
1

COMS W4115 Fall 2012

Course Project

CGL (Card Game Language) Final Report

Kevin Henrick (kph2115)

Ryan Jones (rlj2122)

 Mark Micchelli (mm3710)

Hebo Yang (hy2326)

Columbia University

December 19, 2012

2

1. Introduction .. 6

1.1 Motivation ... 6

1.2 Overview ... 6

1.3 Design Goals .. 6

1.3.1 Structured .. 6

1.3.2 Intuitive .. 7

1.3.3 Concise ... 7

1.3.4 Modular .. 7

2. Language Tutorial .. 8

2.1 Getting Started with the CGL Compiler .. 8

2.1.1 Compiler Requirements ... 8

2.1.2 Installing the CGL Compiler .. 8

2.2 Example 1: HighLow .. 8

2.2.1 The SETUP block ... 8

2.2.1 The TURN n Blocks ... 9

2.2.2 The Playable HighLow Program ... 12

2.3 Example 2: RedCardGame .. 13

2.3.1 The PLAYER Block ... 13

2.3.2 The WIN Block .. 13

2.3.3 The Rest of the Source Code for RedCardGame .. 14

2.3.4 The Playable RedCardGame Program .. 15

2.4 Simplified Blackjack ... 17

2.4.1 The Playable Blackjack Game: Setup Portion... 17

2.4.2 The Playable Blackjack Game: Play Portion ... 18

3. Language Manual .. 19

3.1 Data Types ... 19

3.1.1 Integer .. 19

3.1.2 Double .. 19

3.1.3 Boolean: ... 20

3.1.4 String .. 20

3.1.5 Card .. 21

3

3.1.6 List .. 23

3.1.7 Player ... 23

3.1.8 Anytype .. 25

3.2 Lexical Conventions ... 26

3.2.1 Identifiers ... 26

3.2.2 Operators ... 27

3.2.2.1 Assignment Operator .. 27

3.2.2.2 Arithmetic Operators .. 27

3.2.2.3 Relational Operators ... 28

3.2.2.4 Boolean Operators .. 30

3.2.2.5 String Operator ... 30

3.2.2.6 List Operators .. 31

3.2.2.7 Order of Operations .. 32

3.2.3 Punctuators .. 32

3.2.4 Comments .. 33

3.2.5 Keywords .. 34

3.2.6 External Libraries ... 34

3.3 Control Flow .. 35

3.3.1 Statements ... 35

3.3.2 Conditionals ... 35

3.3.3 While Loops .. 37

3.3.4 Foreach Loops .. 38

3.3.5 Function Calls ... 39

3.4 Program Layout and Scoping .. 40

3.4.1 Blocks ... 40

3.4.1.1 PLAYER .. 40

3.4.1.2 SETUP... 41

3.4.1.3 TURN n .. 42

3.4.1.4 WIN ... 43

3.4.2 Scoping ... 43

3.5 CGL Core Library .. 47

4

3.5.1 Functions .. 47

3.5.1.1 Data Conversion Functions ... 47

3.5.1.2 Input/Output ... 48

3.5.1.3 Control Flow .. 49

3.5.1.4 Randomization .. 50

3.5.2 Constants ... 50

3.5.2.1 NEMO ... 50

3.5.2.2 STANDARD ... 51

4 Project Plan .. 52

4.1 Planning... 52

4.2 Specification .. 52

4.3 Development Process ... 52

4.4 Style Guide .. 52

4.4.1 OCaml ... 52

4.4.4 File Directory Arrangement ... 53

4.5 Project Timeline .. 54

4.6 Team Member Roles and Responsibilities .. 55

4.6.1 Kevin Henrick ... 55

4.6.2 Ryan Jones .. 55

4.6.3 Mark Micchelli .. 56

4.6.4 Hebo Yang .. 56

4.7 Software Development Environment ... 56

5 Architectural Design ... 57

5.1 Block Diagram of Major Components ... 57

5.2 Component Interface Interaction ... 58

5.2.2 Scanner (scanner.mll - author: Mark Micchelli) ... 58

5.2.3 Parser (parser.mly - author: Mark Micchelli) ... 58

5.2.4 Abstract Syntax Tree (ast.mli - author: Mark Micchelli) .. 58

5.2.5 Semantic Analyzer / SAST (semantic_analyzer.ml, and sast.mli)... 58

(author: Ryan Jones & Kevin Henrick) ... 58

5.2.6 CGL Core Library and Java Classes (corelibrary.ml and javaclasses.ml- author: Mark Micchelli)

 .. 59

5

5.2.7 Generator (generator.ml- author: Mark Micchelli) ... 59

5.2.8 Testing and Bash Script .. 59

(test cases and bash scripts- author: Hebo Yang) ... 59

6 Test Plan ... 60

6.1 Phase 1 - Creating Scanner/Parser/AST .. 60

6.2 Phase 2 - Creating the Generator assuming Correct Semantics ... 61

6.3 Phase 3 - Type Checking and Creating Semantic Analyzer ... 61

6.4 Testing CGL Programs ... 62

7 Lessons Learned ... 63

7.1 Kevin Henrick .. 63

7.1.1 Lessons Learned ... 63

7.1.2 Advice for Future Teams .. 63

7.2 Ryan Jones ... 64

7.2.1 Lessons Learned ... 64

7.2.2 Advice for Future Teams .. 65

7.3 Mark Micchelli ... 65

7.3.1 Lessons Learned ... 65

7.3.2 Advice for Future Teams .. 66

7.4 Hebo Yang ... 66

7.4.1 Lessons Learned ... 66

7.4.2 Advice for Future Teams .. 67

Appendix A. Project Commit Log from Google Code .. 68

Appendix B. Complete Code Listing .. 83

Appendix C. Example Games .. 162

C.1 Simplified Blackjack ... 162

C2. Finding_the_First_Ace .. 171

C.3 highlow.. 173

APPENDIX D. Changes to the LRM .. 175

6

1. Introduction

 1.1 Motivation

Our interest in the card game domain developed from our perceived contrast between the

widespread popularity and rich history of card games, and the lack of simple, flexible languages for

describing them. Hundreds of game variants have been developed over the half-millenia that the

standard deck 52-card deck (http://en.wikipedia.org/wiki/Standard_52-card_deck) has been used, but

only a handful are commonly found on an average home computer (solitaire, poker, hearts, etc).

Although the data requirements of card games are minimal, in our case requiring only the tracking

of 52 symbols and simple player information, algorithms that emerge from various rule sets can be more

difficult to define with current languages. We aim to simplify this process.

 1.2 Overview

Card Game Language (CGL) is a programming language that was designed for compiling turn-based

card game variants which employ a standard 52-card deck. Our language consists of a set of blocks:

PLAYER, SETUP, TURN n, and WIN, which each have unique requirements. The language is translated

from CGL into Java, which in turn will create a program that the user can use to play a turn-based card

game. The language is intended for programmers to quickly create and play card games with simple,

structured, source code.

Thus, CGL makes it easier to translate popular card games to a digital form than it would with

general-purpose languages such as Java or C. The language is intended to be elegant enough that even

the invention of new card games will be quick and fun. The Core Library, which consists of useful card-

game related functions such as shuffle, is implemented in Java and available for use by the generated

Java code. Therefore, a card game enthusiast who is not very familiar with programming can use CGL as

a means to create her desired digital game.

1.3 Design Goals

1.3.1 Structured

To simplify the complexity of card game logic, we wanted CGL programs to be well structured using

a simple, turn-based framework. This would make programs easier to read, and also allow the user to

focus on programming the specifics of their game, rather than high-level logic shared by most card

games.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStandard_52-card_deck&sa=D&sntz=1&usg=AFQjCNFI4vT0dcxdiTP6p3e6RvbGvVfskQ

7

1.3.2 Intuitive

In order for people who enjoy card games to enjoy CGL, the connection between a physical card

game and a program must be simple and clear. Restricting our problem space allows us to map CGL’s

features more directly to the requirements of physical card games, and allows CGL programming to be

more accessible than programming in a general-purpose language.

1.3.3 Concise

One simple measure for our language’s usefulness relative to a general purpose language would be

comparing the amount of code necessary to implement a specific game. Our language uses special

syntax for game logic and list operations to allow for short, powerful statements and smaller programs.

1.3.4 Modular

Since card games have many variations as well as many strategies, we designed CGL to allow easy

swapping of blocks of game logic or of AI strategies. This is possible because of the structured, intuitive

organization of the game definition in the source program.

8

2. Language Tutorial

2.1 Getting Started with the CGL Compiler

 2.1.1 Compiler Requirements

Card Game Language (CGL) can create Java source code without the Java compiler being installed.

However, in order to run a working program in CGL, the most recent Java compiler needs to be installed.

The following commands are used to compile and run a CGL program called source:

$.cgl/ -j source.cgl

$ javac *.java

$ java Main

If the program fails to run, the programmer can validate the CGL code by using the semantic

analyzer, which will return potential errors, such as undefined variables, undefined functions, improper

argument types of a function, blocks not in correct order, etc. The -s action is used to call the semantic

analyzer on the program as follows:

$.cgl/ -s source.cgl

2.1.2 Installing the CGL Compiler

To install the compiler, all of the files should be installed to a single directory. The necessary files

required to run a CGL program are scanner.mll, parser.mly, ast.mli, semantic_analyzer.ml, corelibrary.ml,

javaclasses.ml, cgl.ml, and Makefile. By using the

$ Make command, each of the component files will compile.

2.2 Example 1: HighLow

 A simple, single player card game that employs the 52-card deck. After a standard deck is shuffled,

a player will guess whether the next card will be higher or lower. The game ends when the player has

made an incorrect guess. Coincidentally enough, CGL creates this game in 52 lines of code.

2.2.1 The SETUP block

In order for CGL to compile, each program must have a SETUP{ } block. It is the only mandatory

block of code that is required by CGL. For this example of the game HighLow, the SETUP block can be

seen below:

9

1 SETUP

2 {

3 int score = 0;

4 list deck = STANDARD;

5 deck = shuffle(deck);

6 player p = <"", 1>;

7

8 card c = <- deck;

9 int lastValue = value(c);

10 print("the first card has value " ^ intToString(lastValue) ^ "\n");

11 deck <+ c;

12 turn(p);

13 }

2.2.1 The TURN n Blocks

The TURN blocks can be created any number of times (i.e. TURN 1, … , TURN n) within CGL. A turn

block is accessed when the turn() function is called with a player as an argument. The numeral after

TURN corresponds to the turnID of the player. Within the TURN blocks, game rules and player strategies

are declared, whether the player be a human or an artificial intelligence agent. An example of using

multiple TURN blocks would be if the programmer wished to create a game with a human, conservative

AI player, and an aggressive AI player. In this case, three TURN blocks may be declared. Within any TURN

block, the player with whom the block was called can be accessed with the keyword “your”. For example,

variables declared in the PLAYER block can be accessed in a TURN block by using a “your.variable_name”

10

expression. (The keyword “your” was actually chosen because it creates some nice phrases when paired

with variables, like “your.name” and “your.turnID”.)

14 TURN 1

15{

16 bool properInput = false;

17 bool high = true;

18 while (!properInput)

19 {

20 print("will the next card be (h)igher or (l)ower?\n");

21 string guess = scan();

22 properInput = true;

23 if (guess == "l")

24 high = false;

25 else if (guess != "h")

26 {

27 print("invalid input\n");

28 properInput = false;

29 }

11

30 }

31

32 c = <- deck;

33 int thisValue = value(c);

34 deck <+ c;

35 print("new card's value is " ^ thisValue ^ "\n");

36 if ((thisValue > lastValue && high) || (thisValue < lastValue

&& !high))

37 {

38 print("correct prediction\n");

39 score = score + 1;

40 lastValue = thisValue;

41 turn(p);

42 }

43 else

44 {

45 print("incorrect prediction; game over\n");

46 print("total score = " ^ intToString(score) ^ "\n");

47 }}

12

Note that the PLAYER and WIN blocks were not called in this example of HighLow. This is because

the only required block in CGL is the SETUP block, and simple programs such as HighLow can be

executed with two blocks, or even just the SETUP block. For more complex games, the PLAYER and WIN

blocks can be used to store player information and more complex winning conditions.

2.2.2 The Playable HighLow Program

The following shows the player interface for HighLow. The player is first shown a card with a value

of 10, and guesses that the next card will be lower by clicking (l). The next card has a value of 2, so she

correctly predicted, and is able to guess again. Since 2 is the lowest possible card value, she guesses that

the next card will be higher by clicking (h). The next card is an 8, so she goes again. She guesses higher

again, but the next card is 5 (lower than 8). Therefore, the game ends, and the user sees her overall

score (2 = number of correct guesses).

the first card has value 10

will the next card be (h)igher or (l)ower?

l

new card's value is 2

correct prediction

will the next card be (h)igher or (l)ower?

h

new card's value is 8

correct prediction

will the next card be (h)igher or (l)ower?

h

new card's value is 5

incorrect prediction; game over

total score = 2

13

2.3 Example 2: RedCardGame

Another simple card game created in CGL. Two players are dealt cards from the standard, shuffled

52-card deck. If a player receives a card that’s a heart or a diamond, then he receives a point for being

dealt a red card. After 5 cards are dealt to each player, the player with the higher score (number of red

cards) wins the game.

2.3.1 The PLAYER Block

The PLAYER block can be used to define data fields for all players in a game. By deafult, each player

has a string for its name, and an int for its turnID (which is used to call the corresponding TURN block

using the turn() function). Like the TURN and WIN blocks, the PLAYER block is optional, but is necessary

for non-trivial games, such as blackjack. Player data can be accessed in other blocks by using the dot

operator (e.g. p.varName, where p is a player reference).

1)/* This gives each player in the game a score, a turn count, and a next

2) player */

3)

4) PLAYER

5) {

6) int score = 0;

7) int turnCount = 0;

8) player next = NEMO;

9) }

2.3.2 The WIN Block

The WIN block in CGL is an optional block in which the programmer can create win conditions for a

game, and terminate the program. This block is run whenever the win() function is called within

previous blocks. It has access to each player reference (via the . binary operator), global variables and

functions. The WIN block for the RedCardGame can be seen below:

14

/* Tests to see which player drew more red cards, and declares that player

the winner. */

WIN

{

if (p1.score > p2.score)

print(p1.name ^ " wins\n");

else if (p1.score < p2.score)

print(p2.name ^ " wins\n");

else

print("draw\n");

}

2.3.3 The Rest of the Source Code for RedCardGame

The two remaining blocks for the RedCardGame (SETUP and TURN 1) can be seen below. Please

note that for RedCardGame to work correctly, the blocks must be in the following order: PLAYER, SETUP,

TURN 1, WIN.

/* This setup block declares two players, sets out the player order,

creates a standard deck, shuffles it, and finally calls the turn

function on the first player. */

SETUP

{

string name1 = scan();

string name2 = scan();

player p1 = <name1, 1>;

player p2 = <name2, 1>;

p1.next = p2;

15

p2.next = p1;

list deck = STANDARD;

deck = shuffle(deck);

turn(p1);

}

/* If the top card of the deck is a red card, give the player a point.

Then, put the card on the bottom of the deck. If the player has moved

five times, move to the win block. */

TURN 1

{

if (your.turnCount >= 5)

win();

card c = <- deck;

print(your.name ^ " drew " ^ intToString(value(c)) ^ suit(c) ^ "\n");

if (c == $*D || c == $*H)

your.score = your.score + 1;

print(your.name ^ "'s score is " ^ intToString(your.score) ^ "\n");

deck <+ c;

your.turnCount = your.turnCount + 1;

turn(your.next);

}

2.3.4 The Playable RedCardGame Program

The following shows the player interface for RedCardGame. The program first asks for two player

names , then automatically draws a card for each player showing the card as well the the score for five

turns, and finally shows the winner who has the highest score.

16

Kevin

Mark

Kevin drew 11D

Kevin's score is 1

Mark drew 8H

Mark's score is 1

Kevin drew 3S

Kevin's score is 1

Mark drew 11H

Mark's score is 2

Kevin drew 13C

Kevin's score is 1

Mark drew 5C

Mark's score is 2

Kevin drew 13S

Kevin's score is 1

Mark drew 11S

Mark's score is 2

Kevin drew 8S

Kevin's score is 1

Mark drew 10H

Mark's score is 3

Mark wins

17

2.4 Simplified Blackjack

A more complex card game created in CGL, Blackjack. Four players (AI or humans) are dealt two

cards, with each card having an assigned score value from the range 1-11. Each player is shown her

cards, and then asked if she would like to hit, which means receive another card, or stay, which means

end her turn. The player(s) with the highest score without going over 21 wins the game.

2.4.1 The Playable Blackjack Game: Setup Portion

 This is an example of the output for the initial setup portion of a Blackjack CGL game. In this

game, three human players enter their names (Professor Edwards, Mark, and Kevin) along with the

specification 1 to show that they’re humans (note that this corresponds to the corresponding TURN 1

block that specifies their turns within CGL source code. The fourth player is an AI (called dealer) with a

specification 2 to show that it’s an AI (with corresponding TURN 2 block in the CGL source code).

Please enter Player name

Professor Edwards

Please enter 1 if human, or 2 if AI

1

Please enter Player name

Mark

Please enter 1 if human, or 2 if AI

1

Please enter Player name

Kevin

Please enter 1 if human, or 2 if AI

1

Please enter Player name

Dealer

Please enter 1 if human, or 2 if AI

2

18

2.4.2 The Playable Blackjack Game: Play Portion

The end of a playable part of the Black Jack CGL game is shown below. Kevin is dealt the King of

Diamonds and the 4 of Hearts, and then asked if he would like to “h” or stay (by clicking anything else).

He decides to hit, and is dealt a 2 of Spades. He now has a 16, and decides to hit again. He is now dealt

the 3 of Hearts, and clicks “s” to stay (although anything else that is not an “h” would have also worked.

At the end, each player’s score is shown. Since Professor Edwards received a 21, he wins the game.

Please note that the dealer’s hand isn’t revealed until the end. Since the dealer has a score of 0, the AI

busted by receiving a total score greater than 21.

Kevin’s turn; press enter to continue

you have KD 4H

type "h" for hit; anything else for stay

h

you got a 2S

Kevin's turn; press enter to continue

you have KD 4H 2S

type "h" for hit; anything else for stay

h

you got a 3H

you have KD 4H 2S 3H

Type “h” for hit; anything else for stay

s

Professor Edwards scored 21

Mark scored 16

Kevin scored 19

Dealer scored 0

Professor Edwards wins

19

3. Language Manual

3.1 Data Types

All information in CGL can be represented as one of seven fundamental data types. A card game in

CGL can be represented entirely by initializing variables of these data types and by manipulating their

values.

The seven data types are integers, doubles, booleans, strings, cards, lists, and players.

3.1.1 Integer

An integer is a 32-bit signed integer. All integers are represented in decimal; CGL does not provide

support for octal or hexadecimal representations of integers. An integer is declared with the int

keyword.

