open Sast

COMS 4115 ChartLan Final Report

46

open Types

type symbol_table = {

 parent : symbol_table option;

 variables : Sast.variable_decl list;

 functions: Sast.function_decl list;

}

type trans_env = {

 scope : symbol_table;

}

let rec find_variable (scope : symbol_table) name =

 try

 List.find (fun v -> v.v_name = name) scope.variables

 with Not_found ->

 match scope.parent with

 Some(parent) -> find_variable parent name

 | _ -> raise (Failure("variable not defined"))

let var_exists scope name =

 List.exists (fun v -> v.v_name = name) scope.variables

let rec find_function (scope : symbol_table) name =

COMS 4115 ChartLan Final Report

47

 try

 List.find (fun f -> f.ffname = name) scope.functions

 with Not_found ->

 match scope.parent with

 Some(parent) -> find_function parent name

 | _ -> raise (Failure("function not defined"))

let func_exists scope name =

 List.exists (fun f -> f.ffname = name) scope.functions

let assign_allowed lt rt =

 lt = rt

let can_assign (lt:Types.t) rval =

 let (_, rt) = rval in

 if assign_allowed lt rt then

 rval

 else

 raise (Failure("Assign Type Error"))

let rec check_int_array b = match b with

 [] -> true

 | h::t -> if snd h = Types.Int then check_int_array t else false

COMS 4115 ChartLan Final Report

48

let can_op lval op rval =

 let (_, lt) = lval

 and (_, rt) = rval in

 let type_match = (lt = rt) in

 let int_int = (lt= Types.Int && rt=Types.Int) in

 let int_array = (lt= Types.Int && rt=Types.Arr) in

 let str_array = (lt= Types.Str && rt=Types.Arr) in

 let array_int = (lt= Types.Arr && rt=Types.Int) in

 let array_str = (lt= Types.Arr && rt=Types.Str) in

 let array_array = (lt= Types.Arr && rt=Types.Arr) in

 let array_int = (lt= Types.Arr && rt=Types.Int) in

 let result = match op with

 Ast.Add -> (type_match||array_int||int_array), (if (int_array) then rt else lt)

 | Ast.Sub -> (int_int), lt

 | Ast.Mult -> if (int_int||array_array) then (true, lt) else (int_array|| str_array), rt

 | Ast.Div -> (int_int), lt

 | Ast.Equal -> (true, Types.Int)

 | Ast.Neq -> (true, Types.Int)

 | Ast.Less -> (int_int), Types.Int

 | Ast.Leq -> (int_int), Types.Int

 | Ast.Greater -> (int_int), Types.Int

 | Ast.Geq -> (int_int), Types.Int

COMS 4115 ChartLan Final Report

49

 | Ast.And -> (int_int), Types.Int

 | Ast.Or -> (int_int), Types.Int

 | Ast.Dadd -> (array_int), lt

 | Ast.Dsub -> (array_int), lt

 | Ast.Dmult -> (array_int), lt

 | Ast.Ddiv -> (array_int), lt

 in if fst result then

 snd result

 else

 raise (Failure("operand type miss match"))

let translate (globals, funcs) =

 let rec trans_expr env = function

 Ast.Integer(i) -> Sast.Integer(i), Types.Int

 | Ast.String(s) -> Sast.String(s), Types.Str

 | Ast.Id(n) ->

 let vdecl = (find_variable env.scope n) in

 Sast.Id(vdecl), vdecl.v_type

 | Ast.Binop(e1, op, e2) ->

 let e1 = trans_expr env e1

 and e2 = trans_expr env e2 in

let rtype = can_op e1 op e2 in

 Sast.Binop(e1, op, e2), rtype

 | Ast.Call(n, a) ->

COMS 4115 ChartLan Final Report

50

 let fdecl = (find_function env.scope n) in

 let types =

 List.map (fun v -> v.v_type) (List.rev fdecl.fformals) in

 let args =

 List.map (fun s -> (trans_expr env s)) a in

 let checked_args = try

 List.map2 can_assign types args

 with Invalid_argument(x) ->

 raise (Failure("invalid number of arguments")) in

 Sast.Call(fdecl, checked_args), fdecl.freturntype

 | Ast.Assign(n, e) ->

 let vdecl = (find_variable env.scope n) in

 let aval = (trans_expr env e) in

 Sast.Assign(vdecl, (can_assign vdecl.v_type aval)), vdecl.v_type

 | Ast.Noexpr ->

 Sast.Noexpr, Types.Int

 | Ast.Array(a) -> let b = List.map (fun v -> trans_expr env v) a in

 if check_int_array b then

 Sast.Array(b), Types.Arr

 else

COMS 4115 ChartLan Final Report

51

 raise (Failure("Int array elements must all be int"))