Examples of valid integers:

1

65

0

-149

3.1.2 Double

A double is a 64-bit signed floating point number. As with integers, all doubles are represented in

decimal. Doubles must always contain exactly one decimal point, and they must always begin with an

integer (i.e. you must write 0.5 instead of .5). A double is declared with the double keyword.

Examples of valid doubles:

0.01

0.0

12.

-32.1

20

Examples of invalid doubles:

.01

9.3.4

3.1.3 Boolean:

A boolean is a data type with two possible values: true or false. A boolean is a distinct type, like

in Java, and is not comparable with integer values 0 or 1, unlike in C. A boolean is declared with the

bool keyword.

3.1.4 String

A string is a sequence of characters enclosed in double quotation marks (“”). Strings in CGL also

support for the following escape characters:

 \n /* new line */

 \t /* tab */

 \” /* double quote */

 \\ /* backslash */

In CGL strings, all backslash characters must be followed by a n, t, “, or /. A string is declared with

the string keyword.

Examples of valid strings:

“string”

“123STRING123”

“str$_ing^&”

“string\n”

“\””

21

“\\\t\n\””

“”

Examples of invalid strings:

“string

“string\”

“string\o”

“\\\”

“”””

Note: CGL does not utilize single quotes, and does not use single quotes to identify a character as a

distinct data type.

3.1.5 Card

A card is a data type that represents a specific card in the standard 52 card deck. Each card is

declared in three parts: an identifying $ sign, a card value (2, 3, 4, 5, 6, 7, 8, 9, J, Q, K,

or A), and a suit (C, D, H, or S). Since most games that we’ve encountered use the Ace card as

high, the values of the cards within CGL range from 2-14. For games like solitaire and Blackjack,

conditionals may be used to alter the use of the Ace card. An exhaustive list of valid cards is shown

below:

$2C, $3C, $4C, $5C, $6C, $7C, $8C, $9C, $10C, $JC, $QC, $KC, $AC,

$2D, $3D, $4D, $5D, $6D, $7D, $8D, $9D, $10D, $JD, $QD, $KD, $AD,

$2H, $3H, $4H, $5H, $6H, $7H, $8H, $9H, $10H, $JH, $QH, $KH, $AH,

$2S, $3S, $4S, $5S, $6S, $7S, $8S, $9S, $10S, $JS, $QS, $KS, $AS

22

There are some other, more flexible ways to represent cards in CGL. If you do not want to specify a

card value or suit, you can replace that attribute with an asterisk (*). An exhaustive list of cards with

asterisks is shown below:

Suit-less valued cards:

$2*, $3*, $4*, $5*, $6*, $7*, $8*, $9*, $10*, $J*, $Q*, $K*, $A*

Value-less suited cards:

$*C, $*D, $*H, $*S

Any card:

$**

You may also declare the values of CGL cards using integer variables. For example, if you have

previously defined the identifier a to equal 5, then you may represent a five of diamonds in the

following way: $(a)D. You could also represent a six of diamonds like this: $(a+1)D. The parentheses

are crucial when representing card values with a variable, as demonstrated in the following example:

int J = 8;

card a = $JS; /* jack of spades */

card b = $(J)S; /* 8 of spades */

In card declarations employing a variable, the variable must be of type Integer and have a value in

the range of 2-14. Otherwise, an error will be thrown.

A card is declared using the card keyword.

23

3.1.6 List

A list is a data type representing an ordered collection of the seven fundamental data types: i.e.,

integers, doubles, booleans, strings, cards, players, and lists themselves. CGL does not constrain the size

of a list, but CGL only allows lists to contain elements of a single type. A list begins with [and ends

with], and each element within the list is separated by commas. A list is declared with the list

keyword.

Examples of valid lists:

 []

[1]

[1., 2.]

[“string”, “foo”]

[$2D, $QC, [$AH, $KH, $QH, $JH, $10H]]

Examples of invalid lists:

 [

 [1; 9]

] “string” [

3.1.7 Player

The player data type is the most complex data type in CGL. A player represents a collection of other

data types, referred to as its subtypes. These subtypes are declared at the very beginning of a program,

in a block of code labeled PLAYER { } (see section 4.1 for more information on CGL program layout).

Once declared, the number and names of the subtypes is identical for every player created, and cannot

be changed. However, the values of these types may be changed for each player individually. Here is an

example declaration:

PLAYER

{

24

 list hand = [];

 int score = 0;

}

This piece of code states that every player data type now has two subtypes: a list called “hand” and

an integer called “score”. These values of these different subtypes can be accessed and modified with

the dot (.) operator. For example:

player1.score = 5; /* sets player1’s score to 5 */

player1.hand <+ <- deck; /* takes the top card of the deck and

 adds it to the back of player1’s

 hand */

player2.score = 7; /* sets player2’s score to 7; has no

 affect on player1’s score */

player2.hand = player1.hand; /* sets player2’s hand to be a copy

 of the list found in player1’s

 hand */

In order to declare a player for the first time, you need to use the following format:

<“player_name”, 1>;

The player declaration must always include two subtypes, surrounded by < and >. The first subtype

is a string representing the player’s name, and the second subtype is an integer representing the

player’s turn ID. (More on turn IDs can be found in section 4.1.3.) These two subtypes are found in every

single player declaration by default, regardless of what’s in PLAYER, and they can be accessed through

the identifiers name and turnID. For example:

25

PLAYER { /* there is nothing here */ }

SETUP

{

 player p1 = <“john”, 1>;

 p1.name = “jane”; /* changes p1’s name to “jane” */

 p1.turnID = 2; /* changes p1’s turnID to 2 */

}

As indicated in the sample code, a player is declared with the player keyword.

Note: capitalization is important! PLAYER is used to denote the block of code where player

subtypes are specified, but player is used to declare a player variable.

3.1.8 Anytype

Anytype is a pseudo-type that may not be instantiated, but may describe a function parameter type

or a function return type. It is also the return type of the List remove operator (see 2.2.6).

Anytype represents a type that is strict but not known, and may be cast to its original type through

assignment to a variable of that same type. Assignment of an anytype to a variable of a type that was

not the anytype’s original type will throw a cast error.

Example of anytype casting:

int bet = 5; /* sets player1’s score to 5 */

allBets <+ bet;

...

bool val = allBets ->; /* Throws an error “invalid cast” */

int val = allBets ->; /* Good cast */

26

OR

int val = 0;

if (get(1,allBets) === val) val = get(1,allBets);

/* type check before cast */

/* get function is not included in core library */

3.2 Lexical Conventions

3.2.1 Identifiers

CGL uses identifiers in order to represent variables and functions. An identifier is a sequence of

letters, digits, and the underscore character “_”. The first character of an identifier must be a letter. CGL

is case sensitive; i.e., upper and lower case letters are considered different.

Examples of valid identifiers:

hello

myHand

test4

a_b_c

identifier

IDENTIFIER

IdEnTiFiEr

Note: CGL treats the last three identifiers as distinct.

Examples of invalid identifiers:

67

27

my-hand

_bad

$%@^&

3.2.2 Operators

An operator is used to manipulate the values of data types, or to assign a value to an identifier.

3.2.2.1 Assignment Operator

The assignment operator is the equals sign (=). This is used to assign a value to an identifier.

Operator Meaning Examples

= Assignment int i = 0;

int r = random(1, 52);

card a = $4S;

3.2.2.2 Arithmetic Operators

Arithmetic operators are used to manipulate integers and doubles.

Operator Meaning Examples

- Negative sign int a = -4; /* -4 */

double b = -4.0; /* -4.0 */

+ Addition int a = 9 + 4; /* 13 */

double b = 9. + 4.; /* 13.0 */

- Subtraction int a = 5 - 2; /* 3 */

double b = 5.2 - 9.1; /* -3.9 */

* Multiplication int a = 65 * 0; /* 0 */

28

double b = 7.2 * 1.1; /* 7.92 */

/ Division int a = 30 / 5; /* 6 */

double b = 6. / 0.5; /* 12.0 */

% Modulo (integers only) int a = 6 % 4; /* 2 */

Note: When you combine a double and an integer in an arithmetic expression, the result becomes

a double. For example, 5.6 + 5 = 10.6, or 3.0 * 7 = 21.0. Additionally, when the division

operator is used with two integers, it is treated as integer division; for example, 7 / 2 gives you 3, not

3.5. For double division, at least one of the two arguments must be a double; for example, 7.0 / 2

gives you 3.5.

3.2.2.3 Relational Operators

Relational operators take two data types and return a boolean value describing their relation.

For all relational operators except for === and !==, the data types you’re comparing must be of

the same type; otherwise, you will get an error. Furthermore, the >=, <=, >, and < operators can only

be used to compare integers and doubles; otherwise, you will get an error.

Operator Meaning Examples

>= Greater than or equal
to

bool a = 5 >= 3; /* true */

bool b = 6.5 >= 9.2; /* false */

<= Less than or equal to

bool a = 5 <= 6; /* true */

bool b = 7.2 <= 6.0; /* false */

> Greater than bool a = 5 > 4; /* true */

29

 bool b = 4 > 4; /* false */

< Less than

bool a = 5. < 6.; /* true */

bool b = 6. < 6.; /* false */

== Equal to

bool a = 5 == 5 /* true */

bool b = 6 == 5 /* false */

bool c = 5 == “5” /* error */

bool d = “a” == “a” /* true */

bool e = $JS == $*S /* true */

bool f = [] == [[]] /* false */

bool g = true == false /* false */

!= Not equal to

bool a = 5 != 6 /* true */

bool b = 6 != 6 /* false */

bool c = 5 != “x” /* error */

bool d = “a” != “b”; /* true */

bool e = $AC != $**; /* false */

bool f = [] != [5] /* true */

bool g = true != true /* false */

=== Type equal to bool a = 6 === 7 /* true */

bool b = 6 === “6” /* false */

bool c = [6] === [“6”] /* true */

bool d = [] === [[]] /* true */

!== Type not equal to bool a = “a” !== “b” /* false */

bool b = [] !== $6* /* true */

bool c = [9] !== [9.] /* false */

bool d = 9 !== 9. /* true */

30

3.2.2.4 Boolean Operators

Boolean operators are used to perform logic operations on boolean expressions. As in Java, CGL

uses the short-circuit evaluation method to generate the behaviour of the various operators.

Operator Meaning Examples

! Not bool a = true;

a = !a; /* false

*/

&& And bool a = true && true; /* true

*/

bool b = true && false; /* false

*/

|| Or bool a = true || false; /* true

*/

bool b = false || false; /* false

*/

3.2.2.5 String Operator

String operators are used to manipulate strings.

Operator Meaning Examples

^ Concatenate string a = “foo” ^ “bar”; /* “foobar”

*/

string b = a ^ “baz”; /* “foobarbaz”

*/

31

3.2.2.6 List Operators

List operators are used for adding and removing elements from the beginning and the end of lists.

These operators allow lists to be implemented as both queues and stacks.

Operator Meaning Examples

e +>

l
Add element e to the
front of list l.

list l = [3, 2, 1];

4 +> l;

/* l becomes [4, 3, 2, 1] */

l <+

e
Add element e to the

end of list l.

list h = [$AC, $AD, $AH]

h <+ $AS;

/* h becomes [$AC, $AD, $AH, $AS]

*/

<- l Remove an element

from the front of list l.

list b = [true, false];

<- b;

/* b becomes [false] */

l -> Remove an element

from the end of list l.

list f = [1, 1, 2, 3, 5, 8];

int i = f ->;

/* f becomes [1, 1, 2, 3, 5]

 i becomes 8 */

Note the importance of the direction of the add operator when dealing with two lists. For

example:

list a = [1, 2, 3] +> [4, 5]; /* a becomes [[1, 2, 3], 4, 5] */

list b = [1, 2, 3] <+ [4, 5]; /* b becomes [1, 2, 3, [4, 5]] */

32

3.2.2.7 Order of Operations

The following examples illustrate the order of operations for arithmetic operators (2.2.2), boolean

operators (2.2.4), and list operators (2.2.6) in CGL.

Expression Results Explanation

1+2*3 7 The multiplication (*) operator takes
precedence over the addition (+) operator.

(1-2)*3 -3 The expression within the parentheses is
evaluated first before the multiplication
operator.

1. / 2. * -4. -2.0 The order of operations is left to right for
division, multiplication, and a negative
value. Therefore, / takes precedence over

*, followed by - in this expression.

false && true ||

false
false The and (&&) operator takes precedence

over the or (||) operator.

true && (false ||

true)
true The expression within the parentheses is

evaluated first before the and operator.

hand <+ <- deck The top card
of the deck is
removed and
placed in the
back of the
hand

The remove (-> or <-) operator always
evaluates before the add (+> or <+)
operator.

3.2.3 Punctuators

Punctuators are used to handle program flow. They also help to make the program more readable.

33

Punctuator Meaning Examples

; Ends a line of code
for a statement.

int a = 2;

() Declares the
parameters of a
conditional, loop,
or function.

if (a < 3) { /* conditional body

*/ }

while (a < 3) { /* loop body */ }

foreach (l) { /* foreach body */ }

def int len(list l)

{

 /* function body */

}

{ } Declares the
parameters of a
conditional, loop,
or function. Also
used to deliniate

the PLAYER,

SETUP, TURN,

and WIN blocks

PLAYER { /* player info */ }

SETUP { /* setup */ }

TURN { /* turn info */ }

WIN { /* win conditions */ }

3.2.4 Comments

Comments within CGL begin with /* and end with */, as in C. Multi-line comments are supported

in CGL. Also, as in C, comments are not nested.

/* This is a comment,

and it is multiline. */

/* This is all /* part of the /* same comment. */

/* This is a comment. */ This is an error! */

34

3.2.5 Keywords

The following list contains all seventeen keywords in CGL, which are restricted from being using for

other purposes within a program:

bool

card

def

double

ele

else

false

foreach

if

int

list

return

player

string

true

while

your

3.2.6 External Libraries

Inclusion of external library functions is performed by writing the following pre-processing macro in

the SETUP block:

SETUP

{

#include library.cgll

35

…

}

This statement copies the source code from the .cgll file directly into the setup block. The .cgll

library file is written in CGL and must include only function definitions. See Appendix B for an example

library file.

3.3 Control Flow

CGL executes different expressions in different orders, depending on how those expressions are

laid out. This is broadly termed “control flow”. The following are five mechanisms CGL uses to handle

control flow.

3.3.1 Statements

An statement is a piece of code followed by a semicolon. Statements are evaluated sequentially.

Example:

 list deck = [$AC, $2C, $3C, $4C, $5C, $6C, $7C, $8C, $9C, $10C];

 deck ->;

 deck = shuffle(deck);

3.3.2 Conditionals

Conditionals, or “if / else” statements, consist of an if statement, an optional number of else

if statements, and then an optional concluding else statement.

 if (condition1) {

 statement1;

 }

 else if (condition2) { /* optional */

 statement2;

 }

36

 else if (condition3) { /* optional */

 statement3;

 }

 ...

 else { /* optional */

 statementk;

 }

Each condition must be a boolean. statement1 will execute if condition1 is true,

otherwise statement2 will execute if condition2 is true, and so on until statementk, which

will execute only if all of the previous condition k-1 boolean expressions are false.

Furthermore, CGL allows you to omit the curly braces after an if or else declaration if the

following statement is only one line of code. This convention is also used in languages like Java and C.

Example:

 /* prints a message corresponding to a random die roll */

 int dieRoll = random(1, 6);

 if (dieRoll == 1)

 print(“you rolled a 1\n”);

 else if (dieRoll == 2)

 print(“you rolled a 2\n”);

 else

 print(“you rolled a number greater than 2\n”);

37

 3.3.3 While Loops

While loops will execute a statement until a certain condition is reached. The condition is checked

for before the body of the loop is evaluated.

while (condition) {

 statement;

}

The condition must be a boolean, and the statement executes at each iteration until the

condition returns false.

Examples:

 /* deals five cards from the deck into myHand */

 int i = 0;

while (i < 5)

{

 myHand <+ <- deck;

 i = i + 1;

}

/* puts every card in my hand on the bottom of the deck */

while (myHand != [])

{

 deck <+ <- myHand;

}

38

3.3.4 Foreach Loops

The foreach keyword is used to iterate through lists. The ele keyword (short for “element”)

represents the current item in the list. The foreach loop exits once all items in the list have been

touched.

 foreach (listname) {

 statement;

 }

The listname must be a list, and the statement occurs once for each item in the list.

Examples:

 /* adds up the card values in a hand (see 5.1.1.4 for the

 meaning of value())*/

 int totalValue = 0;

foreach (hand)

{

 totalValue = totalValue + value(ele);

 }

 /* reverses the elements in myList */

 list reversed = [];

 foreach (myList)

{

 ele +> reversed;

 }

 myList = reversed;

39

Note that foreach has nothing to do with the for(; ;) construction in Java or C. To

accomplish something like for(; ;), use a while loop. (See the first example in 3.3.)

3.3.5 Function Calls

The def keyword is used to declare functions in CGL. The return type of the function follows the

word def. All functions must conclude with a return statement, which consists of a return keyword,

followed by some data of the type you declared after the def keyword.

Examples:

 /* Returns the length of list l. */

 def int length(list l)

 {

 int length = 0;

 foreach (l)

 {

 length = length + 1;

 }

 return length;

 }

/* Returns true if element e is in list l. */

 def bool in(anytype e, list l)

 {

 bool in = false;

 foreach(l)

{

 if (ele === e && ele == e)

 in = true;

40

 }

 return in;

 }

3.4 Program Layout and Scoping

3.4.1 Blocks

Each CGL program contains up to four main types of blocks of code: PLAYER { }, SETUP { },

TURN n { }, and WIN { }. Only the setup block is required; everything else is optional, but will

probably be used in all but the simplest CGL programs. Furthermore, the PLAYER, SETUP, and WIN

blocks can only occur once in the program, while you can declare as many TURN blocks as you like.

Finally, the four blocks must be declared in order: PLAYER, SETUP, some number of TURN n, and WIN.

The next four sections describe each of the four blocks. The examples in each section can be

combined to construct a complete card game, which is only 38 lines of code!

3.4.1.1 PLAYER

The PLAYER block sets out the subtypes of the player datatype. This block can only have

variable declarations; no function declarations. It is the very first block run in a CGL program, and the

only time it ever runs is at the beginning of a program.

If you do not include a PLAYER block in your program, all player datatypes will only include the

two default subtypes: name and turnID (see 1.7 for more information).

Example:

/* This gives each player in the game a score, a turn count, and a

next player. */

PLAYER

{

 int score = 0;

41

 int turnCount = 0;

 player next = NEMO;

}

3.4.1.2 SETUP

The SETUP block is the main block of code in a CGL program, and the only required block in CGL.

It runs immediately after the PLAYER block has concluded if there is a PLAYER block; otherwise, it is

the first block run in the program. Inside the SETUP block, you can declare global variables and define

functions that are accessible to all other parts of the program, i.e. the TURN and WIN blocks. Once you

leave a SETUP block, you cannot return to it—the rest of the program will execute solely using the

TURN and WIN blocks.