 | Ast.Index(a,b) -> let a = (find_variable env.scope a)

 and b

= trans_expr env b in

 if snd b <> Types.Int then

 raise (Failure("index must be an integer!"))

 else

 if a.v_type = Types.Str then

 Sast.Index(a,b),Types.Str

 else

 if a.v_type = Types.Arr then

 Sast.Index(a,b), Types.Int

 else

 raise(Failure("can not perform indexing on this type of variable"))

in let rec trans_stmt env = function

 Ast.Block(s) ->

 let scope' = {parent = Some(env.scope); variables = []; functions = []}

 in let env' = {env with scope = scope'}

 in let s' = List.map (fun s -> trans_stmt env' s) s

COMS 4115 ChartLan Final Report

52

 in Sast.Block(s')

 | Ast.Expr(e) ->

 Sast.Expr(trans_expr env e)

 | Ast.Return(e) ->

 Sast.Return(trans_expr env e)

 | Ast.If (e, s1, s2) ->

 let e' = trans_expr env e

 in Sast.If(can_assign Types.Int e', trans_stmt env s1, trans_stmt env s2)

 | Ast.While (e, s) ->

 let e' = trans_expr env e

 in Sast.While(can_assign Types.Int e', trans_stmt env s)

 in let add_local env v =

 let evalue = match (var_exists env.scope v.vname) with

 true -> raise (Failure("redeclaration of variable"))

 | false -> 0

 in let new_v = {

 v_name = v.vname;

 v_type = v.vtype;

 v_size = v.vsize;

 }

 in let vars = new_v :: env.scope.variables

 in let scope' = {env.scope with variables = vars}

 in {env with scope = scope'}

COMS 4115 ChartLan Final Report

53

 in let add_func env f =

 let new_f = match ((var_exists env.scope f.fname) || (func_exists env.scope f.fname)) with

 true -> raise (Failure("redeclaration of function"))

 | false -> {

 freturntype = f.returntype;

 ffname = f.fname;

 fformals = [];

 flocals = [];

 fbody = [];

 parsed = false;

 }

 in let funcs = new_f :: env.scope.functions

 in let scope' = {env.scope with functions = funcs}

 in {env with scope = scope'}

 in let trans_func env (f:Ast.func_decl) =

 let sf = find_function env.scope f.fname

 in let functions' = List.filter (fun f -> f.ffname != sf.ffname) env.scope.functions

 in let scope' = {parent = Some(env.scope); variables = []; functions = []}

 in let env' = {env with scope = scope'}

 in let env' = List.fold_left add_local env' (f.formals)

 in let formals' = env'.scope.variables

 in let env' = List.fold_left add_local env' (f.locals)

 in let remove v =

COMS 4115 ChartLan Final Report

54

 not (List.exists (fun fv -> fv.v_name = v.v_name) formals')

 in let locals' = List.filter remove env'.scope.variables

 in let body' = List.map (fun f -> trans_stmt env' f) (f.body)

 in let new_f = {

 sf with

 fformals = formals';

 flocals = locals';

 fbody = body';

 parsed = true;

 }

 in let funcs = new_f :: functions'

 in let scope' = {env.scope with functions = funcs}

 in {env with scope = scope'}

 in let validate_func f =

 let is_return = function

 Sast.Return(e) -> true

 | _ -> false

 in let valid_return = function

 Sast.Return(e) -> if assign_allowed f.freturntype (snd e) then

 true

 else

 raise (Failure("Invalid return type "

))

COMS 4115 ChartLan Final Report

55

 | _ -> false

 in let returns = List.filter is_return f.fbody

 in let returns_valid = List.for_all valid_return returns

 in let return_count = List.length returns

 in if (return_count = 0 && f.ffname <> "print" && f.ffname <>"printarray"&& f.ffname <>