Example:

/* this setup block declares two players, sets out the player

order, creates a standard deck, shuffles it, and finally calls the

turn function on the first player. */

SETUP

{

 string name1 = scan();

string name2 = scan();

player p1 = <name1, 1>;

 player p2 = <name2, 1>;

p1.next = p2;

p2.next = p1;

 list deck = STANDARD;

 deck = shuffle(deck);

 turn(p1); /* you need to include a turn() or

42

 win() function at the end of a

 SETUP block if you want to

 continue the program */

}

3.4.1.3 TURN n

The TURN block is executed whenever a piece of code calls the turn(player p) function.

Each TURN block is followed by an integer n, which by convention should be a positive integer. The n

corresponds to the default turnID subtype of the player datatype. If a player john has

john.turnID equal to 1, then the turn(john) function will cause the TURN 1 block to run. If a

player jim has jim.turnID equal to 2, then turn(jim) will cause the TURN 2 block to run. If a

player has a turnID without a corresponding TURN n block, CGL will take

turn(playerWithBadID) and run the WIN block instead.

Within the TURN block, the player whose turn it is can be accessed with the keyword your.

Example:

/* If the top card of the deck is a red card, give the player a

point. Then, put the card on the bottom of the deck. If the player

as moved five times, move to the win block. */

TURN 1

{

 if (your.turnCount >= 5)

 win();

 card c = <- deck;

 if (c == $*D || c == $*H)

 your.score = your.score + 1;

 deck <+ c;

 your.turnCount = your.turnCount + 1;

 turn(your.next);

}

43

3.4.1.4 WIN

The WIN block runs whenever the win() function is called. It is generally used at the end of the

program to check win conditions. Unlike TURN n, there is no designated player whose subtypes are

being modified when you call win(); rather, WIN just deals with variables and functions, like in the

SETUP block.

Example:

/* Tests to see which player drew more red cards, and declares

that player the winner. */

WIN

{

 if (p1.score > p2.score)

 print(p1.name ^ “ wins\n”);

 else if (p1.score < p2.score)

 print(p2.name ^ “ wins\n”);

 else

 print(“draw\n”);

}

3.4.2 Scoping

All identifiers declared in the SETUP block are global, and accessible to the TURN n and WIN

function of the program. Otherwise, the CGL language uses block level scoping; the variables declared

within TURN n and WIN are local to those blocks of the program. Functions can only be declared at the

beginning of the SETUP block. Furthermore, variables declared within conditionals, while loops, foreach

loops, and function definitions are local to those blocks. In each scope, identifiers must be declared

before use; in other words, it is not allowed for a statement with an identifier to precede the statement

in which the identifier is declared.

Example:

/* note that any underlined code indicates that that code will

throw an error */

44

PLAYER

{

 /* Any variables declared in the PLAYER block will be considered

 subtypes of the player datatype, not global or local

 variables */

 list hand = [];

 player next = NEMO;

}

SETUP

{

 /* any variables declared in the SETUP block will be

 usable in the rest of the SETUP body, as well as the

 TURN n and WIN blocks. */

int x = 4;

card c = $2H;

list deck = STANDARD;

/* This throws an error, as z has not yet been defined. */

int y = 3 + z;

 int z = 9;

 int y = 3 + z; /* Now this will work fine. */

 /* This throws an error, as cut() has not yet been

 defined. */

45

deck = cut(deck);

 /* Any functions declared in the SETUP block will be

 usable in the rest of the SETUP body, as well as the

 TURN and WIN blocks. */

def list cut(list deck)

{

 /* function body */

}

/* Now this will work fine. */

deck = cut(deck);

TURN 1

{

 /* This uses the values for x and y declared in SETUP. */

int n = x + y;

/* This throws an error, because y was already declared in

 SETUP.

int y = 2;

/* This changes the value of y for the whole program. */

y = 2;

/* This only changes the value of n for the rest of the

46

 TURN block. The next time the TURN block is called, n

 will revert back to x + y, as expressed in the first

 line. */

n = 40;

/* Here, the parameters x and y are NOT the same x and y

 from SETUP. If you want to change the global x and y

 in this function, you would need to choose different

 parameter names. */

def int power(int x, int y)

{

 /* function body */

}

 /* i becomes 16 (4 to the power of 2) */

int i = power(x, y);

}

TURN 2

{

 /* This does not work, because n was declared in TURN 1, which

 TURN 2 does not have access to. */

 n = n + 1;

}

WIN

47

{

 /* This works fine because deck and cut() were declared in

 SETUP. */

 deck = cut(deck);

 /* This does not work because power() was declared in

 TURN 1, which WIN does not have access to. */

int j = power(x, y);

}

3.5 CGL Core Library

The core library within CGL contains a number of functions for converting data types, printing to

and scanning from the command line, managing control flow, and randomization. There are also two

constants, one list and one player, which CGL will always recognize.

3.5.1 Functions

3.5.1.1 Data Conversion Functions

3.5.1.1.1 string intToString(int i)

This function takes in an integer value as an argument, and returns it as a string. The integer can

be either positive or negative.

Examples:

string a = intToString(5); /* “5” */

string b = intToString(-8); /* “-8” */

3.5.1.1.2 int stringToInt(string s)

This function takes in a string that represents a numeric value as an argument, and returns it as an

integer. The string can include either a positive or a negative integer value. If the string contains

anything other than digits and a minus sign, this function will throw an error.

48

Examples:

int a = stringToInt(“10”); /* 10 */

int b = stringToInt(“-12”); /* -12 */

3.5.1.1.3 string suit(card c)

This function takes in a card type, and returns a string which represents a suit. The suit

function only accepts allowable cards, and returns the respective suit: “C”, “D”, “H”, or “S”. If

you call suit() on a card with a * as a suit, this function will throw an error.

 Examples:

string a = suit($JH); /* “H” */

string b = suit($2C); /* “C” */

3.5.1.1.4 int value(card c)

This function takes in a card type, and returns an integer which represents the value of the

card. Values for each card range from 2 through 14. If you call value() on a card with * as a

value, this function will throw an error.

Examples:

int a = value($5S); /* 5 */

int b = value($KD); /* 13 */

3.5.1.2 Input/Output

3.5.1.2.1 int print(string s)

This function prints the given string to the command line. It returns the value 0.

Example:

49

print(“hello world”);

/* Prints hello world to the command line. */

3.5.1.2.2 string scan()

This function reads in everything on the command line up to a newline \n character,

and stores the characters as a string, minus the newline character.

Example:

string input = scan(); /* If the user types in “foo bar\n”,

 then input becomes “foo bar” */

3.5.1.3 Control Flow

3.5.1.3.1 int turn(player p)

This function will cause the current block of code to halt, and then will execute the code located

with the TURN n block, where n is the value of p.turnID. If p.turnID does not correspond with

an existing TURN n block, this function will execute the code located in the WIN block.

As with the print() function, the turn() function always returns 0. The examples in section

4.1 and section 6 give appropriate illustrations of the turn() function.

3.5.1.3.2 int win()

This function will cause the current block of code to halt, and then will execute the code located

in the WIN block.

As with the print() function, the win() function always returns 0. The examples in section 4.1

and section 6 give appropriate illustrations of the win() function.

50

3.5.1.4 Randomization

3.5.1.4.1 int random(int lower, int higher)

The random() function takes in two integer arguments, and returns an integer that is a random

number between the range of the two input integers lower and higher, inclusive with those bounds.

Example:

int i = random(1, 52); /* i is an integer between 1 and 52,

 inclusive. */

3.5.1.4.2 list shuffle(list l)

The shuffle() function takes in a list, and randomizes the position of the elements within the

list, and returns the shuffled list.

Example:

list aces = [$AC, $AD, $AH, $AS];

aces = shuffle(aces); /* makes aces a version of the

the

 original list, but with the

 original positions randomly moved.

*/

3.5.2 Constants

3.5.2.1 NEMO

NEMO is the default player. The word “nemo” is Latin for “no one”, and so NEMO should be used

in places where the player is not known. NEMO’s name subtype is “nemo”, and NEMO’s turnID is -1.

Because TURN n blocks should not include negative numbers for n, calling turn(NEMO) will redirect

you to the win() block. Should you create a TURN -1 block, calling turn(NEMO) will redirect you to

51

that block, unless you want to change NEMO’s turnID to an integer without a corresponding TURN n

block.

3.5.2.2 STANDARD

STANDARD is a list containing the standard 52-card deck, which holds the cards in this order:

STANDARD =

[$2C, $3C, $4C, $5C, $6C, $7C, $8C, $9C, $10C, $JC, $QC, $KC, $AC,

 $2D, $3D, $4D, $5D, $6D, $7D, $8D, $9D, $10D, $JD, $QD, $KD, $AD,

 $2H, $3H, $4H, $5H, $6H, $7H, $8H, $9H, $10H, $JH, $QH, $KH, $AH,

 $2S, $3S, $4S, $5S, $6S, $7S, $8S, $9S, $10S, $JS, $QS, $KS, $AS]

Calling STANDARD does not shuffle the deck for you. Generally speaking, you will always want to

use the following programming idiom when using STANDARD:

list deck = STANDARD;

deck = shuffle(deck);

52

4 Project Plan

 4.1 Planning

After the Language Reference Manual was created, our group met every Saturday to assess our

progress and discuss the work at hand. Observing this meeting schedule rigorously proved key to

organizing our work as a team, and provided time to discuss the project, plan each portion of the code,

and divide up tasks for the week ahead. As a result, almost all of the functionality that we specified in

the Language Reference Manual was implemented.

 4.2 Specification

Although our end-of-project implementation matches closely with the LRM, we made careful note

of the additions and changes to the LRM specification. These are noted in the Appendix E.

 4.3 Development Process

The development process for our language consisted of three main phases. During the initial phase,

the scanner, parser, and abstract syntax tree were coded based on the requirements that were

established in the Language Reference Manual. During the second phase, the generator, core library,

java library, and cgl executable were created under the assumption that a program would be correctly

type checked with a yet to be implemented semantic analyzer and sast. During the third phase, the

semantic analyzer was created alongside a semantically analyzed abstract syntax tree (sast), and then

tested using multiple test files. Testing occurred concurrently with phases two and three. However, near

the end of phase three, a bash script was used to perform multiple tests, and automate the checking

process.

4.4 Style Guide

 4.4.1 OCaml

 Our team decided from the start to use 4-space indents in all code. Furthermore, all variables

and functions would use all_lowercase_with_underscores, not camelCase. There is some inconsistency

when it came to the let … in construction. For short declarations, the “in” was kept in the same line as

the last word of the function. For longer declarations, in was given a whole new line. We acquired this

rule-of-thumb from Professor Edwards’s MicroC code, which seems to follow the same rules.

 4.4.2 Java

 Because the Java code is created by the generator, it was difficult to get things like indenting

and newlines to display in a readable fashion. However, all of the Java variables are in camelCase, as

53

typical in Java code. Additionally, the Java code also sometimes needs to create new variables unrelated

to the variables declared in the CGL code. We managed to avoid naming overlap by appending each

variable name with a certain number of ‘$’ characters, because ‘$’ can be included in Java identifiers but

not CGL ones.

 4.4.3 CGL Source Code

 For our CGL code, we decided on 4-space indents, as in our OCaml code. Variable names were in

camelCase, and brackets were treated using Allman style. As CGL is somewhat Java-like, and because we

wanted to compile to Java, we tended towards traditional Java code styles when designing CGL.

 4.4.4 File Directory Arrangement

 All components necessary for compilation of a CGL program are inside a “_build” folder. In

addition, games written in CGL are inside the “games” folder and test cases along with their bash scripts

are under the “test_cgl” folder. The cgl.bash script under the root folder may be used to compile and

run given game inside the “games” folder.

Example File Tree

/CGL

 Readme.txt

 /_build

 primary_sources(*.ml, *.mli, *.mly, *.mll, …)

 Makefile

cgl.bash

 /games

 gameA.cgl

 gameB.cgl

 /test_cgl

 analyzer.bash

 /analyzer_test

54

 test1.cgl

 test2.cgl

 ...

parser.bash

 /parser_test

 test1.cgl

 test1.out

 test1.result

4.5 Project Timeline

Date Project Milestone

September 5, 2012 Formed Project Team.

September 15, 2012 Decided on Card Game Language (CGL).

September 22, 2012 Created Project Proposal.

September 29, 2012 Began work on the LRM.

October 6, 2012 Created sample CGL code for War, Blackjack, and

Five Card Poker.

October 13, 2012 Continued work on LRM and sample code.

October 20, 2012 Began work on scanner, parser, and test cases.

October 27, 2012 Completed LRM.

November 3, 2012 Continued work on scanner, parser, test cases,

55

and began creating the Abstract Syntax Tree.

November 10, 2012 Finished scanner, parser, and AST. Began working

on semantic analyzer, generator, Makefile, and

executable.

November 17, 2012 Continued working on semantic analyzer,

generator, test cases, and created the majority of

the Make and executable.

November 24, 2012 Finished generator, continued working on

semantic analyzer/SAST, and test cases.

December 1, 2012 Finished Core Library, and continued working on

semantic analyzer/SAST, and test cases.

December 8, 2012 Added Java Library, continued working on
semantic analyzer/SAST, and test cases.

December 15, 2012 Finished the Semantic Analyzer/SAST, and
continued debugging using test cases.

December 19, 2012 Submitted Final Report, Project Files, and
Presented.

4.6 Team Member Roles and Responsibilities

4.6.1 Kevin Henrick

Kevin was the team leader, and scheduled weekly meetings for the project. His main coding

responsibility was to create the semantic analyzer and sast. He also helped with creating the makefile, a

number of test cases, and a simple game (called First_Ace.cgl). With respect to creating the project

proposal, LRM, presentation, and Final Report, he was involved with each phase of this process.

4.6.2 Ryan Jones

Ryan’s primary responsibility was to create the semantic analyzer and sast alongside Kevin. He also

made a number of contributions to the cgl executable file and the makefile. He contributed to each

56

portion of the project proposal, presentation, and Final Report, and made significant contributions in

developing the features of CGL within the Language Reference Manual.

 4.6.3 Mark Micchelli

Mark created the scanner, parser, abstract syntax tree, generator, core library, java library,

makefile, and cgl executable. He also wrote three of the sample CGL games, including the most complex

game, simplified blackjack. Mark played a central role in developing the many unique features of CGL.

For example, he came up with the card representations ($(value)(suit), with the asterisk representing

“any”), the list operators (<+, +>, <-, and ->), the player structure with turnIDs to allow for AIs, and the

PLAYER/SETUP/TURN n/WIN structure of the whole CGL language. Mark was also the primary strategist

in constructing the LRM.

4.6.4 Hebo Yang

Hebo created a wide variety of test cases and two bash scripts to test inputted CGL programs. His

test cases proved very effective in debugging the semantic analyzer, which allowed for greater

transparency in developing the type checking system. He also created a game (War.cgl) and helped

debug First_Ace.cgl. Hebo also contributed to every portion of the project, including the proposal,

Language Reference Manual, presentation, and Final Report.

4.7 Software Development Environment

Our project group used Subclipse as a code sharing platform through the GoogleCode environment.

Everyone on the team installed the subclipse software prior to completing the Language Reference

Manual. Kevin originally created the working directory (called “_build”) on the GoogleCode, and then

the team quickly set-up their own accounts. It took some time to become familiar with the commands

and features of Subclipse and GoogleCode, but it proved to be an effective platform for sharing OCaml,

java, and cgl code throughout the project life. Mark did most of his work outside of Eclipse, just using

vim and make, but he updated to the GoogleCode regularly.

57

5 Architectural Design

 5.1 Block Diagram of Major Components

58

5.2 Component Interface Interaction

5.2.1 Command Line Interface (cgl.ml – author: Mark Micchelli & Ryan Jones)

The command line interface is the executable used to compile CGL. It takes two arguments: a flag

(either -s or -j) and a .cgl file. If you run the executable with -s, you will have the semantic analyzer check

your program’s semantics without actually generating anything. By default, you’ll also check syntax

errors that would be caught by the scanner or parser. If you run the executable with -j, you actually

generate the Java code in the form of four .java files: Main, CGLList, Card, and Player. By compiling all of

those with javac, and then running java Main, you can see your CGL program in action.

5.2.2 Scanner (scanner.mll - author: Mark Micchelli)

The scanner is used to determine the tokens that are recognizable within our language. The

scanner processes the code that is written in the source.cgl file and transforms it into a series of tokens

that are interpreted by the parser. The scanner is necessary to check whether valid characters are being

used in a CGL program.

5.2.3 Parser (parser.mly - author: Mark Micchelli)

The parser’s role is to use the series of tokens generated by the scanner and check whether the

tokens can be used based on the context-free-grammar specified in our language. This is the part of the

compiler that checks for syntax errors. After the parser.mly file processes the tokens generated from the

scanner analyzing the source file, an abstract syntax tree is generated.

5.2.4 Abstract Syntax Tree (ast.mli - author: Mark Micchelli)

The Abstract Syntax Tree is used to define the primary relationships between the tokens within CGL.

The AST is used as input in the two most important pieces code in our program: the semantic analyzer

and the generator.

5.2.5 Semantic Analyzer / SAST (semantic_analyzer.ml, and sast.mli)

 (author: Ryan Jones & Kevin Henrick)

The semantic analyzer traverses the nodes of the abstract syntax tree, and examines its structure.

Throughout this process, the semantic analyzer type checks each node to make sure that the source

code is written such that variables & functions used are previously defined with the proper return types,

function calls have the proper number and types of arguments, that the block order (PLAYER, SETUP,

TURN 1, … , TURN n, WIN) are in the proper order, functions are only defined at the beginning of the

SETUP, and other checks specified in our Language Reference Manual. The semantic analyzer references

the type checked abstract syntax tree (sast.mli) throughout this process. After the analysis is complete,

59

and no exceptions (ie. Failure messages) are given back to the programmer, the compiler may proceed

to the code generation phase of compiling a CGL program.

5.2.6 CGL Core Library and Java Classes (corelibrary.ml and javaclasses.ml- author: Mark

Micchelli)

The core library functions for CGL are hard-coded Java. Our only criterion for deciding whether

something should be a core function or not was: is this function impossible to write in pure CGL? If not,

we made them part of the core library. As a result, core library functions are mostly used for casting, I/O,

and random number generation. The one exception to this rule is the shuffle function, which can be

written in CGL, but is so commonly used in card games that we elected to put it in the core library.

 The java classes code produces the CGLList and Card functions, which stay the same regardless

of the inputted CGL code. These classes are fed directly to the CGL executable for code generation.

5.2.7 Generator (generator.ml- author: Mark Micchelli)

The generator transforms the CGL code into compilable and runnable Java source code. This is the

key step to actually creating working programs. Our generator reads from the AST to customize the

Main and Player java files, which are then sent to the CGL executable.

5.2.8 Testing and Bash Script

(test cases and bash scripts- author: Hebo Yang)

The bash script cgl.bash under the root folder automates the compilation and running of given cgl

games under the “games” folder. It also cleans up the intermediate files generated in the process. The

script analyzer.bash and parser.bash under folder “test_cgl” respectfully run all the test cases under the

folder “test_cgl/analyzer_test” and “test_cgl/parser_test” if no argument were given or a single test in

the respective folder if a particular test name was given in the argument.

60

6 Test Plan

 6.1 Phase 1 - Creating Scanner/Parser/AST

 The process of creating test cases for the scanner, parser and AST began as soon as the LRM was

finished. The style of tests resembled the one in the MicroC compiler, where programs covering all the

functionalities in the LRM were written in the actual CGL language and the expected outputs were also

written in .out files. The complete tested functionalities were: valid identifiers, assignment operators on

all data types, arithmetic operators on int and double types, relational operators on all respective data

types, boolean operators, string operators, list operators, order of operations, punctuators, comments,

preprocessing, key words, all control flows, core library functions, block names, and existence of

mandatory block components. Each of these test programs primarily focussed on a single functionality;

complexed functionalities might depend on the successful implementation of the prior ones created.

The following program was used to test a number of features within CGL: control flow, function

calls, which depend on type checked assignment operators, arithmetic operators, foreach loops, list data

types, and the core library function intToString:

SETUP{

 def int length(list l)

 {

 int length = 0;

 foreach (l)

 {

 length = length + 1;

 }

 return length;

 }

 list l=[1,2];

 int a1=length(l);

61

 string a=intToString(a1);

 print(a);

}

 6.2 Phase 2 - Creating the Generator assuming Correct Semantics

 When the generator was completed, the test cases were able to be compiled and run,

producing .result files for comparison with the corresponding .out files. During this phase, the test cases

examined the integrity of the scanner, parser, AST, and the generator itself. It could first catch scanner

as well as parser failures, and then successfully scanned and parsed programs would be compiled and

run to further check if the generator allowed them to produce the correct results as the prewritten .out

files. A bash script was written to automate the running of all test cases and compare actual outputs

with expected ones. It could identity the failure cases and show the differences between actual and

expected outputs for debugging purposes.

 6.3 Phase 3 - Type Checking and Creating Semantic Analyzer

 The test cases for semantic analyzer were written concurrently as the semantic analyzer was

implemented. It was designed to catch semantic errors in the CGL programs before the generator

compiled them into intermediate Java source code. The target at the end of this phase was to develop

functionality to catch semantic errors. If the input programs triggered errors or warnings from the

generator as well as Java compiler, the test cases would be used to find the exceptions caught by the

semantic analyzer and sast. Common errors such as undeclared/duplicate variables and functions,

invalid assignment due to type difference, invalid function parameters, as well as CGL specific errors like

incorrect block order, referring to ele outside a foreach loop, changing an argument type inside a

function, and specific block functionalities were all tested during this phase. A bash script was written to

automate the running of all test cases and show the message generated by the semantic analyzer to

identify the problems.

The following example code was used to test whether a function’s argument type was

implemented correctly based on it’s original function call:

SETUP {

 def int check(bool c){

 if (c){

 return 0;

62

 }

 else {

 return 1;

 }

 }

 int a=check("true");

}

/* Please note that the above program should not run because “true”

is a String type, not a bool type as defined in the original check

function declaration. The semantic analyzer caught this exact

exception when the test case was run with the .cgl/ -s test.cgl

command. */

 6.4 Testing CGL Programs

 After all the components of CGL were implemented, and passed the respective tests, more

complex CGL programs like formal playable card games written in CGL were tested. The bash scripts

described in section 6.2 and 6.3 were also able to independently take the name of the CGL file, given it

was saved on the corresponding folder, and test it. Furthermore, since the compilation process of CGL

included semantic check, a bash script named cgl.bash could also take the name of the file and test it.

Please note that all of the successfully compiled games (First_Ace.cgl, HighLow.cgl, RedCardGame.cgl,

and BlackJack.cgl) all passed the semantic checking phase.

63

7 Lessons Learned

 7.1 Kevin Henrick

7.1.1 Lessons Learned

I am admittedly a weak programmer. This was the most challenging, but also the most rewarding

academic project that I have ever been apart of. While I frequently worried throughout the semester

about whether our group could create a successfully functioning compiler, I very much enjoyed the

process of programming with our strong team. In addition to the lessons that I learned from Professor

Edwards (the simple logic behind the LR(0) automaton in parsing was particularly interesting to me), I

learned a lot from my teammates throughout this project. I would conservatively estimate that I am

about 100% better at programming than I was before this course.

Throughout the classroom time in Programming Languages, I learned a great deal about the

intricacies of not only functional programming in OCaml, but many different types of programming

languages (Java, C, C++, etc.). In particular, it was truly amazing to learn about the development of C by

Dennis Ritchie and his colleagues at Bell Labs, and discover the rich history and development of modern

programming languages.

Needless to say, before taking Programming Languages, I knew very little about compilers. It was

really interesting to learn each phase of the process required for a compiler to work. Scanning the input,

generating the characters into a sequence of tokens, parsing the tokens to build an abstract syntax tree,

semantically checking each node of the tree by traversing it, generating code in a new language (ie. java),

and outputting to the executable, is a process that I now say I can understand. I would have no idea

what that previous run on sentence would mean before taking this class.

7.1.2 Advice for Future Teams

 The standard word of advice holds true- start early. Our group formed on the first day of class,

and we started brainstorming briefly thereafter. We spent a great deal of time in the beginning of the

semester trying to create a solid Language Reference Manual, and that helped a lot. If I didn’t know the

answer to a particular feature of the language while coding, I would frequently consult the print-out of

the Language Reference Manual that I kept with me.

 I fortunately was able to know my teammates in advance of taking this class, and I knew that

they were a great group. It’s important to choose your team wisely, and stay updated on the progress

being made at each weekly meeting- weekly meetings are necessary.

 I had never used Google Code or Subclipse before this project, but those proved to be very

effective in sharing code. Choosing a standard code-sharing environment like Google Code/ Subclipse is

very beneficial.

64

 7.2 Ryan Jones

 7.2.1 Lessons Learned

Before talking about specific lessons learned, I feel it would worthwhile to describe some of the

distinctive qualities I have found this project to have.

Firstly, it’s a long project. We formed teams very early in the semester, and the project deadline is

at the very end. Consequently it’s a long time to be working with the same group people, which has

great benefits but also some challenges.

Secondly, the project heavily utilizes the OCaml programming language, which for many in the class

was not only a new language, but also a new paradigm, in that OCaml is a functional language. This was

one of most challenging elements of the project, but also one of the most exciting and rewarding.

 Thirdly, the project is a design project. The development of a programming language is rich

with design choices, from language features, to intermediate representations, to supplemental

languages used.

 In light of the nature of the project, my primary lessons learned are the following:

Some measures of leadership can be very simple, like the yes/no answer to the following questions:

Is the team meeting early and often? Are team members doing their work? Are team members

communicating freely and regularly? Diagnosing and fixing problems with issues like these is not only

very important, but also very doable.

Another lesson is how team members skills correspond to team roles. In this project some roles

have to be more static, like having Kevin as the team leader and Mark as the technical leader, and some

roles and responsibilities can be more dynamic.

ALso, it’s important to consider what types of work can be done by multiple people, of how one

person doing a section alone might impact other team members capacity to work on a future part, given

team skills. It’s important to understand your people-dependencies.

I’ve found it important that team members with less programming experience are still well

integrated with the programming portions of the project. As an example of this, I think Kevin and I

worked well together on the semantic analyzer, even though he had less familiarity. We got around this

by employing partner programming and combining implementation with lots of higher-level discussion.

Planning sections by blocking them out using pseudocode or interfaces and comments helped a lot as

well. I consider our completion of a functional semantic analyzer to be one of my most satisfying

moments in the project.

65

 The last lesson is pretty simple, which is that OCaml is a great language for writing compilers. I

really loved learning about the different variations of how functions can be created, as well as all the use

of anonymous functions and chaining evaluations of functions. Pattern matching and recursion were

great for picking apart and navigating data structures.

7.2.2 Advice for Future Teams

In light of the lessons that I’ve learned through this project, I would say the absolute most

important advice I have for future teams would be the following:

“Phone calls are great”

Reliable, consistent communication is vital for this project. Guage which means of communication

are most effective for individual teammates, whether it’s e-mail, texting, phone calls or otherwise.

When having troubles with communication, call by phone. I strongly feel that one of the most

important ways our team leader’s leadership skill manifested itself was through him making lots of

phone calls.

“Don’t be afraid of C”

The members in our group generally had more experience with Java than C, and this is one of the

main reasons we chose early on to translate to Java. We have some regret over this though,

because using translating certain language features was a bit complicated or ugly in Java. There’s a

reason that C is such a popular systems language.

A minor last bit of advice is that I found the official OCaml reference online to be a great resource

in addition to the class lectures and slides. It’s quite accessible, it more specifically it really helped

my understanding of the nuances of type definition as well as the syntax of ocallex and ocalyacc.

 7.3 Mark Micchelli

 7.3.1 Lessons Learned

 OCaml was my first exposure to functional programming, and I absolutely fell in love with it. It

took me some time to get used to the functional way of thinking, but I got there, it felt just as natural as

imperative or object-oriented programming. I also understand why Prof. Edwards just to have us use a

functional language as opposed to Java or C; the step-by-step nature of compiler design (scanner ->

66

parser -> AST -> semantic analyzer -> generator) lends itself very naturally to functional programming.

Also, type inferencing is pretty darn cool.

 I did a lot of programming by myself in this project, which had a number of benefits as well as

some drawbacks. Prof. Edwards said at the beginning of the project that smaller groups often have it

easier than big groups, and you can’t get a smaller group than a group of one. It was nice to work at my

own pace, and to never really have to comprehend someone else’s source code. (It’s always easier to

write code than to read it.) It feels great to be completely in control! On the other hand, there were

plenty of instances when I wanted to communicate with my team members about a problem I was

having, but couldn’t do it effectively because I had spent hours analyzing my code, while they had only

spent minutes. Furthermore, while all of my code works, a lot of it is pretty ugly. If my teammates were

more involved in my sections of the project, I feel like they could have helped me spot simpler solutions

and prettier optimizations for everything I was writing.

7.3.2 Advice for Future Teams

 This is an amazingly fun project. First and foremost, get yourself excited that you’re writing your

own programming language, and that eventually, you’ll get watch it work as if like magic.

 There were a number of things I felt our team could have done better. For one, there was hardly

ever a point when the team was working on more than one OCaml file at once. The scanner came first,

then the parser, AST, generator, core library / java classes, and SAST / semantic analyzer, in that order. I

feel like, if more of us were working on the same pieces of the code at once, we would have been better

able to communicate bug fixes and improvements as we went along.

 Another mistake was the choice of Java as the language to compile to; C would have been way

easier. I was actually in favor of C from the start, but because our team was more familiar with Java, we

eventually decided on Java within the first couple weeks. But ironically, it eventually turned out that I

wrote the generator more-or-less single-handedly! So C would have been easier and more fun for me,

but I stuck it out in Java because of that original decision.

 Finally, and I’m sure this is the opposite of what many other teams must be saying, but don’t be

afraid to change the design spec late in the game. I spent about as much time trying to make lists in Java

that can hold different classes as I did writing the entire rest of the generator. (Yes, the obvious answer

is a LinkedList<Object>, but have fun trying to figure out how to handle casting.) If at some point we had

said, “let’s just have one class per list”, that would have saved me hours of miserable and ugly coding.

7.4 Hebo Yang

7.4.1 Lessons Learned

First of all, this was a comprehensive project covering the motivation, design, implementation, and

testing of a language, being developed in a functional programing language OCaml, which was relatively

67

unfamiliar to everyone. Therefore, I think the learning curve was indeed steep although I felt like that I

have learned a lot in this process. I also learned that it was really important to not only start early, but

also invest more time as well as efforts in the beginning to have a better and more complete

understanding of the project as a whole. In other words, being able to see the big picture right at start

was crucial. We were very lucky in this sense for having a group member who not only had a lot of

programing experiences in various languages, but also did make a huge commitment at the start to lead

us towards a great initial design of the language. Though the design was not perfect, we realized in the

end that it still helped us avoid many potential detours in the language development process.

Secondly, I learned that a strong leadership was indispensable for team work. There were many

times when there was not an apparently correct or best choice and we just had to make a decision. Such

leadership not only made the team more efficient, but also simplified the process. Moreover, it was also

important to have a leader to oversee the progress, act as a liaison between team members and lastly

make sure everyone was doing their job, particularly for a large project like this.

7.4.2 Advice for Future Teams

The first thing I would like to say was that don’t be afraid to borrow an idea from a previous group

and improve upon it. Looking through the past projects, we found the idea of creating a card game

language interesting and promising. Learning from the experiences and more importantly, the mistakes

from the previous group made our design more mature to start with at the beginning. Moreover,

knowing the deficiency of prior work could give even a stronger motivation to get things right.

As mentioned in the lessons learned subsection as well as suggested by Professor Edwards in the

beginning of the class, a strong leadership was really crucial for this project. Therefore, choosing a

leader who can get everyone motivated and do their job was even more crucial than choosing a leader

who would work on every details on his own. Furthermore, a strong team leader would also help to

make sure that the team get started early, which is another important thing in this project.

68

Appendix A. Project Commit Log from Google Code
Rev Commit log message Date Author

r216 empty Today (89 minutes

ago)

Hebo.Yang@gmail.com

r215 empty Today (94 minutes

ago)

Hebo.Yang@gmail.com

r214 fixed analyzer Today (112 minutes

ago)

Hebo.Yang@gmail.com

r213 remove scanner.mll in

trunk

Today (2 hours ago) Hebo.Yang@gmail.com

r212 remove scanner.mll in

trunk

Today (2 hours ago) Hebo.Yang@gmail.com

r211 remove test.ml in trunk Today (2 hours ago) Hebo.Yang@gmail.com

r210 it compiles now! Today (3 hours ago) markmicchelli@gmail.com

r209 updated author credit Today (4 hours ago) markmicchelli@gmail.com

r208 removed compile and

execute, added ryan's name

Today (4 hours ago) markmicchelli@gmail.com

r207 [No log message] Today (4 hours ago) rljones.314

r206 removed reverse funciton

b/c unused

Today (4 hours ago) markmicchelli@gmail.com

r205 fixed score var Today (4 hours ago) markmicchelli@gmail.com

r204 [No log message] Today (4 hours ago) rljones.314

r203 Substantial progress with

semantic analyzer.

Compiles most programs

we already have. Still have

problem where player

fields share a namespace

with all tmp variables.

Today (9 hours ago) rljones.314

r202 lots of fixes, player._ should

be visibile for all player data

fields

Today (9 hours ago) rljones.314

https://code.google.com/p/cglcolumbia/source/detail?r=216
https://code.google.com/p/cglcolumbia/source/detail?r=216
https://code.google.com/p/cglcolumbia/source/detail?r=216
https://code.google.com/p/cglcolumbia/source/detail?r=216
https://code.google.com/p/cglcolumbia/source/detail?r=216
https://code.google.com/p/cglcolumbia/source/detail?r=215
https://code.google.com/p/cglcolumbia/source/detail?r=215
https://code.google.com/p/cglcolumbia/source/detail?r=215
https://code.google.com/p/cglcolumbia/source/detail?r=215
https://code.google.com/p/cglcolumbia/source/detail?r=215
https://code.google.com/p/cglcolumbia/source/detail?r=214
https://code.google.com/p/cglcolumbia/source/detail?r=214
https://code.google.com/p/cglcolumbia/source/detail?r=214
https://code.google.com/p/cglcolumbia/source/detail?r=214
https://code.google.com/p/cglcolumbia/source/detail?r=214
https://code.google.com/p/cglcolumbia/source/detail?r=213
https://code.google.com/p/cglcolumbia/source/detail?r=213
https://code.google.com/p/cglcolumbia/source/detail?r=213
https://code.google.com/p/cglcolumbia/source/detail?r=213
https://code.google.com/p/cglcolumbia/source/detail?r=213
https://code.google.com/p/cglcolumbia/source/detail?r=212
https://code.google.com/p/cglcolumbia/source/detail?r=212
https://code.google.com/p/cglcolumbia/source/detail?r=212
https://code.google.com/p/cglcolumbia/source/detail?r=212
https://code.google.com/p/cglcolumbia/source/detail?r=212
https://code.google.com/p/cglcolumbia/source/detail?r=211
https://code.google.com/p/cglcolumbia/source/detail?r=211
https://code.google.com/p/cglcolumbia/source/detail?r=211
https://code.google.com/p/cglcolumbia/source/detail?r=211
https://code.google.com/p/cglcolumbia/source/detail?r=210
https://code.google.com/p/cglcolumbia/source/detail?r=210
https://code.google.com/p/cglcolumbia/source/detail?r=210
https://code.google.com/p/cglcolumbia/source/detail?r=210
https://code.google.com/p/cglcolumbia/source/detail?r=209
https://code.google.com/p/cglcolumbia/source/detail?r=209
https://code.google.com/p/cglcolumbia/source/detail?r=209
https://code.google.com/p/cglcolumbia/source/detail?r=209
https://code.google.com/p/cglcolumbia/source/detail?r=208
https://code.google.com/p/cglcolumbia/source/detail?r=208
https://code.google.com/p/cglcolumbia/source/detail?r=208
https://code.google.com/p/cglcolumbia/source/detail?r=208
https://code.google.com/p/cglcolumbia/source/detail?r=208
https://code.google.com/p/cglcolumbia/source/detail?r=207
https://code.google.com/p/cglcolumbia/source/detail?r=207
https://code.google.com/p/cglcolumbia/source/detail?r=207
https://code.google.com/p/cglcolumbia/source/detail?r=207
https://code.google.com/p/cglcolumbia/source/detail?r=206
https://code.google.com/p/cglcolumbia/source/detail?r=206
https://code.google.com/p/cglcolumbia/source/detail?r=206
https://code.google.com/p/cglcolumbia/source/detail?r=206
https://code.google.com/p/cglcolumbia/source/detail?r=206
https://code.google.com/p/cglcolumbia/source/detail?r=205
https://code.google.com/p/cglcolumbia/source/detail?r=205
https://code.google.com/p/cglcolumbia/source/detail?r=205
https://code.google.com/p/cglcolumbia/source/detail?r=205
https://code.google.com/p/cglcolumbia/source/detail?r=204
https://code.google.com/p/cglcolumbia/source/detail?r=204
https://code.google.com/p/cglcolumbia/source/detail?r=204
https://code.google.com/p/cglcolumbia/source/detail?r=204
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=203
https://code.google.com/p/cglcolumbia/source/detail?r=202
https://code.google.com/p/cglcolumbia/source/detail?r=202
https://code.google.com/p/cglcolumbia/source/detail?r=202
https://code.google.com/p/cglcolumbia/source/detail?r=202
https://code.google.com/p/cglcolumbia/source/detail?r=202
https://code.google.com/p/cglcolumbia/source/detail?r=202

69

r201 made card printing prettier

with something which

probably should have been

a core library function to

begin with

Yesterday (18 hours

ago)

markmicchelli@gmail.com

r200 made card fields Integer

and String instead of int

and char; made new Card

constructor.