"printstring") then

 raise (Failure(" must return something"))

 else

 f

 in let make_print t =

 {

 freturntype = Types.Int;

 ffname = if (t = Types.Str) then "printstring" else "print";

 fformals = [{

 v_name = "val";

 v_type = t;

 v_size=1;

 }];

 flocals = [];

 fbody = [];

 parsed = false;

 }

COMS 4115 ChartLan Final Report

56

 in let global_scope = {

 parent = None;

 variables = [];

 functions = [{

 freturntype = Types.Int;

 ffname = "printarray";

 fformals = [{

 v_name = "val";

 v_type = Types.Arr;

 v_size=1;

 }];

 flocals = [];

 fbody = [];

 parsed = false;

 }] @ (List.map make_print [Types.Int; Types.Str;]);

 }

 in let genv = {

 scope = global_scope;

 }

 in let genv = List.fold_left add_local genv (List.rev globals)

 in let genv = List.fold_left add_func genv (List.rev funcs)

 in let genv = List.fold_left trans_func genv (List.rev funcs)

 in (genv.scope.variables, List.map validate_func genv.scope.functions)

COMS 4115 ChartLan Final Report

57

8.6 Compiler
(*Written by Yibo Zhu, assisted by Xiang Ma and Xiao Xu*)

open Sast

open Bytecode

module StringMap = Map.Make(String)

(* Symbol table: Information about all the names in scope *)

type env = {

 function_index : int StringMap.t; (* Index for each function *)

 global_index : int StringMap.t; (* "Address" for global variables *)

 local_index : int StringMap.t; (* FP offset for args, locals *)

 }

 let rec remove_print = function

 []->[]

 |hd::tl->if (hd.ffname="print"||

hd.ffname="printarray"||hd.ffname="printstring") then (remove_print tl) else

(hd::(remove_print tl))

(* val enum : int -> 'a list -> (int * 'a) list *)

let rec enum stride n = function

 [] -> []

 | hd::tl ->

 if stride > 0 then

 match hd.v_type with

COMS 4115 ChartLan Final Report

58

 Types.Int -> (n, hd.v_name) :: enum stride (n + 1) tl

 | Types.Str-> (* Here's the question: how many slots need to be allocated

to string? *)

 (* To make it simpler, allocate 30 slots for it *)

 (n + hd.v_size-1, hd.v_name) :: enum stride (n + hd.v_size) tl

 |Types.Arr -> (n + hd.v_size-1, hd.v_name) :: enum stride (n+ hd.v_size) tl

 | _ -> raise(Failure ("Undefined type with variable" ^ hd.v_name))

 else

 match hd.v_type with

 Types.Int -> (* Allocate global storage space for an int *)

 (n, hd.v_name) :: enum stride (n + stride) tl

 | Types.Str -> (* Here's the question: how many slots need to be allocated

to string? *)

 (* To make it simpler, allocate 30 slots for it *)

 (n, hd.v_name) :: enum stride (n + stride * hd.v_size) tl

 | Types.Arr ->

 (n, hd.v_name) :: enum stride (n+stride * hd.v_size) tl

 | _ -> raise(Failure ("Undefined type with variable " ^ hd.v_name))

let rec enum_func stride n = function

 [] -> []

 | hd::tl -> (n, hd) :: enum_func stride (n+stride) tl

let get_vari_size a vlist =

 List.fold_left (fun a b -> a + (match b.v_type with

COMS 4115 ChartLan Final Report

59

 Types.Int -> 1

 | Types.Str ->

b.v_size*1

 | Types.Arr -> b.v_size*1

 | _ -> raise(Failure("Error in

get_vari_size !!"))

)) 0 vlist

(* val string_map_pairs StringMap 'a -> (int * 'a) list -> StringMap 'a *)

let string_map_pairs map pairs =

 List.fold_left (fun m (i, n) -> StringMap.add n i m) map pairs

(** Translate a program in AST form into a bytecode program. Throw an

 exception if something is wrong, e.g., a reference to an unknown

 variable or function *)

let translate (globals, functions) =

 (* Allocate "addresses" for each global variable *)

 let global_indexes = string_map_pairs StringMap.empty (enum 1 0 globals) in

 (* Assign indexes to function names; built-in "print" is special *)

 let built_in_functions = StringMap.add "print" (-1) StringMap.empty in

 let built_in_functions = StringMap.add "printarray" (-2) built_in_functions in

COMS 4115 ChartLan Final Report

60

 let built_in_functions = StringMap.add "printstring" (-3) built_in_functions in

 let function_indexes = string_map_pairs built_in_functions

 (enum_func 1 1 (List.map (fun f -> f.ffname) (remove_print functions))) in

 (* Translate a function in AST form into a list of bytecode statements *)

 let translate env fdecl =

 (* Bookkeeping: FP offsets for locals and arguments *)

 let num_formals = get_vari_size 0 fdecl.fformals

 and num_locals = get_vari_size 0 fdecl.flocals

 and local_offsets = enum 1 1 fdecl.flocals

 and formal_offsets = enum (-1) (-2) fdecl.fformals in

 let env = { env with local_index = string_map_pairs

 StringMap.empty (local_offsets @ formal_offsets) } in

 let rec expr = function

 Integer i -> [Litin i]

 | String s -> [Litsh s]

 | Array a -> let rec f l=match l with

 []->[]

 | hd::tl->expr (fst hd)@f tl in List.rev (f a)

 | Index (x,y) -> (if (x.v_type = Types.Arr || x.v_type = Types.Str) then

 (try [Litin x.v_size]@[Lfpa

(StringMap.find x.v_name env.local_index)]

COMS 4115 ChartLan Final Report

61

 with Not_found -> try [Litin x.v_size]@[Loda (StringMap.find x.v_name env.global_index)]

 with Not_found -> raise (Failure ("undeclared variable " ^ x.v_name)))

 else

 raise(Failure ("Indexing

performed on wrong type")))@expr (fst y)@[GetC]

 | Id s -> if s.v_type = Types.Int then

 (try [Lfp (StringMap.find s.v_name env.local_index)]

 with Not_found -> try [Lod (StringMap.find s.v_name env.global_index)]

 with Not_found -> raise (Failure ("undeclared variable " ^ s.v_name)))

 else

 if (s.v_type = Types.Arr || s.v_type =

Types.Str) then

 (try [Litin s.v_size]@[Lfpa

(StringMap.find s.v_name env.local_index)]

 with Not_found -> try [Litin s.v_size]@[Loda (StringMap.find s.v_name env.global_index)]

 with Not_found -> raise (Failure ("undeclared variable " ^ s.v_name)))

 else

 raise(Failure ("Wrong type of

variable"))

 | Binop (e1, op, e2) -> if ((snd e1) = Types.Arr&& op= Ast.Add) then

 expr (fst e2)@expr (fst e1)

 else if ((snd e2) = Types.Arr&& op= Ast.Add) then

 expr (fst e2)@ expr (fst e1)

COMS 4115 ChartLan Final Report

62

 else if ((snd e1) = Types.Arr&& op=Ast.Mult&&(snd e2) =

Types.Arr) then

 expr (fst e2)@expr (fst e1)

 else if (op=Ast.Dmult||op=Ast.Dadd||op=Ast.Dsub||op=Ast.Ddiv)

then

 expr (fst e1) @ [Litin (match (fst e1) with

 Id s ->s.v_size

 |Array a -> List.length a)]@expr (fst

e2)@[Bin op]

 else

 expr (fst e1) @ expr (fst e2) @ [Bin op]

 | Assign (s, e) -> expr (fst e) @ (if (s.v_type = Types.Arr || s.v_type = Types.Str) then

 (try [Litin

s.v_size]@[Sfpa (StringMap.find s.v_name env.local_index)]

 with Not_found -> try [Litin s.v_size]@[Stra (StringMap.find

s.v_name env.global_index)]

 with Not_found -> raise (Failure ("undeclared

variable " ^ s.v_name)))

 else

 if s.v_type = Types.Int then

 (try [Sfp (StringMap.find s.v_name env.local_index)]

 with Not_found -> try [Str (StringMap.find s.v_name env.global_index)]

 with Not_found -> raise (Failure ("undeclared variable " ^ s.v_name)))

COMS 4115 ChartLan Final Report

63

 else

 raise(Failure("can not

assign such type"))

)

 | Call (funcdel, actuals) -> if (funcdel.ffname = "printarray") then

 expr (fst (List.hd actuals)) @[Litin (match (fst

(List.hd actuals)) with

 Array a -> List.length a

|Id s -> s.v_size)