Yesterday (18 hours

ago)

markmicchelli@gmail.com

r199 every function in the

translator now takes an

Object and casts; ugly, I

know, but necessary for the

ele to work.

Yesterday (18 hours

ago)

markmicchelli@gmail.com

r198 ele works better, but still

not perfect

Yesterday (18 hours

ago)

markmicchelli@gmail.com

r197 First draft; set number of

players.

Yesterday (19 hours

ago)

markmicchelli@gmail.com

r196 added pvar checking stuff Yesterday (19 hours

ago)

rljones.314

r195 Bash Script Upload Yesterday (20 hours

ago)

Hebo.Yang@gmail.com

r194 Bash Script Upload Yesterday (20 hours

ago)

Hebo.Yang@gmail.com

r193 Bash Script Yesterday (20 hours

ago)

Hebo.Yang@gmail.com

r192 [No log message] Yesterday (20 hours

ago)

rljones.314

r191 remove semantic-

blockname.cgl

Yesterday (21 hours

ago)

Hebo.Yang@gmail.com

r190 update semantic tests Yesterday (21 hours

ago)

Hebo.Yang@gmail.com

r189 convert int in concat to

string with intToString

Yesterday (21 hours

ago)

rljones.314@gmail.com

r188 updated to latest Yesterday (21 hours rljones.314@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=201
https://code.google.com/p/cglcolumbia/source/detail?r=200
https://code.google.com/p/cglcolumbia/source/detail?r=200
https://code.google.com/p/cglcolumbia/source/detail?r=200
https://code.google.com/p/cglcolumbia/source/detail?r=200
https://code.google.com/p/cglcolumbia/source/detail?r=200
https://code.google.com/p/cglcolumbia/source/detail?r=200
https://code.google.com/p/cglcolumbia/source/detail?r=200
https://code.google.com/p/cglcolumbia/source/detail?r=200
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=199
https://code.google.com/p/cglcolumbia/source/detail?r=198
https://code.google.com/p/cglcolumbia/source/detail?r=198
https://code.google.com/p/cglcolumbia/source/detail?r=198
https://code.google.com/p/cglcolumbia/source/detail?r=198
https://code.google.com/p/cglcolumbia/source/detail?r=198
https://code.google.com/p/cglcolumbia/source/detail?r=198
https://code.google.com/p/cglcolumbia/source/detail?r=197
https://code.google.com/p/cglcolumbia/source/detail?r=197
https://code.google.com/p/cglcolumbia/source/detail?r=197
https://code.google.com/p/cglcolumbia/source/detail?r=197
https://code.google.com/p/cglcolumbia/source/detail?r=197
https://code.google.com/p/cglcolumbia/source/detail?r=197
https://code.google.com/p/cglcolumbia/source/detail?r=196
https://code.google.com/p/cglcolumbia/source/detail?r=196
https://code.google.com/p/cglcolumbia/source/detail?r=196
https://code.google.com/p/cglcolumbia/source/detail?r=196
https://code.google.com/p/cglcolumbia/source/detail?r=196
https://code.google.com/p/cglcolumbia/source/detail?r=195
https://code.google.com/p/cglcolumbia/source/detail?r=195
https://code.google.com/p/cglcolumbia/source/detail?r=195
https://code.google.com/p/cglcolumbia/source/detail?r=195
https://code.google.com/p/cglcolumbia/source/detail?r=195
https://code.google.com/p/cglcolumbia/source/detail?r=194
https://code.google.com/p/cglcolumbia/source/detail?r=194
https://code.google.com/p/cglcolumbia/source/detail?r=194
https://code.google.com/p/cglcolumbia/source/detail?r=194
https://code.google.com/p/cglcolumbia/source/detail?r=194
https://code.google.com/p/cglcolumbia/source/detail?r=193
https://code.google.com/p/cglcolumbia/source/detail?r=193
https://code.google.com/p/cglcolumbia/source/detail?r=193
https://code.google.com/p/cglcolumbia/source/detail?r=193
https://code.google.com/p/cglcolumbia/source/detail?r=193
https://code.google.com/p/cglcolumbia/source/detail?r=192
https://code.google.com/p/cglcolumbia/source/detail?r=192
https://code.google.com/p/cglcolumbia/source/detail?r=192
https://code.google.com/p/cglcolumbia/source/detail?r=192
https://code.google.com/p/cglcolumbia/source/detail?r=192
https://code.google.com/p/cglcolumbia/source/detail?r=191
https://code.google.com/p/cglcolumbia/source/detail?r=191
https://code.google.com/p/cglcolumbia/source/detail?r=191
https://code.google.com/p/cglcolumbia/source/detail?r=191
https://code.google.com/p/cglcolumbia/source/detail?r=190
https://code.google.com/p/cglcolumbia/source/detail?r=190
https://code.google.com/p/cglcolumbia/source/detail?r=190
https://code.google.com/p/cglcolumbia/source/detail?r=190
https://code.google.com/p/cglcolumbia/source/detail?r=189
https://code.google.com/p/cglcolumbia/source/detail?r=189
https://code.google.com/p/cglcolumbia/source/detail?r=189
https://code.google.com/p/cglcolumbia/source/detail?r=189
https://code.google.com/p/cglcolumbia/source/detail?r=188
https://code.google.com/p/cglcolumbia/source/detail?r=188
https://code.google.com/p/cglcolumbia/source/detail?r=188

70

ago)

r187 include semantic_analyzer

dependency

Yesterday (22 hours

ago)

rljones.314

r186 [No log message] Dec 16 (41 hours

ago)

rljones.314

r185 [No log message] Dec 16 (41 hours

ago)

rljones.314

r184 fixes + added type equality

function to handle anytype

Dec 16 (41 hours

ago)

rljones.314

r183 fixed semantic checking

bugs

Dec 16 (41 hours

ago)

rljones.314

r182 [No log message] Dec 16 (42 hours

ago)

rljones.314

r181 [No log message] Dec 16 (42 hours

ago)

rljones.314

r180 Removed "." Dec 16 (43 hours

ago)

Kevin.Henrick1@gmail.com

r179 took out unnecessary "." Dec 16 (43 hours

ago)

Kevin.Henrick1@gmail.com

r178 Draw the First Ace! Ignore

the previous one and its

folder..

Dec 16 (45 hours

ago)

Hebo.Yang@gmail.com

r177 Find Ace! Dec 16 (45 hours

ago)

Hebo.Yang@gmail.com

r176 [No log message] Dec 16 (45 hours

ago)

rljones.314

r175 simpletests Dec 16 (46 hours

ago)

Hebo.Yang@gmail.com

r174 tests Dec 16 (46 hours

ago)

Hebo.Yang@gmail.com

r173 [No log message] Dec 16 (46 hours

ago)

rljones.314

r172 semantictest1 Dec 16 (46 hours Hebo.Yang@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=188
https://code.google.com/p/cglcolumbia/source/detail?r=187
https://code.google.com/p/cglcolumbia/source/detail?r=187
https://code.google.com/p/cglcolumbia/source/detail?r=187
https://code.google.com/p/cglcolumbia/source/detail?r=187
https://code.google.com/p/cglcolumbia/source/detail?r=186
https://code.google.com/p/cglcolumbia/source/detail?r=186
https://code.google.com/p/cglcolumbia/source/detail?r=186
https://code.google.com/p/cglcolumbia/source/detail?r=186
https://code.google.com/p/cglcolumbia/source/detail?r=185
https://code.google.com/p/cglcolumbia/source/detail?r=185
https://code.google.com/p/cglcolumbia/source/detail?r=185
https://code.google.com/p/cglcolumbia/source/detail?r=185
https://code.google.com/p/cglcolumbia/source/detail?r=184
https://code.google.com/p/cglcolumbia/source/detail?r=184
https://code.google.com/p/cglcolumbia/source/detail?r=184
https://code.google.com/p/cglcolumbia/source/detail?r=184
https://code.google.com/p/cglcolumbia/source/detail?r=183
https://code.google.com/p/cglcolumbia/source/detail?r=183
https://code.google.com/p/cglcolumbia/source/detail?r=183
https://code.google.com/p/cglcolumbia/source/detail?r=183
https://code.google.com/p/cglcolumbia/source/detail?r=182
https://code.google.com/p/cglcolumbia/source/detail?r=182
https://code.google.com/p/cglcolumbia/source/detail?r=182
https://code.google.com/p/cglcolumbia/source/detail?r=182
https://code.google.com/p/cglcolumbia/source/detail?r=181
https://code.google.com/p/cglcolumbia/source/detail?r=181
https://code.google.com/p/cglcolumbia/source/detail?r=181
https://code.google.com/p/cglcolumbia/source/detail?r=181
https://code.google.com/p/cglcolumbia/source/detail?r=180
https://code.google.com/p/cglcolumbia/source/detail?r=180
https://code.google.com/p/cglcolumbia/source/detail?r=180
https://code.google.com/p/cglcolumbia/source/detail?r=180
https://code.google.com/p/cglcolumbia/source/detail?r=179
https://code.google.com/p/cglcolumbia/source/detail?r=179
https://code.google.com/p/cglcolumbia/source/detail?r=179
https://code.google.com/p/cglcolumbia/source/detail?r=179
https://code.google.com/p/cglcolumbia/source/detail?r=178
https://code.google.com/p/cglcolumbia/source/detail?r=178
https://code.google.com/p/cglcolumbia/source/detail?r=178
https://code.google.com/p/cglcolumbia/source/detail?r=178
https://code.google.com/p/cglcolumbia/source/detail?r=177
https://code.google.com/p/cglcolumbia/source/detail?r=177
https://code.google.com/p/cglcolumbia/source/detail?r=177
https://code.google.com/p/cglcolumbia/source/detail?r=177
https://code.google.com/p/cglcolumbia/source/detail?r=176
https://code.google.com/p/cglcolumbia/source/detail?r=176
https://code.google.com/p/cglcolumbia/source/detail?r=176
https://code.google.com/p/cglcolumbia/source/detail?r=176
https://code.google.com/p/cglcolumbia/source/detail?r=175
https://code.google.com/p/cglcolumbia/source/detail?r=175
https://code.google.com/p/cglcolumbia/source/detail?r=175
https://code.google.com/p/cglcolumbia/source/detail?r=175
https://code.google.com/p/cglcolumbia/source/detail?r=174
https://code.google.com/p/cglcolumbia/source/detail?r=174
https://code.google.com/p/cglcolumbia/source/detail?r=174
https://code.google.com/p/cglcolumbia/source/detail?r=174
https://code.google.com/p/cglcolumbia/source/detail?r=173
https://code.google.com/p/cglcolumbia/source/detail?r=173
https://code.google.com/p/cglcolumbia/source/detail?r=173
https://code.google.com/p/cglcolumbia/source/detail?r=173
https://code.google.com/p/cglcolumbia/source/detail?r=172
https://code.google.com/p/cglcolumbia/source/detail?r=172
https://code.google.com/p/cglcolumbia/source/detail?r=172

71

ago)

r171 minor ele fix in |

Ast.CardExpr

Dec 16 (47 hours

ago)

rljones.314

r170 added formals to built-in

functions and added assign

to binop check

Dec 16 (47 hours

ago)

rljones.314

r169 latest sast Dec 16 (2 days ago) rljones.314

r168 fixed the card.expr "ele"

case

Dec 16 (2 days ago) kevin.henrick1@gmail.com

r167 unified use of vdecls

between sast and ast, and a

few other fixes

Dec 16 (2 days ago) rljones.314

r166 Finding_the_First_Ace

game- needs a little

debugging.

Dec 16 (2 days ago) Kevin.Henrick1@gmail.com

r165 cleaned some comments Dec 16 (2 days ago) kevin.henrick1@gmail.com

r164 last of the night Dec 15 (2 days ago) rljones.314

r163 added semantic check

action

Dec 15 (2 days ago) rljones.314

r162 block_order checking Dec 15 (2 days ago) rljones.314

r161 dyn-209-2-236-141:CGL

ryanjones$ ocamlc -c

semantic_analyzer.ml dyn-

209-2-236-141:CGL

ryanjones$ (it compiles)

Dec 15 (2 days ago) rljones.314

r160 [No log message] Dec 15 (2 days ago) rljones.314

r159 started a new semantic

analyzer without sast

references, and sending

output back to ast

Dec 15 (2 days ago) kevin.henrick1@gmail.com

r158 sast update Dec 15 (2 days ago) rljones.314

r157 fixed MINUS/SUB bug Dec 15 (2 days ago) markmicchelli@gmail.com

r156 fixed MINUS/SUB bug Dec 15 (2 days ago) markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=172
https://code.google.com/p/cglcolumbia/source/detail?r=171
https://code.google.com/p/cglcolumbia/source/detail?r=171
https://code.google.com/p/cglcolumbia/source/detail?r=171
https://code.google.com/p/cglcolumbia/source/detail?r=171
https://code.google.com/p/cglcolumbia/source/detail?r=170
https://code.google.com/p/cglcolumbia/source/detail?r=170
https://code.google.com/p/cglcolumbia/source/detail?r=170
https://code.google.com/p/cglcolumbia/source/detail?r=170
https://code.google.com/p/cglcolumbia/source/detail?r=169
https://code.google.com/p/cglcolumbia/source/detail?r=169
https://code.google.com/p/cglcolumbia/source/detail?r=169
https://code.google.com/p/cglcolumbia/source/detail?r=168
https://code.google.com/p/cglcolumbia/source/detail?r=168
https://code.google.com/p/cglcolumbia/source/detail?r=168
https://code.google.com/p/cglcolumbia/source/detail?r=167
https://code.google.com/p/cglcolumbia/source/detail?r=167
https://code.google.com/p/cglcolumbia/source/detail?r=167
https://code.google.com/p/cglcolumbia/source/detail?r=166
https://code.google.com/p/cglcolumbia/source/detail?r=166
https://code.google.com/p/cglcolumbia/source/detail?r=166
https://code.google.com/p/cglcolumbia/source/detail?r=166
https://code.google.com/p/cglcolumbia/source/detail?r=166
https://code.google.com/p/cglcolumbia/source/detail?r=166
https://code.google.com/p/cglcolumbia/source/detail?r=165
https://code.google.com/p/cglcolumbia/source/detail?r=165
https://code.google.com/p/cglcolumbia/source/detail?r=165
https://code.google.com/p/cglcolumbia/source/detail?r=165
https://code.google.com/p/cglcolumbia/source/detail?r=164
https://code.google.com/p/cglcolumbia/source/detail?r=164
https://code.google.com/p/cglcolumbia/source/detail?r=164
https://code.google.com/p/cglcolumbia/source/detail?r=164
https://code.google.com/p/cglcolumbia/source/detail?r=163
https://code.google.com/p/cglcolumbia/source/detail?r=163
https://code.google.com/p/cglcolumbia/source/detail?r=163
https://code.google.com/p/cglcolumbia/source/detail?r=163
https://code.google.com/p/cglcolumbia/source/detail?r=163
https://code.google.com/p/cglcolumbia/source/detail?r=162
https://code.google.com/p/cglcolumbia/source/detail?r=162
https://code.google.com/p/cglcolumbia/source/detail?r=162
https://code.google.com/p/cglcolumbia/source/detail?r=162
https://code.google.com/p/cglcolumbia/source/detail?r=161
https://code.google.com/p/cglcolumbia/source/detail?r=161
https://code.google.com/p/cglcolumbia/source/detail?r=161
https://code.google.com/p/cglcolumbia/source/detail?r=161
https://code.google.com/p/cglcolumbia/source/detail?r=161
https://code.google.com/p/cglcolumbia/source/detail?r=161
https://code.google.com/p/cglcolumbia/source/detail?r=161
https://code.google.com/p/cglcolumbia/source/detail?r=161
https://code.google.com/p/cglcolumbia/source/detail?r=160
https://code.google.com/p/cglcolumbia/source/detail?r=160
https://code.google.com/p/cglcolumbia/source/detail?r=160
https://code.google.com/p/cglcolumbia/source/detail?r=160
https://code.google.com/p/cglcolumbia/source/detail?r=159
https://code.google.com/p/cglcolumbia/source/detail?r=159
https://code.google.com/p/cglcolumbia/source/detail?r=159
https://code.google.com/p/cglcolumbia/source/detail?r=159
https://code.google.com/p/cglcolumbia/source/detail?r=159
https://code.google.com/p/cglcolumbia/source/detail?r=159
https://code.google.com/p/cglcolumbia/source/detail?r=159
https://code.google.com/p/cglcolumbia/source/detail?r=158
https://code.google.com/p/cglcolumbia/source/detail?r=158
https://code.google.com/p/cglcolumbia/source/detail?r=158
https://code.google.com/p/cglcolumbia/source/detail?r=158
https://code.google.com/p/cglcolumbia/source/detail?r=157
https://code.google.com/p/cglcolumbia/source/detail?r=157
https://code.google.com/p/cglcolumbia/source/detail?r=157
https://code.google.com/p/cglcolumbia/source/detail?r=157
https://code.google.com/p/cglcolumbia/source/detail?r=156
https://code.google.com/p/cglcolumbia/source/detail?r=156
https://code.google.com/p/cglcolumbia/source/detail?r=156
https://code.google.com/p/cglcolumbia/source/detail?r=156

72

r155 updates Dec 15 (2 days ago) rljones.314

r154 major debugging of process

statement

Dec 15 (2 days ago) rljones.314

r153 statement processing

debugging

Dec 15 (2 days ago) rljones.314

r152 major debugging Dec 15 (2 days ago) rljones.314

r151 correct expr in sast- still

needs some debugging

Dec 14 (3 days ago) kevin.henrick1@gmail.com

r150 function ordering update Dec 14 (3 days ago) rljones.314

r149 Updated expreCheck for

List, Player, and Call

Dec 14 (3 days ago) rljones.314

r148 minor update Dec 14 (3 days ago) rljones.314

r147 progress on

processStatement

Dec 14 (3 days ago) rljones.314

r146 minor error fix +

commenting

Dec 14 (3 days ago) rljones.314

r145 [No log message] Dec 14 (3 days ago) kevin.henrick1@gmail.com

r144 added comment to the top

of the file explaining the

input/output of the

semantic analyzer

Dec 14 (3 days ago) kevin.henrick1@gmail.com

r143 added a question regarding

unopr in exprCheck

Dec 14 (3 days ago) kevin.henrick1@gmail.com

r142 [No log message] Dec 13 (4 days ago) kevin.henrick1@gmail.co

r141 changed comment for card

value error

Dec 13 (4 days ago) kevin.henrick1@gmail.com

r140 wrote comment for

authorship of sast and

semantic analyser (Ryan

Jones and Kevin Henrick)

Dec 13 (4 days ago) kevin.henrick1@gmail.com

r139 fixed typo in comment Dec 13 (4 days ago) markmicchelli@gmail.com

r138 Fixed syntax errors; added

author credit

Dec 13 (4 days ago) markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=155
https://code.google.com/p/cglcolumbia/source/detail?r=155
https://code.google.com/p/cglcolumbia/source/detail?r=155
https://code.google.com/p/cglcolumbia/source/detail?r=155
https://code.google.com/p/cglcolumbia/source/detail?r=154
https://code.google.com/p/cglcolumbia/source/detail?r=154
https://code.google.com/p/cglcolumbia/source/detail?r=154
https://code.google.com/p/cglcolumbia/source/detail?r=154
https://code.google.com/p/cglcolumbia/source/detail?r=154
https://code.google.com/p/cglcolumbia/source/detail?r=153
https://code.google.com/p/cglcolumbia/source/detail?r=153
https://code.google.com/p/cglcolumbia/source/detail?r=153
https://code.google.com/p/cglcolumbia/source/detail?r=153
https://code.google.com/p/cglcolumbia/source/detail?r=153
https://code.google.com/p/cglcolumbia/source/detail?r=152
https://code.google.com/p/cglcolumbia/source/detail?r=152
https://code.google.com/p/cglcolumbia/source/detail?r=152
https://code.google.com/p/cglcolumbia/source/detail?r=152
https://code.google.com/p/cglcolumbia/source/detail?r=151
https://code.google.com/p/cglcolumbia/source/detail?r=151
https://code.google.com/p/cglcolumbia/source/detail?r=151
https://code.google.com/p/cglcolumbia/source/detail?r=151
https://code.google.com/p/cglcolumbia/source/detail?r=151
https://code.google.com/p/cglcolumbia/source/detail?r=150
https://code.google.com/p/cglcolumbia/source/detail?r=150
https://code.google.com/p/cglcolumbia/source/detail?r=150
https://code.google.com/p/cglcolumbia/source/detail?r=150
https://code.google.com/p/cglcolumbia/source/detail?r=149
https://code.google.com/p/cglcolumbia/source/detail?r=149
https://code.google.com/p/cglcolumbia/source/detail?r=149
https://code.google.com/p/cglcolumbia/source/detail?r=149
https://code.google.com/p/cglcolumbia/source/detail?r=149
https://code.google.com/p/cglcolumbia/source/detail?r=148
https://code.google.com/p/cglcolumbia/source/detail?r=148
https://code.google.com/p/cglcolumbia/source/detail?r=148
https://code.google.com/p/cglcolumbia/source/detail?r=148
https://code.google.com/p/cglcolumbia/source/detail?r=147
https://code.google.com/p/cglcolumbia/source/detail?r=147
https://code.google.com/p/cglcolumbia/source/detail?r=147
https://code.google.com/p/cglcolumbia/source/detail?r=147
https://code.google.com/p/cglcolumbia/source/detail?r=147
https://code.google.com/p/cglcolumbia/source/detail?r=146
https://code.google.com/p/cglcolumbia/source/detail?r=146
https://code.google.com/p/cglcolumbia/source/detail?r=146
https://code.google.com/p/cglcolumbia/source/detail?r=146
https://code.google.com/p/cglcolumbia/source/detail?r=146
https://code.google.com/p/cglcolumbia/source/detail?r=145
https://code.google.com/p/cglcolumbia/source/detail?r=145
https://code.google.com/p/cglcolumbia/source/detail?r=145
https://code.google.com/p/cglcolumbia/source/detail?r=145
https://code.google.com/p/cglcolumbia/source/detail?r=144
https://code.google.com/p/cglcolumbia/source/detail?r=144
https://code.google.com/p/cglcolumbia/source/detail?r=144
https://code.google.com/p/cglcolumbia/source/detail?r=144
https://code.google.com/p/cglcolumbia/source/detail?r=144
https://code.google.com/p/cglcolumbia/source/detail?r=144
https://code.google.com/p/cglcolumbia/source/detail?r=144
https://code.google.com/p/cglcolumbia/source/detail?r=143
https://code.google.com/p/cglcolumbia/source/detail?r=143
https://code.google.com/p/cglcolumbia/source/detail?r=143
https://code.google.com/p/cglcolumbia/source/detail?r=143
https://code.google.com/p/cglcolumbia/source/detail?r=143
https://code.google.com/p/cglcolumbia/source/detail?r=142
https://code.google.com/p/cglcolumbia/source/detail?r=142
https://code.google.com/p/cglcolumbia/source/detail?r=142
https://code.google.com/p/cglcolumbia/source/detail?r=142
https://code.google.com/p/cglcolumbia/source/detail?r=141
https://code.google.com/p/cglcolumbia/source/detail?r=141
https://code.google.com/p/cglcolumbia/source/detail?r=141
https://code.google.com/p/cglcolumbia/source/detail?r=141
https://code.google.com/p/cglcolumbia/source/detail?r=141
https://code.google.com/p/cglcolumbia/source/detail?r=140
https://code.google.com/p/cglcolumbia/source/detail?r=140
https://code.google.com/p/cglcolumbia/source/detail?r=140
https://code.google.com/p/cglcolumbia/source/detail?r=140
https://code.google.com/p/cglcolumbia/source/detail?r=140
https://code.google.com/p/cglcolumbia/source/detail?r=140
https://code.google.com/p/cglcolumbia/source/detail?r=140
https://code.google.com/p/cglcolumbia/source/detail?r=139
https://code.google.com/p/cglcolumbia/source/detail?r=139
https://code.google.com/p/cglcolumbia/source/detail?r=139
https://code.google.com/p/cglcolumbia/source/detail?r=139
https://code.google.com/p/cglcolumbia/source/detail?r=138
https://code.google.com/p/cglcolumbia/source/detail?r=138
https://code.google.com/p/cglcolumbia/source/detail?r=138
https://code.google.com/p/cglcolumbia/source/detail?r=138
https://code.google.com/p/cglcolumbia/source/detail?r=138

73

r137 fixed a little issue where

with making the win

function

Dec 13 (4 days ago) markmicchelli@gmail.com

r136 Gives a little more

debugging info.

Dec 13 (4 days ago) markmicchelli@gmail.com

r135 Holds the Card and CGLList

classes.

Dec 13 (4 days ago) markmicchelli@gmail.com

r134 Generator a little cleaner;

removed all primitives; put

card class in javaclasses.

Dec 13 (4 days ago) markmicchelli@gmail.com

r133 Shuffle function fixed to

handle new lists; eq

removed; ugly syntax

removed.

Dec 13 (4 days ago) markmicchelli@gmail.com

r132 Use the -j flag for now; -s

not implemented yet; -c

and -e not functional.

Dec 13 (4 days ago) markmicchelli@gmail.com

r131 The proper Makefile should

not have the .ml extension.

Dec 13 (4 days ago) markmicchelli@gmail.com

r130 updated id in expr check Dec 11 (6 days ago) rljones.314

r129 draft of binop type

checking

Dec 11 (6 days ago) rljones.314

r128 small cleanup 11-Dec-12 rljones.314

r127 updated the expression in

vdecl to be typechecked

expr (not Ast.expr as

before)

10-Dec-12 kevin.henrick1@gmail.com

r126 minor update 8-Dec-12 rljones.314

r125 some function

params/outputs updates

8-Dec-12 rljones.314

r124 Now compiles the java files!

Of course, the generator is

still broken, but we're on

our way.

8-Dec-12 markmicchelli@gmail.com

r123 First draft of executable 8-Dec-12 markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=137
https://code.google.com/p/cglcolumbia/source/detail?r=137
https://code.google.com/p/cglcolumbia/source/detail?r=137
https://code.google.com/p/cglcolumbia/source/detail?r=137
https://code.google.com/p/cglcolumbia/source/detail?r=137
https://code.google.com/p/cglcolumbia/source/detail?r=137
https://code.google.com/p/cglcolumbia/source/detail?r=136
https://code.google.com/p/cglcolumbia/source/detail?r=136
https://code.google.com/p/cglcolumbia/source/detail?r=136
https://code.google.com/p/cglcolumbia/source/detail?r=136
https://code.google.com/p/cglcolumbia/source/detail?r=136
https://code.google.com/p/cglcolumbia/source/detail?r=135
https://code.google.com/p/cglcolumbia/source/detail?r=135
https://code.google.com/p/cglcolumbia/source/detail?r=135
https://code.google.com/p/cglcolumbia/source/detail?r=135
https://code.google.com/p/cglcolumbia/source/detail?r=135
https://code.google.com/p/cglcolumbia/source/detail?r=134
https://code.google.com/p/cglcolumbia/source/detail?r=134
https://code.google.com/p/cglcolumbia/source/detail?r=134
https://code.google.com/p/cglcolumbia/source/detail?r=134
https://code.google.com/p/cglcolumbia/source/detail?r=134
https://code.google.com/p/cglcolumbia/source/detail?r=134
https://code.google.com/p/cglcolumbia/source/detail?r=133
https://code.google.com/p/cglcolumbia/source/detail?r=133
https://code.google.com/p/cglcolumbia/source/detail?r=133
https://code.google.com/p/cglcolumbia/source/detail?r=133
https://code.google.com/p/cglcolumbia/source/detail?r=133
https://code.google.com/p/cglcolumbia/source/detail?r=133
https://code.google.com/p/cglcolumbia/source/detail?r=133
https://code.google.com/p/cglcolumbia/source/detail?r=132
https://code.google.com/p/cglcolumbia/source/detail?r=132
https://code.google.com/p/cglcolumbia/source/detail?r=132
https://code.google.com/p/cglcolumbia/source/detail?r=132
https://code.google.com/p/cglcolumbia/source/detail?r=132
https://code.google.com/p/cglcolumbia/source/detail?r=132
https://code.google.com/p/cglcolumbia/source/detail?r=131
https://code.google.com/p/cglcolumbia/source/detail?r=131
https://code.google.com/p/cglcolumbia/source/detail?r=131
https://code.google.com/p/cglcolumbia/source/detail?r=131
https://code.google.com/p/cglcolumbia/source/detail?r=131
https://code.google.com/p/cglcolumbia/source/detail?r=130
https://code.google.com/p/cglcolumbia/source/detail?r=130
https://code.google.com/p/cglcolumbia/source/detail?r=130
https://code.google.com/p/cglcolumbia/source/detail?r=130
https://code.google.com/p/cglcolumbia/source/detail?r=129
https://code.google.com/p/cglcolumbia/source/detail?r=129
https://code.google.com/p/cglcolumbia/source/detail?r=129
https://code.google.com/p/cglcolumbia/source/detail?r=129
https://code.google.com/p/cglcolumbia/source/detail?r=129
https://code.google.com/p/cglcolumbia/source/detail?r=128
https://code.google.com/p/cglcolumbia/source/detail?r=128
https://code.google.com/p/cglcolumbia/source/detail?r=128
https://code.google.com/p/cglcolumbia/source/detail?r=128
https://code.google.com/p/cglcolumbia/source/detail?r=127
https://code.google.com/p/cglcolumbia/source/detail?r=127
https://code.google.com/p/cglcolumbia/source/detail?r=127
https://code.google.com/p/cglcolumbia/source/detail?r=127
https://code.google.com/p/cglcolumbia/source/detail?r=127
https://code.google.com/p/cglcolumbia/source/detail?r=127
https://code.google.com/p/cglcolumbia/source/detail?r=127
https://code.google.com/p/cglcolumbia/source/detail?r=126
https://code.google.com/p/cglcolumbia/source/detail?r=126
https://code.google.com/p/cglcolumbia/source/detail?r=126
https://code.google.com/p/cglcolumbia/source/detail?r=126
https://code.google.com/p/cglcolumbia/source/detail?r=125
https://code.google.com/p/cglcolumbia/source/detail?r=125
https://code.google.com/p/cglcolumbia/source/detail?r=125
https://code.google.com/p/cglcolumbia/source/detail?r=125
https://code.google.com/p/cglcolumbia/source/detail?r=125
https://code.google.com/p/cglcolumbia/source/detail?r=124
https://code.google.com/p/cglcolumbia/source/detail?r=124
https://code.google.com/p/cglcolumbia/source/detail?r=124
https://code.google.com/p/cglcolumbia/source/detail?r=124
https://code.google.com/p/cglcolumbia/source/detail?r=124
https://code.google.com/p/cglcolumbia/source/detail?r=124
https://code.google.com/p/cglcolumbia/source/detail?r=124
https://code.google.com/p/cglcolumbia/source/detail?r=123
https://code.google.com/p/cglcolumbia/source/detail?r=123
https://code.google.com/p/cglcolumbia/source/detail?r=123
https://code.google.com/p/cglcolumbia/source/detail?r=123

74

r122 High Low game,

implemented in half the

lines DesCartes used

8-Dec-12 markmicchelli@gmail.com

r121 fixed typo 8-Dec-12 markmicchelli@gmail.com

r120 Red card game from LRM 8-Dec-12 markmicchelli@gmail.com

r119 sast now compiles, but

need to go over the

different leaves.

6-Dec-12 kevin.henrick1@gmail.com

r118 cleaned up the test.ml to

separate the tests into

more readable blocks

6-Dec-12 kevin.henrick1@gmail.com

r117 fixed and tested

find_function function-

working! - Kevin and Ryan

6-Dec-12 kevin.henrick1@gmail.com

r116 find_variable function

passed first "find" test-

working correctly!

6-Dec-12 kevin.henrick1@gmail.com

r115 Added vdecls and a fdecl to

test the find_variable,

find_function, and

test_scope functions.

6-Dec-12 kevin.henrick1@gmail.com

r114 list checking update in

exprCheck

4-Dec-12 rljones.314

r113 added find_function,

comments regarding

processFdecl function

4-Dec-12 rljones.314

r112 small update 4-Dec-12 kevin.henrick1@gmail.com

r111 fixed method for main,

updated exprCheck

(CardExpr, Id, Ele)

4-Dec-12 kevin.henrick1@gmail.com

r110 moved main to top 4-Dec-12 rljones.314

r109 updated skeleton with

validation comments

4-Dec-12 rljones.314

r108 added more cases for type

checking the nodes in

4-Dec-12 kevin.henrick1@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=122
https://code.google.com/p/cglcolumbia/source/detail?r=122
https://code.google.com/p/cglcolumbia/source/detail?r=122
https://code.google.com/p/cglcolumbia/source/detail?r=122
https://code.google.com/p/cglcolumbia/source/detail?r=122
https://code.google.com/p/cglcolumbia/source/detail?r=122
https://code.google.com/p/cglcolumbia/source/detail?r=121
https://code.google.com/p/cglcolumbia/source/detail?r=121
https://code.google.com/p/cglcolumbia/source/detail?r=121
https://code.google.com/p/cglcolumbia/source/detail?r=121
https://code.google.com/p/cglcolumbia/source/detail?r=120
https://code.google.com/p/cglcolumbia/source/detail?r=120
https://code.google.com/p/cglcolumbia/source/detail?r=120
https://code.google.com/p/cglcolumbia/source/detail?r=120
https://code.google.com/p/cglcolumbia/source/detail?r=119
https://code.google.com/p/cglcolumbia/source/detail?r=119
https://code.google.com/p/cglcolumbia/source/detail?r=119
https://code.google.com/p/cglcolumbia/source/detail?r=119
https://code.google.com/p/cglcolumbia/source/detail?r=119
https://code.google.com/p/cglcolumbia/source/detail?r=119
https://code.google.com/p/cglcolumbia/source/detail?r=118
https://code.google.com/p/cglcolumbia/source/detail?r=118
https://code.google.com/p/cglcolumbia/source/detail?r=118
https://code.google.com/p/cglcolumbia/source/detail?r=118
https://code.google.com/p/cglcolumbia/source/detail?r=118
https://code.google.com/p/cglcolumbia/source/detail?r=118
https://code.google.com/p/cglcolumbia/source/detail?r=117
https://code.google.com/p/cglcolumbia/source/detail?r=117
https://code.google.com/p/cglcolumbia/source/detail?r=117
https://code.google.com/p/cglcolumbia/source/detail?r=117
https://code.google.com/p/cglcolumbia/source/detail?r=117
https://code.google.com/p/cglcolumbia/source/detail?r=117
https://code.google.com/p/cglcolumbia/source/detail?r=116
https://code.google.com/p/cglcolumbia/source/detail?r=116
https://code.google.com/p/cglcolumbia/source/detail?r=116
https://code.google.com/p/cglcolumbia/source/detail?r=116
https://code.google.com/p/cglcolumbia/source/detail?r=116
https://code.google.com/p/cglcolumbia/source/detail?r=116
https://code.google.com/p/cglcolumbia/source/detail?r=115
https://code.google.com/p/cglcolumbia/source/detail?r=115
https://code.google.com/p/cglcolumbia/source/detail?r=115
https://code.google.com/p/cglcolumbia/source/detail?r=115
https://code.google.com/p/cglcolumbia/source/detail?r=115
https://code.google.com/p/cglcolumbia/source/detail?r=115
https://code.google.com/p/cglcolumbia/source/detail?r=115
https://code.google.com/p/cglcolumbia/source/detail?r=114
https://code.google.com/p/cglcolumbia/source/detail?r=114
https://code.google.com/p/cglcolumbia/source/detail?r=114
https://code.google.com/p/cglcolumbia/source/detail?r=114
https://code.google.com/p/cglcolumbia/source/detail?r=114
https://code.google.com/p/cglcolumbia/source/detail?r=113
https://code.google.com/p/cglcolumbia/source/detail?r=113
https://code.google.com/p/cglcolumbia/source/detail?r=113
https://code.google.com/p/cglcolumbia/source/detail?r=113
https://code.google.com/p/cglcolumbia/source/detail?r=113
https://code.google.com/p/cglcolumbia/source/detail?r=113
https://code.google.com/p/cglcolumbia/source/detail?r=112
https://code.google.com/p/cglcolumbia/source/detail?r=112
https://code.google.com/p/cglcolumbia/source/detail?r=112
https://code.google.com/p/cglcolumbia/source/detail?r=112
https://code.google.com/p/cglcolumbia/source/detail?r=111
https://code.google.com/p/cglcolumbia/source/detail?r=111
https://code.google.com/p/cglcolumbia/source/detail?r=111
https://code.google.com/p/cglcolumbia/source/detail?r=111
https://code.google.com/p/cglcolumbia/source/detail?r=111
https://code.google.com/p/cglcolumbia/source/detail?r=111
https://code.google.com/p/cglcolumbia/source/detail?r=110
https://code.google.com/p/cglcolumbia/source/detail?r=110
https://code.google.com/p/cglcolumbia/source/detail?r=110
https://code.google.com/p/cglcolumbia/source/detail?r=110
https://code.google.com/p/cglcolumbia/source/detail?r=109
https://code.google.com/p/cglcolumbia/source/detail?r=109
https://code.google.com/p/cglcolumbia/source/detail?r=109
https://code.google.com/p/cglcolumbia/source/detail?r=109
https://code.google.com/p/cglcolumbia/source/detail?r=109
https://code.google.com/p/cglcolumbia/source/detail?r=108
https://code.google.com/p/cglcolumbia/source/detail?r=108
https://code.google.com/p/cglcolumbia/source/detail?r=108
https://code.google.com/p/cglcolumbia/source/detail?r=108
https://code.google.com/p/cglcolumbia/source/detail?r=108

75

ast.expr

r107 [No log message] 4-Dec-12 rljones.314

r106 force commit (start of main

that returns an Sast)

2-Dec-12 rljones.314@gmail.com

r105 updated the find_variable

function. should only have

one _ for datatype in

List.find that checks scope

of the variable by name.