]@[Jsr (StringMap.find

funcdel.ffname env.function_index)]

 else if (funcdel.ffname = "printstring" && (snd (List.hd actuals)) =

Types.Str) then

 expr (fst (List.hd actuals))@[Litin (match (fst

(List.hd actuals)) with

 String s -> String.length s

|Id x -> x.v_size)]@[Jsr (-3)]

 else

 (try

 (List.concat (List.map expr (List.map fst (List.rev actuals)))) @

COMS 4115 ChartLan Final Report

64

 [Jsr (StringMap.find funcdel.ffname env.function_index)]

 with Not_found -> raise (Failure ("undefined function " ^ funcdel.ffname)))

 | Noexpr -> []

 in let rec stmt = function

 Block sl -> List.concat (List.map stmt sl)

 | Expr e -> expr (fst e) (*@ [Drp]*)

 | Return e -> expr (fst e) @ [Rts num_formals]

 | If (p, t, f) -> let t' = stmt t and f' = stmt f in

 expr (fst p) @ [Beq(2 + List.length t')] @

 t' @ [Bra(1 + List.length f')] @ f'

 | While (e, b) ->

 let b' = stmt b and e' = expr (fst e) in

 [Bra (1+ List.length b')] @ b' @ e' @

 [Bne (-(List.length b' + List.length e'))]

 in [Ent num_locals] @ (* Entry: allocate space for locals *)

 stmt (Block fdecl.fbody) @ (* Body *)

 [Litin 0; Rts num_formals] (* Default = return 0 *)

 in let env = { function_index = function_indexes;

 global_index = global_indexes;

 local_index = StringMap.empty } in

COMS 4115 ChartLan Final Report

65

 (* Code executed to start the program: Jsr main; halt *)

 let entry_function = try

 [Jsr (StringMap.find "main" function_indexes); Hlt]

 with Not_found -> raise (Failure ("no \"main\" function"))

 in

 (* Compile the functions *)

 let func_bodies = entry_function :: List.map (translate env) functions in

 (* Calculate function entry points by adding their lengths *)

 let (fun_offset_list, _) = List.fold_left

 (fun (l,i) f -> (i :: l, (i + List.length f))) ([],0) func_bodies in

 let func_offset = Array.of_list (List.rev fun_offset_list) in

 { size_globals = get_vari_size 0 globals;

 (* Concatenate the compiled functions and replace the function

 indexes in Jsr statements with PC values *)

 text = Array.of_list (List.map (function

 Jsr i when i > 0 -> Jsr func_offset.(i)

 | _ as s -> s) (List.concat func_bodies))

 }

8.7 Bytecode
(*Written by Xiuming Dou*)

COMS 4115 ChartLan Final Report

66

open Ast

type bstmt =

 (*push commands*)

 Litin of int (* Push a literal *)

 | Litsh of string (*push string*)

 | Drp (* Discard a value the bytecode interpreter will handle the different types that can

be dropped*)

 | Bin of Ast.op (* Perform arithmetic on top of stack *)

 (*copy of global with id of int to stack top*)

 | Lod of int (* puts global variable on top of stack *)

 (*store stack object in global variables given id*)

 | Str of int (* create global variable from top of stack *)

 (*these stay the same from micro C*)

 | Lfp of int (* Load frame pointer relative *)

 | Sfp of int (* Store frame pointer relative *)

 | Jsr of int (* Call function by absolute address *)

 | Ent of int (* Push FP, FP -> SP, SP += i *)

 | Rts of int (* Restore FP, SP, consume formals, push result *)

 | Beq of int (* Branch relative if topofstack is zero *)

COMS 4115 ChartLan Final Report

67

 | Bne of int (* Branch relative if topofstackis nonzero*)

 | Bra of int (* Branch relative *)

 | Lfpa of int (* This is the start index of this array variable. Index is evaluated and

 put on top of stack in an int structure. *)

 | Sfpa of int

 | Loda of int

 | Stra of int

 | Hlt (* Terminate *)

 | GetC (*get value specified by int on top of stack *)

type prog = {

 size_globals : int; (* Number of global variables *)

 text : bstmt array; (* Code for all the functions *)