2-Dec-12 kevin.henrick1@gmail.com

r104 [No log message] 2-Dec-12 kevin.henrick1@gmail.com

r103 updates to the sast 2-Dec-12 kevin.henrick1@gmail.com

r102 added type of types 2-Dec-12 kevin.henrick1@gmail.com

r101 replaced instances of expr

with expr_detail

2-Dec-12 kevin.henrick1@gmail.com

r100 beginning of sast 2-Dec-12 kevin.henrick1@gmail.com

r99 minor changes in expr

function

2-Dec-12 kevin.henrick1@gmail.com

r98 Started the list expr check. 2-Dec-12 kevin.henrick1@gmail.com

r97 Added Ast.StringType to

the expr type checking

function.

2-Dec-12 kevin.henrick1@gmail.com

r96 [No log message] 1-Dec-12 rljones.314

r95 another symbol table

update

1-Dec-12 rljones.314

r94 building symbol table

updates

1-Dec-12 rljones.314

r93 "fdecl list syntax update" 30-Nov-12 rljones.314

r92 merged marks fix with our

symbol table update

30-Nov-12 rljones.314

r91 Lastest version 30-Nov-12 markmicchelli@gmail.com

r90 made the bdecl list become

a block_name_list

30-Nov-12 markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=108
https://code.google.com/p/cglcolumbia/source/detail?r=107
https://code.google.com/p/cglcolumbia/source/detail?r=107
https://code.google.com/p/cglcolumbia/source/detail?r=107
https://code.google.com/p/cglcolumbia/source/detail?r=107
https://code.google.com/p/cglcolumbia/source/detail?r=106
https://code.google.com/p/cglcolumbia/source/detail?r=106
https://code.google.com/p/cglcolumbia/source/detail?r=106
https://code.google.com/p/cglcolumbia/source/detail?r=106
https://code.google.com/p/cglcolumbia/source/detail?r=106
https://code.google.com/p/cglcolumbia/source/detail?r=105
https://code.google.com/p/cglcolumbia/source/detail?r=105
https://code.google.com/p/cglcolumbia/source/detail?r=105
https://code.google.com/p/cglcolumbia/source/detail?r=105
https://code.google.com/p/cglcolumbia/source/detail?r=105
https://code.google.com/p/cglcolumbia/source/detail?r=105
https://code.google.com/p/cglcolumbia/source/detail?r=105
https://code.google.com/p/cglcolumbia/source/detail?r=105
https://code.google.com/p/cglcolumbia/source/detail?r=104
https://code.google.com/p/cglcolumbia/source/detail?r=104
https://code.google.com/p/cglcolumbia/source/detail?r=104
https://code.google.com/p/cglcolumbia/source/detail?r=104
https://code.google.com/p/cglcolumbia/source/detail?r=103
https://code.google.com/p/cglcolumbia/source/detail?r=103
https://code.google.com/p/cglcolumbia/source/detail?r=103
https://code.google.com/p/cglcolumbia/source/detail?r=103
https://code.google.com/p/cglcolumbia/source/detail?r=102
https://code.google.com/p/cglcolumbia/source/detail?r=102
https://code.google.com/p/cglcolumbia/source/detail?r=102
https://code.google.com/p/cglcolumbia/source/detail?r=102
https://code.google.com/p/cglcolumbia/source/detail?r=101
https://code.google.com/p/cglcolumbia/source/detail?r=101
https://code.google.com/p/cglcolumbia/source/detail?r=101
https://code.google.com/p/cglcolumbia/source/detail?r=101
https://code.google.com/p/cglcolumbia/source/detail?r=101
https://code.google.com/p/cglcolumbia/source/detail?r=100
https://code.google.com/p/cglcolumbia/source/detail?r=100
https://code.google.com/p/cglcolumbia/source/detail?r=100
https://code.google.com/p/cglcolumbia/source/detail?r=100
https://code.google.com/p/cglcolumbia/source/detail?r=99
https://code.google.com/p/cglcolumbia/source/detail?r=99
https://code.google.com/p/cglcolumbia/source/detail?r=99
https://code.google.com/p/cglcolumbia/source/detail?r=99
https://code.google.com/p/cglcolumbia/source/detail?r=99
https://code.google.com/p/cglcolumbia/source/detail?r=98
https://code.google.com/p/cglcolumbia/source/detail?r=98
https://code.google.com/p/cglcolumbia/source/detail?r=98
https://code.google.com/p/cglcolumbia/source/detail?r=98
https://code.google.com/p/cglcolumbia/source/detail?r=97
https://code.google.com/p/cglcolumbia/source/detail?r=97
https://code.google.com/p/cglcolumbia/source/detail?r=97
https://code.google.com/p/cglcolumbia/source/detail?r=97
https://code.google.com/p/cglcolumbia/source/detail?r=97
https://code.google.com/p/cglcolumbia/source/detail?r=97
https://code.google.com/p/cglcolumbia/source/detail?r=96
https://code.google.com/p/cglcolumbia/source/detail?r=96
https://code.google.com/p/cglcolumbia/source/detail?r=96
https://code.google.com/p/cglcolumbia/source/detail?r=96
https://code.google.com/p/cglcolumbia/source/detail?r=95
https://code.google.com/p/cglcolumbia/source/detail?r=95
https://code.google.com/p/cglcolumbia/source/detail?r=95
https://code.google.com/p/cglcolumbia/source/detail?r=95
https://code.google.com/p/cglcolumbia/source/detail?r=95
https://code.google.com/p/cglcolumbia/source/detail?r=94
https://code.google.com/p/cglcolumbia/source/detail?r=94
https://code.google.com/p/cglcolumbia/source/detail?r=94
https://code.google.com/p/cglcolumbia/source/detail?r=94
https://code.google.com/p/cglcolumbia/source/detail?r=94
https://code.google.com/p/cglcolumbia/source/detail?r=93
https://code.google.com/p/cglcolumbia/source/detail?r=93
https://code.google.com/p/cglcolumbia/source/detail?r=93
https://code.google.com/p/cglcolumbia/source/detail?r=93
https://code.google.com/p/cglcolumbia/source/detail?r=92
https://code.google.com/p/cglcolumbia/source/detail?r=92
https://code.google.com/p/cglcolumbia/source/detail?r=92
https://code.google.com/p/cglcolumbia/source/detail?r=92
https://code.google.com/p/cglcolumbia/source/detail?r=92
https://code.google.com/p/cglcolumbia/source/detail?r=91
https://code.google.com/p/cglcolumbia/source/detail?r=91
https://code.google.com/p/cglcolumbia/source/detail?r=91
https://code.google.com/p/cglcolumbia/source/detail?r=91
https://code.google.com/p/cglcolumbia/source/detail?r=90
https://code.google.com/p/cglcolumbia/source/detail?r=90
https://code.google.com/p/cglcolumbia/source/detail?r=90
https://code.google.com/p/cglcolumbia/source/detail?r=90
https://code.google.com/p/cglcolumbia/source/detail?r=90

76

r89 got started with type

checking

28-Nov-12 rljones.314

r88 simple dfa for block order

checking

28-Nov-12 rljones.314

r87 Parser was reversing

formal_opt in fdecl

28-Nov-12 markmicchelli@gmail.com

r86 Fixed fdecls to be a lot

simpler.

27-Nov-12 markmicchelli@gmail.com

r85 creates 3 java files based on

input of stdin

26-Nov-12 markmicchelli@gmail.com

r84 Now makes separate Main,

Card, and Player Java

classes.

26-Nov-12 markmicchelli@gmail.com

r83 Added constants, but not

yet fillConst

25-Nov-12 markmicchelli@gmail.com

r82 string_of_fdecl getting out

of control but it works

25-Nov-12 markmicchelli@gmail.com

r81 Fixed pass-by-value/pass-

by-reference problem with

many, many lines of code.

25-Nov-12 markmicchelli@gmail.com

r80 Fixed the checking of the

block order function. Still

need to figure out return

type, and check multiple

TURN{} functions in order

from 1,...,n.

24-Nov-12 kevin.henrick1@gmail.com

r79 Totally messed up shuffle

implementation :P Correct

now, and source cited.

24-Nov-12 markmicchelli@gmail.com

r78 Now with shuffle! Note:

these functions rely on

java.import.Scanner,

java.util.Random, and

java.util.LinkedList, but I

haven't included import

statements.

24-Nov-12 markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=89
https://code.google.com/p/cglcolumbia/source/detail?r=89
https://code.google.com/p/cglcolumbia/source/detail?r=89
https://code.google.com/p/cglcolumbia/source/detail?r=89
https://code.google.com/p/cglcolumbia/source/detail?r=89
https://code.google.com/p/cglcolumbia/source/detail?r=88
https://code.google.com/p/cglcolumbia/source/detail?r=88
https://code.google.com/p/cglcolumbia/source/detail?r=88
https://code.google.com/p/cglcolumbia/source/detail?r=88
https://code.google.com/p/cglcolumbia/source/detail?r=88
https://code.google.com/p/cglcolumbia/source/detail?r=87
https://code.google.com/p/cglcolumbia/source/detail?r=87
https://code.google.com/p/cglcolumbia/source/detail?r=87
https://code.google.com/p/cglcolumbia/source/detail?r=87
https://code.google.com/p/cglcolumbia/source/detail?r=87
https://code.google.com/p/cglcolumbia/source/detail?r=86
https://code.google.com/p/cglcolumbia/source/detail?r=86
https://code.google.com/p/cglcolumbia/source/detail?r=86
https://code.google.com/p/cglcolumbia/source/detail?r=86
https://code.google.com/p/cglcolumbia/source/detail?r=86
https://code.google.com/p/cglcolumbia/source/detail?r=85
https://code.google.com/p/cglcolumbia/source/detail?r=85
https://code.google.com/p/cglcolumbia/source/detail?r=85
https://code.google.com/p/cglcolumbia/source/detail?r=85
https://code.google.com/p/cglcolumbia/source/detail?r=85
https://code.google.com/p/cglcolumbia/source/detail?r=84
https://code.google.com/p/cglcolumbia/source/detail?r=84
https://code.google.com/p/cglcolumbia/source/detail?r=84
https://code.google.com/p/cglcolumbia/source/detail?r=84
https://code.google.com/p/cglcolumbia/source/detail?r=84
https://code.google.com/p/cglcolumbia/source/detail?r=84
https://code.google.com/p/cglcolumbia/source/detail?r=83
https://code.google.com/p/cglcolumbia/source/detail?r=83
https://code.google.com/p/cglcolumbia/source/detail?r=83
https://code.google.com/p/cglcolumbia/source/detail?r=83
https://code.google.com/p/cglcolumbia/source/detail?r=83
https://code.google.com/p/cglcolumbia/source/detail?r=82
https://code.google.com/p/cglcolumbia/source/detail?r=82
https://code.google.com/p/cglcolumbia/source/detail?r=82
https://code.google.com/p/cglcolumbia/source/detail?r=82
https://code.google.com/p/cglcolumbia/source/detail?r=82
https://code.google.com/p/cglcolumbia/source/detail?r=81
https://code.google.com/p/cglcolumbia/source/detail?r=81
https://code.google.com/p/cglcolumbia/source/detail?r=81
https://code.google.com/p/cglcolumbia/source/detail?r=81
https://code.google.com/p/cglcolumbia/source/detail?r=81
https://code.google.com/p/cglcolumbia/source/detail?r=81
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=80
https://code.google.com/p/cglcolumbia/source/detail?r=79
https://code.google.com/p/cglcolumbia/source/detail?r=79
https://code.google.com/p/cglcolumbia/source/detail?r=79
https://code.google.com/p/cglcolumbia/source/detail?r=79
https://code.google.com/p/cglcolumbia/source/detail?r=79
https://code.google.com/p/cglcolumbia/source/detail?r=79
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78
https://code.google.com/p/cglcolumbia/source/detail?r=78

77

r77 Added some comments,

and make PLAYER create a

new class. If we decide

against this, the previous

version has PLAYER

integrated into the main()

function.

24-Nov-12 markmicchelli@gmail.com

r76 Everything but shuffle! 24-Nov-12 markmicchelli@gmail.com

r75 [No log message] 24-Nov-12 kevin.henrick1@gmail.com

r74 vdecls are now statements! 24-Nov-12 markmicchelli@gmail.com

r73 vdecls are now statements! 24-Nov-12 markmicchelli@gmail.com

r72 vdecls are now statements! 24-Nov-12 markmicchelli@gmail.com

r71 Changed any mention of

Asttest to Ast

24-Nov-12 kevin.henrick1@gmail.com

r70 [No log message] 23-Nov-12 kevin.henrick1@gmail.com

r69 Made a couple corrections 23-Nov-12 kevin.henrick1@gmail.com

r68 Assign now a binop 22-Nov-12 markmicchelli@gmail.com

r67 Assign now a binop 22-Nov-12 markmicchelli@gmail.com

r66 Assign now a binop 22-Nov-12 markmicchelli@gmail.com

r65 Just a start, not even actual

core library functions, only

needed for operators to

work right.

21-Nov-12 markmicchelli@gmail.com

r64 Added my name to the

top....

21-Nov-12 markmicchelli@gmail.com

r63 Block decls now display

funcs, bvars, and bbodys in

right order.

21-Nov-12 markmicchelli@gmail.com

r62 AST now an mli and not ml-

--please don't use asttest

anymore.

21-Nov-12 markmicchelli@gmail.com

r61 Teq and eq now call core

library functions. Also,

string_of_program works as

21-Nov-12 markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=77
https://code.google.com/p/cglcolumbia/source/detail?r=76
https://code.google.com/p/cglcolumbia/source/detail?r=76
https://code.google.com/p/cglcolumbia/source/detail?r=76
https://code.google.com/p/cglcolumbia/source/detail?r=76
https://code.google.com/p/cglcolumbia/source/detail?r=75
https://code.google.com/p/cglcolumbia/source/detail?r=75
https://code.google.com/p/cglcolumbia/source/detail?r=75
https://code.google.com/p/cglcolumbia/source/detail?r=75
https://code.google.com/p/cglcolumbia/source/detail?r=74
https://code.google.com/p/cglcolumbia/source/detail?r=74
https://code.google.com/p/cglcolumbia/source/detail?r=74
https://code.google.com/p/cglcolumbia/source/detail?r=74
https://code.google.com/p/cglcolumbia/source/detail?r=73
https://code.google.com/p/cglcolumbia/source/detail?r=73
https://code.google.com/p/cglcolumbia/source/detail?r=73
https://code.google.com/p/cglcolumbia/source/detail?r=73
https://code.google.com/p/cglcolumbia/source/detail?r=72
https://code.google.com/p/cglcolumbia/source/detail?r=72
https://code.google.com/p/cglcolumbia/source/detail?r=72
https://code.google.com/p/cglcolumbia/source/detail?r=72
https://code.google.com/p/cglcolumbia/source/detail?r=71
https://code.google.com/p/cglcolumbia/source/detail?r=71
https://code.google.com/p/cglcolumbia/source/detail?r=71
https://code.google.com/p/cglcolumbia/source/detail?r=71
https://code.google.com/p/cglcolumbia/source/detail?r=71
https://code.google.com/p/cglcolumbia/source/detail?r=70
https://code.google.com/p/cglcolumbia/source/detail?r=70
https://code.google.com/p/cglcolumbia/source/detail?r=70
https://code.google.com/p/cglcolumbia/source/detail?r=70
https://code.google.com/p/cglcolumbia/source/detail?r=69
https://code.google.com/p/cglcolumbia/source/detail?r=69
https://code.google.com/p/cglcolumbia/source/detail?r=69
https://code.google.com/p/cglcolumbia/source/detail?r=69
https://code.google.com/p/cglcolumbia/source/detail?r=68
https://code.google.com/p/cglcolumbia/source/detail?r=68
https://code.google.com/p/cglcolumbia/source/detail?r=68
https://code.google.com/p/cglcolumbia/source/detail?r=68
https://code.google.com/p/cglcolumbia/source/detail?r=67
https://code.google.com/p/cglcolumbia/source/detail?r=67
https://code.google.com/p/cglcolumbia/source/detail?r=67
https://code.google.com/p/cglcolumbia/source/detail?r=67
https://code.google.com/p/cglcolumbia/source/detail?r=66
https://code.google.com/p/cglcolumbia/source/detail?r=66
https://code.google.com/p/cglcolumbia/source/detail?r=66
https://code.google.com/p/cglcolumbia/source/detail?r=66
https://code.google.com/p/cglcolumbia/source/detail?r=65
https://code.google.com/p/cglcolumbia/source/detail?r=65
https://code.google.com/p/cglcolumbia/source/detail?r=65
https://code.google.com/p/cglcolumbia/source/detail?r=65
https://code.google.com/p/cglcolumbia/source/detail?r=65
https://code.google.com/p/cglcolumbia/source/detail?r=65
https://code.google.com/p/cglcolumbia/source/detail?r=65
https://code.google.com/p/cglcolumbia/source/detail?r=64
https://code.google.com/p/cglcolumbia/source/detail?r=64
https://code.google.com/p/cglcolumbia/source/detail?r=64
https://code.google.com/p/cglcolumbia/source/detail?r=64
https://code.google.com/p/cglcolumbia/source/detail?r=64
https://code.google.com/p/cglcolumbia/source/detail?r=63
https://code.google.com/p/cglcolumbia/source/detail?r=63
https://code.google.com/p/cglcolumbia/source/detail?r=63
https://code.google.com/p/cglcolumbia/source/detail?r=63
https://code.google.com/p/cglcolumbia/source/detail?r=63
https://code.google.com/p/cglcolumbia/source/detail?r=63
https://code.google.com/p/cglcolumbia/source/detail?r=62
https://code.google.com/p/cglcolumbia/source/detail?r=62
https://code.google.com/p/cglcolumbia/source/detail?r=62
https://code.google.com/p/cglcolumbia/source/detail?r=62
https://code.google.com/p/cglcolumbia/source/detail?r=62
https://code.google.com/p/cglcolumbia/source/detail?r=62
https://code.google.com/p/cglcolumbia/source/detail?r=61
https://code.google.com/p/cglcolumbia/source/detail?r=61
https://code.google.com/p/cglcolumbia/source/detail?r=61
https://code.google.com/p/cglcolumbia/source/detail?r=61
https://code.google.com/p/cglcolumbia/source/detail?r=61
https://code.google.com/p/cglcolumbia/source/detail?r=61

78

it should. -Mark

r60 Now handles generator,

corelibrary, and ast.mli (as

opposed to ast.ml). -Mark

21-Nov-12 markmicchelli@gmail.com

r59 Changed asttest generated

by ocamldep from .cmx

to .cmi

21-Nov-12 Kevin.Henrick1@gmail.com

r58 Here are the corrected test

cases.