}

let string_of_stmt = function

 Litin(i) -> "Litin " ^ string_of_int i

 | Drp -> "Drp"

 | Bin(Ast.Add) -> "Add"

 | Bin(Ast.Sub) -> "Sub"

 | Bin(Ast.Mult) -> "Mult"

 | Bin(Ast.Div) -> "Div"

 | Bin(Ast.Equal) -> "Equal"

 | Bin(Ast.Neq) -> "Neq"

 | Bin(Ast.Less) -> "Less"

COMS 4115 ChartLan Final Report

68

 | Bin(Ast.Leq) -> "Leq"

 | Bin(Ast.Geq) -> "Geq"

 | Bin(Ast.Greater) -> "Greater"

 | Bin(Ast.Dmult)->"Dmult"

 | Bin(Ast.Dsub) ->"Dsub"

 | Bin(Ast.Dadd) ->"Dadd"

 | Bin(Ast.Ddiv) ->"Ddiv"

 | Bin(Ast.And) ->"And"

 | Bin(Ast.Or) ->"Or"

 | Lod(i) -> "Lod " ^ string_of_int i

 | Str(i) -> "Str " ^ string_of_int i

 | Lfp(i) -> "Lfp " ^ string_of_int i

 | Sfp(i) -> "Sfp " ^ string_of_int i

 | Jsr(i) -> "Jsr " ^ string_of_int i

 | Ent(i) -> "Ent " ^ string_of_int i

 | Rts(i) -> "Rts " ^ string_of_int i

 | Bne(i) -> "Bne " ^ string_of_int i

 | Beq(i) -> "Beq " ^ string_of_int i

 | Bra(i) -> "Bra " ^ string_of_int i

 | Litsh(i) -> "Litsh" ^ i

 | GetC -> "GetC"

 | Loda(i) -> "Loda " ^ string_of_int i

 | Stra(i) -> "Stra " ^ string_of_int i

 | Lfpa(i) -> "Lfpa " ^ string_of_int i

COMS 4115 ChartLan Final Report

69

 | Sfpa(i) -> "Sfpa " ^ string_of_int i

 | Hlt->"Hlt"

let string_of_prog p =

 string_of_int p.size_globals ^ " slots to store global variables\n" ^

 let funca = Array.mapi

 (fun i s -> string_of_int i ^ " " ^ string_of_stmt s) p.text

 in String.concat "\n" (Array.to_list funca)

8.8 Bytecode Interpreter
(*Written by Xiuming Dou*)

open Ast

open Bytecode

let execute_prog prog =

let stack = Array.make 8192 0

and globals = Array.make 8192 0 in

let rec exec fp sp pc = match prog.text.(pc) with

Litin i -> stack.(sp) <- i ; exec fp (sp+1) (pc+1)

|Litsh str -> (let rec push_str_elements str' sl =

 if sl >= 0 then (stack.(sp+(String.length str)-1-sl) <- int_of_char str'.[sl];

COMS 4115 ChartLan Final Report

70

 push_str_elements str' (sl-1);)

 in push_str_elements str ((String.length str)-1));

 exec fp (sp+(String.length str)) (pc+1)

| Drp -> exec fp (sp-1) (pc+1)

| Bin op -> if (op=Add

||op=Sub||op=Mult||op=Div||op=Equal||op=Neq||op=Less||op=Leq||op=Greater||op=Geq||op=An

d||op=Or) then

 (let op1 = stack.(sp-2) and op2 = stack.(sp-1) in

 stack.(sp-2) <- (let boolean i = if i then 1 else 0 in

match op with

Add -> op1 + op2

| Sub -> op1 - op2

| Mult -> op1 * op2

| Div -> op1 / op2

| Equal -> boolean (op1 = op2)

| Neq -> boolean (op1 != op2)

| Less -> boolean (op1 < op2)

| Leq -> boolean (op1 <= op2)

| Greater -> boolean (op1 > op2)

| Geq -> boolean (op1 >= op2)

| And -> if (op1<>0 &&op2<>0) then 1 else 0

| Or -> if (op1=0 && op2 =0) then 0 else 1);

exec fp (sp-1) (pc+1)

COMS 4115 ChartLan Final Report

71

)

else

((match op with

Dmult -> (let rec d_mult offset =

 if offset>=0 then (stack.(sp-3-offset) <- stack.(sp-3-offset) * stack.(sp-1);

 d_mult (offset-1))

 in d_mult (stack.(sp-2)-1))

|Dadd-> (let rec d_add offset =

 if offset>=0 then (stack.(sp-3-offset) <-

 stack.(sp-3-offset) + stack.(sp-1);

 d_add (offset-1))

 in d_add (stack.(sp-2)-1))

|Dsub-> (let rec d_sub offset =

 if offset>=0 then (stack.(sp-3-offset) <-

 stack.(sp-3-offset) - stack.(sp-1);

 d_sub (offset-1))

 in d_sub (stack.(sp-2)-1))

|Ddiv-> (let rec d_div offset =

 if offset>=0 then (stack.(sp-3-offset) <-

 stack.(sp-3-offset) / stack.(sp-1);

 d_div (offset-1))

 in d_div (stack.(sp-2)-1))

);exec fp (sp-2) (pc+1))

COMS 4115 ChartLan Final Report

72

|Lod i-> stack.(sp) <- globals.(i) ; exec fp (sp+1) (pc+1)

|Loda i -> (let length=stack.(sp-1) in

 let rec load_arr_globals i' offset=

 if offset >= 0 then (stack.(sp-2+length-offset) <- globals.(i'-offset);

 load_arr_globals i' (offset-1))

 in (load_arr_globals i (stack.(sp-1)-1);exec fp (sp+length-1) (pc+1)))

|Str i-> globals.(i) <- stack.(sp-1) ; exec fp sp (pc+1)

|Stra i -> (let rec push_arr_globals i' offset =

 if offset >= 0 then (globals.(i'-offset) <- stack.(sp-2-offset);

 push_arr_globals i' (offset-1))

 in push_arr_globals i (stack.(sp-1)-1));

 exec fp (sp-1) (pc+1);

COMS 4115 ChartLan Final Report

73

|Lfp i-> stack.(sp) <- stack.(fp+i) ; exec fp (sp+1) (pc+1)

|Lfpa i -> (let length=stack.(sp-1) in

 let rec load_arr_elements i' offset=

 if offset >= 0 then (stack.(sp-2+length-offset) <- stack.(fp+i'-offset);

 load_arr_elements i' (offset-1))

 in (load_arr_elements i (stack.(sp-1)-1);exec fp (sp+length-1) (pc+1)))

|GetC -> stack.(sp) <- stack.(sp-1-stack.(sp-1)-1); exec fp (sp+1) (pc+1)

|Sfp i-> stack.(fp+i) <- stack.(sp-1) ; exec fp sp (pc+1)

|Sfpa i-> (let rec push_arr_elements i' offset =

 if offset >= 0 then (stack.(fp+i'-offset) <- stack.(sp-2-offset);

 push_arr_elements i' (offset-1))

 in push_arr_elements i (stack.(sp-1)-1));

 exec fp (sp-1) (pc+1);

|Jsr(-1)-> print_endline (string_of_int stack.(sp-1)) ; exec fp sp (pc+1)

|Jsr(-2) -> (let rec print_array offset =

COMS 4115 ChartLan Final Report

74

 if offset >= 0 then (print_endline (string_of_int (stack.(sp-2-(stack.(sp-1)-1-

offset))));

 print_array (offset-1))

 in print_array (stack.(sp-1)-1));

 exec fp sp (pc+1);

|Jsr(-3) -> (let rec print_string offset =

 if offset >= 0 then (print_char (char_of_int (stack.(sp-2-(stack.(sp-1)-1-offset))));

 print_string (offset-1))

 in print_string (stack.(sp-1)-1));

 exec fp sp (pc+1);

| Jsr i -> stack.(sp) <- pc + 1 ; exec fp (sp+1) i

| Ent i -> stack.(sp) <- fp ; exec sp (sp+i+1) (pc+1)

| Rts i -> let new_fp = stack.(fp) and new_pc = stack.(fp-1) in stack.(fp-i-1) <- stack.(sp-1) ;exec new_fp

(fp-i) new_pc

| Beq i -> exec fp (sp-1) (pc + if stack.(sp-1) = 0 then i else 1)

| Bne i -> exec fp (sp-1) (pc + if stack.(sp-1) != 0 then i else 1)

| Bra i -> exec fp sp (pc+i)

| Hlt -> ()

in exec 0 0 0