21-Nov-12 Kevin.Henrick1@gmail.com

r57 First draft of generator! 21-Nov-12 markmicchelli@gmail.com

r56 Started the functions for

converting the Ast.expr into

our Java Abstract Syntax

Tree (Jast.expr).

20-Nov-12 kevin.henrick1@gmail.com

r55 Deleted comments, and

made changes to the

symbol table.

20-Nov-12 kevin.henrick1@gmail.com

r54 ELE and YOUR now

separate from ID -Mark

19-Nov-12 markmicchelli@gmail.com

r53 ELE and YOUR now

separate from ID -Mark

19-Nov-12 markmicchelli@gmail.com

r52 Ele and Your now separate

from Id -Mark

19-Nov-12 markmicchelli@gmail.com

r51 Updated the symbol table

and function table to have

bdecl (block declarations),

fdecl (function

declarations), and vdecl

(variable declarations).

19-Nov-12 kevin.henrick1@gmail.com

r50 added newlines -Mark 19-Nov-12 markmicchelli@gmail.com

r49 Added '.' -Mark 19-Nov-12 markmicchelli@gmail.com

r48 Added '.' -Mark 19-Nov-12 markmicchelli@gmail.com

r47 Added the '.' character for

subtypes. -Mark

19-Nov-12 markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=61
https://code.google.com/p/cglcolumbia/source/detail?r=60
https://code.google.com/p/cglcolumbia/source/detail?r=60
https://code.google.com/p/cglcolumbia/source/detail?r=60
https://code.google.com/p/cglcolumbia/source/detail?r=60
https://code.google.com/p/cglcolumbia/source/detail?r=60
https://code.google.com/p/cglcolumbia/source/detail?r=60
https://code.google.com/p/cglcolumbia/source/detail?r=59
https://code.google.com/p/cglcolumbia/source/detail?r=59
https://code.google.com/p/cglcolumbia/source/detail?r=59
https://code.google.com/p/cglcolumbia/source/detail?r=59
https://code.google.com/p/cglcolumbia/source/detail?r=59
https://code.google.com/p/cglcolumbia/source/detail?r=59
https://code.google.com/p/cglcolumbia/source/detail?r=58
https://code.google.com/p/cglcolumbia/source/detail?r=58
https://code.google.com/p/cglcolumbia/source/detail?r=58
https://code.google.com/p/cglcolumbia/source/detail?r=58
https://code.google.com/p/cglcolumbia/source/detail?r=58
https://code.google.com/p/cglcolumbia/source/detail?r=57
https://code.google.com/p/cglcolumbia/source/detail?r=57
https://code.google.com/p/cglcolumbia/source/detail?r=57
https://code.google.com/p/cglcolumbia/source/detail?r=57
https://code.google.com/p/cglcolumbia/source/detail?r=56
https://code.google.com/p/cglcolumbia/source/detail?r=56
https://code.google.com/p/cglcolumbia/source/detail?r=56
https://code.google.com/p/cglcolumbia/source/detail?r=56
https://code.google.com/p/cglcolumbia/source/detail?r=56
https://code.google.com/p/cglcolumbia/source/detail?r=56
https://code.google.com/p/cglcolumbia/source/detail?r=56
https://code.google.com/p/cglcolumbia/source/detail?r=55
https://code.google.com/p/cglcolumbia/source/detail?r=55
https://code.google.com/p/cglcolumbia/source/detail?r=55
https://code.google.com/p/cglcolumbia/source/detail?r=55
https://code.google.com/p/cglcolumbia/source/detail?r=55
https://code.google.com/p/cglcolumbia/source/detail?r=55
https://code.google.com/p/cglcolumbia/source/detail?r=54
https://code.google.com/p/cglcolumbia/source/detail?r=54
https://code.google.com/p/cglcolumbia/source/detail?r=54
https://code.google.com/p/cglcolumbia/source/detail?r=54
https://code.google.com/p/cglcolumbia/source/detail?r=54
https://code.google.com/p/cglcolumbia/source/detail?r=53
https://code.google.com/p/cglcolumbia/source/detail?r=53
https://code.google.com/p/cglcolumbia/source/detail?r=53
https://code.google.com/p/cglcolumbia/source/detail?r=53
https://code.google.com/p/cglcolumbia/source/detail?r=53
https://code.google.com/p/cglcolumbia/source/detail?r=52
https://code.google.com/p/cglcolumbia/source/detail?r=52
https://code.google.com/p/cglcolumbia/source/detail?r=52
https://code.google.com/p/cglcolumbia/source/detail?r=52
https://code.google.com/p/cglcolumbia/source/detail?r=52
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=51
https://code.google.com/p/cglcolumbia/source/detail?r=50
https://code.google.com/p/cglcolumbia/source/detail?r=50
https://code.google.com/p/cglcolumbia/source/detail?r=50
https://code.google.com/p/cglcolumbia/source/detail?r=50
https://code.google.com/p/cglcolumbia/source/detail?r=49
https://code.google.com/p/cglcolumbia/source/detail?r=49
https://code.google.com/p/cglcolumbia/source/detail?r=49
https://code.google.com/p/cglcolumbia/source/detail?r=49
https://code.google.com/p/cglcolumbia/source/detail?r=48
https://code.google.com/p/cglcolumbia/source/detail?r=48
https://code.google.com/p/cglcolumbia/source/detail?r=48
https://code.google.com/p/cglcolumbia/source/detail?r=48
https://code.google.com/p/cglcolumbia/source/detail?r=47
https://code.google.com/p/cglcolumbia/source/detail?r=47
https://code.google.com/p/cglcolumbia/source/detail?r=47
https://code.google.com/p/cglcolumbia/source/detail?r=47
https://code.google.com/p/cglcolumbia/source/detail?r=47

79

r46 Added comment about GT

and LT in player

declarations. -Mark

19-Nov-12 markmicchelli@gmail.com

r45 LIT split into individual

types; PLAYER fixed. -Mark

19-Nov-12 markmicchelli@gmail.com

r44 Player fixed; ugly functions

in the header fixed; LIT split

into individual types. -Mark

19-Nov-12 markmicchelli@gmail.com

r43 Deleted unnecessary

int_of_value function. -

Mark

19-Nov-12 markmicchelli@gmail.com

r42 Lit broken up into individual

types. _to_string functions

commented out. -Mark

19-Nov-12 markmicchelli@gmail.com

r41 Makefile works! -Mark 19-Nov-12 markmicchelli@gmail.com

r40 Needs to open the Parser

to work! -Mark

18-Nov-12 markmicchelli@gmail.com

r39 Actually handles lists now!

Also handles cards and

players better by passing

them to the parser. -Mark

18-Nov-12 markmicchelli@gmail.com

r38 Updated for 3 new expr

types: cardvar, listvar, and

playervar -Mark

18-Nov-12 markmicchelli@gmail.com

r37 Parser updated: Lits are

now ints, doubles, bools,

strings, and SOME cards

(w/o vars) Added CardVar,

ListVar, and PlayerVar -

Mark

18-Nov-12 markmicchelli@gmail.com

r36 Minor fixes. 18-Nov-12 kevin.henrick1@gmail.com

r35 Added more cases within

the symbol table.

18-Nov-12 kevin.henrick1@gmail.com

r34 My mistake -- wrong

version. This one is good. -

Mark

18-Nov-12 markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=46
https://code.google.com/p/cglcolumbia/source/detail?r=46
https://code.google.com/p/cglcolumbia/source/detail?r=46
https://code.google.com/p/cglcolumbia/source/detail?r=46
https://code.google.com/p/cglcolumbia/source/detail?r=46
https://code.google.com/p/cglcolumbia/source/detail?r=46
https://code.google.com/p/cglcolumbia/source/detail?r=45
https://code.google.com/p/cglcolumbia/source/detail?r=45
https://code.google.com/p/cglcolumbia/source/detail?r=45
https://code.google.com/p/cglcolumbia/source/detail?r=45
https://code.google.com/p/cglcolumbia/source/detail?r=45
https://code.google.com/p/cglcolumbia/source/detail?r=44
https://code.google.com/p/cglcolumbia/source/detail?r=44
https://code.google.com/p/cglcolumbia/source/detail?r=44
https://code.google.com/p/cglcolumbia/source/detail?r=44
https://code.google.com/p/cglcolumbia/source/detail?r=44
https://code.google.com/p/cglcolumbia/source/detail?r=44
https://code.google.com/p/cglcolumbia/source/detail?r=43
https://code.google.com/p/cglcolumbia/source/detail?r=43
https://code.google.com/p/cglcolumbia/source/detail?r=43
https://code.google.com/p/cglcolumbia/source/detail?r=43
https://code.google.com/p/cglcolumbia/source/detail?r=43
https://code.google.com/p/cglcolumbia/source/detail?r=43
https://code.google.com/p/cglcolumbia/source/detail?r=42
https://code.google.com/p/cglcolumbia/source/detail?r=42
https://code.google.com/p/cglcolumbia/source/detail?r=42
https://code.google.com/p/cglcolumbia/source/detail?r=42
https://code.google.com/p/cglcolumbia/source/detail?r=42
https://code.google.com/p/cglcolumbia/source/detail?r=42
https://code.google.com/p/cglcolumbia/source/detail?r=41
https://code.google.com/p/cglcolumbia/source/detail?r=41
https://code.google.com/p/cglcolumbia/source/detail?r=41
https://code.google.com/p/cglcolumbia/source/detail?r=41
https://code.google.com/p/cglcolumbia/source/detail?r=40
https://code.google.com/p/cglcolumbia/source/detail?r=40
https://code.google.com/p/cglcolumbia/source/detail?r=40
https://code.google.com/p/cglcolumbia/source/detail?r=40
https://code.google.com/p/cglcolumbia/source/detail?r=40
https://code.google.com/p/cglcolumbia/source/detail?r=39
https://code.google.com/p/cglcolumbia/source/detail?r=39
https://code.google.com/p/cglcolumbia/source/detail?r=39
https://code.google.com/p/cglcolumbia/source/detail?r=39
https://code.google.com/p/cglcolumbia/source/detail?r=39
https://code.google.com/p/cglcolumbia/source/detail?r=39
https://code.google.com/p/cglcolumbia/source/detail?r=39
https://code.google.com/p/cglcolumbia/source/detail?r=38
https://code.google.com/p/cglcolumbia/source/detail?r=38
https://code.google.com/p/cglcolumbia/source/detail?r=38
https://code.google.com/p/cglcolumbia/source/detail?r=38
https://code.google.com/p/cglcolumbia/source/detail?r=38
https://code.google.com/p/cglcolumbia/source/detail?r=38
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=37
https://code.google.com/p/cglcolumbia/source/detail?r=36
https://code.google.com/p/cglcolumbia/source/detail?r=36
https://code.google.com/p/cglcolumbia/source/detail?r=36
https://code.google.com/p/cglcolumbia/source/detail?r=36
https://code.google.com/p/cglcolumbia/source/detail?r=35
https://code.google.com/p/cglcolumbia/source/detail?r=35
https://code.google.com/p/cglcolumbia/source/detail?r=35
https://code.google.com/p/cglcolumbia/source/detail?r=35
https://code.google.com/p/cglcolumbia/source/detail?r=35
https://code.google.com/p/cglcolumbia/source/detail?r=34
https://code.google.com/p/cglcolumbia/source/detail?r=34
https://code.google.com/p/cglcolumbia/source/detail?r=34
https://code.google.com/p/cglcolumbia/source/detail?r=34
https://code.google.com/p/cglcolumbia/source/detail?r=34
https://code.google.com/p/cglcolumbia/source/detail?r=34

80

r33 Parser compiles! -Mark 18-Nov-12 markmicchelli@gmail.com

r32 This is the initial cgl file that

tests whether the scanner

and parser compile

together properly.

18-Nov-12 kevin.henrick1@gmail.com

r31 Added the initial functions

for creating a symbol table

that will be used to check

the scope of variables in

CGL.

18-Nov-12 kevin.henrick1@gmail.com

r30 Added some more

comments to the type

declarations.

17-Nov-12 kevin.henrick1@gmail.com

r29 I added a couple

comments, and changed a

program declaration to

simply be a list of blocks.

This was changed, since a

block list is already

composed of function lists

and variable lists.

17-Nov-12 kevin.henrick1@gmail.com

r28 Added the comments for

the SETUP, PLAYER, TURN,

and WIN blocks. Changed

the comment for the REMR

list operator.

17-Nov-12 kevin.henrick1@gmail.com

r27 This is the beginning of the

semantic analyzer. I began

a few incomplete functions,

and described in comments

what future type-checking

functions will accomplish

once we program them in

OCAML.

17-Nov-12 kevin.henrick1@gmail.com

r26 test cases 17-Nov-12 Hebo.Yang@gmail.com

r25 new 17-Nov-12 Hebo.Yang@gmail.com

r24 AST compiles! -Mark 17-Nov-12 markmicchelli@gmail.com

r23 Scanner compiles! Also, list 17-Nov-12 markmicchelli@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=33
https://code.google.com/p/cglcolumbia/source/detail?r=33
https://code.google.com/p/cglcolumbia/source/detail?r=33
https://code.google.com/p/cglcolumbia/source/detail?r=33
https://code.google.com/p/cglcolumbia/source/detail?r=32
https://code.google.com/p/cglcolumbia/source/detail?r=32
https://code.google.com/p/cglcolumbia/source/detail?r=32
https://code.google.com/p/cglcolumbia/source/detail?r=32
https://code.google.com/p/cglcolumbia/source/detail?r=32
https://code.google.com/p/cglcolumbia/source/detail?r=32
https://code.google.com/p/cglcolumbia/source/detail?r=32
https://code.google.com/p/cglcolumbia/source/detail?r=31
https://code.google.com/p/cglcolumbia/source/detail?r=31
https://code.google.com/p/cglcolumbia/source/detail?r=31
https://code.google.com/p/cglcolumbia/source/detail?r=31
https://code.google.com/p/cglcolumbia/source/detail?r=31
https://code.google.com/p/cglcolumbia/source/detail?r=31
https://code.google.com/p/cglcolumbia/source/detail?r=31
https://code.google.com/p/cglcolumbia/source/detail?r=31
https://code.google.com/p/cglcolumbia/source/detail?r=30
https://code.google.com/p/cglcolumbia/source/detail?r=30
https://code.google.com/p/cglcolumbia/source/detail?r=30
https://code.google.com/p/cglcolumbia/source/detail?r=30
https://code.google.com/p/cglcolumbia/source/detail?r=30
https://code.google.com/p/cglcolumbia/source/detail?r=30
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=29
https://code.google.com/p/cglcolumbia/source/detail?r=28
https://code.google.com/p/cglcolumbia/source/detail?r=28
https://code.google.com/p/cglcolumbia/source/detail?r=28
https://code.google.com/p/cglcolumbia/source/detail?r=28
https://code.google.com/p/cglcolumbia/source/detail?r=28
https://code.google.com/p/cglcolumbia/source/detail?r=28
https://code.google.com/p/cglcolumbia/source/detail?r=28
https://code.google.com/p/cglcolumbia/source/detail?r=28
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=27
https://code.google.com/p/cglcolumbia/source/detail?r=26
https://code.google.com/p/cglcolumbia/source/detail?r=26
https://code.google.com/p/cglcolumbia/source/detail?r=26
https://code.google.com/p/cglcolumbia/source/detail?r=26
https://code.google.com/p/cglcolumbia/source/detail?r=25
https://code.google.com/p/cglcolumbia/source/detail?r=25
https://code.google.com/p/cglcolumbia/source/detail?r=25
https://code.google.com/p/cglcolumbia/source/detail?r=25
https://code.google.com/p/cglcolumbia/source/detail?r=24
https://code.google.com/p/cglcolumbia/source/detail?r=24
https://code.google.com/p/cglcolumbia/source/detail?r=24
https://code.google.com/p/cglcolumbia/source/detail?r=24
https://code.google.com/p/cglcolumbia/source/detail?r=23
https://code.google.com/p/cglcolumbia/source/detail?r=23
https://code.google.com/p/cglcolumbia/source/detail?r=23
https://code.google.com/p/cglcolumbia/source/detail?r=23

81

is now no longer a literal. -

Mark

r22 MicroC compiler as a start. 17-Nov-12 Kevin.Henrick1@gmail.com

r21 /* Going to start the

Makefile over from scratch

*/

17-Nov-12 Kevin.Henrick1@gmail.com

r20 [No log message] 13-Nov-12 kevin.henrick1@gmail.com

r19 This is a preliminary version

of the Makefile.

12-Nov-12 kevin.henrick1@gmail.com

r18 Fixed the double quote

escape character. -Mark

12-Nov-12 markmicchelli@gmail.com

r17 Minor fixes on the List

Operator associativity

declarations.

12-Nov-12 kevin.henrick1@gmail.com

r16 Also, changed the token for

the int keyword to INT, not

INTLIT. Remember: int is

INT 0, 8, 90, -30, 123456

are INTLIT -Mark

12-Nov-12 markmicchelli@gmail.com

r15 Removed helper functions

card_of_string and

player_of_string, because

I'm going to see if we can

have OCaml interpret cards

and players as strings up

until the very last moment

they're converted into Java.

12-Nov-12 markmicchelli@gmail.com

r14 Finished making changes as

per my comments. -Mark

11-Nov-12 markmicchelli@gmail.com

r13 Doesn't work, but getting

there...

11-Nov-12 markmicchelli@gmail.com

r12 [No log message] 11-Nov-12 kevin.henrick1@gmail.com

r11 The scanner has been

updated with corrections.

11-Nov-12 kevin.henrick1@gmail.com

https://code.google.com/p/cglcolumbia/source/detail?r=23
https://code.google.com/p/cglcolumbia/source/detail?r=23
https://code.google.com/p/cglcolumbia/source/detail?r=22
https://code.google.com/p/cglcolumbia/source/detail?r=22
https://code.google.com/p/cglcolumbia/source/detail?r=22
https://code.google.com/p/cglcolumbia/source/detail?r=22
https://code.google.com/p/cglcolumbia/source/detail?r=21
https://code.google.com/p/cglcolumbia/source/detail?r=21
https://code.google.com/p/cglcolumbia/source/detail?r=21
https://code.google.com/p/cglcolumbia/source/detail?r=21
https://code.google.com/p/cglcolumbia/source/detail?r=21
https://code.google.com/p/cglcolumbia/source/detail?r=21
https://code.google.com/p/cglcolumbia/source/detail?r=20
https://code.google.com/p/cglcolumbia/source/detail?r=20
https://code.google.com/p/cglcolumbia/source/detail?r=20
https://code.google.com/p/cglcolumbia/source/detail?r=20
https://code.google.com/p/cglcolumbia/source/detail?r=19
https://code.google.com/p/cglcolumbia/source/detail?r=19
https://code.google.com/p/cglcolumbia/source/detail?r=19
https://code.google.com/p/cglcolumbia/source/detail?r=19
https://code.google.com/p/cglcolumbia/source/detail?r=19
https://code.google.com/p/cglcolumbia/source/detail?r=18
https://code.google.com/p/cglcolumbia/source/detail?r=18
https://code.google.com/p/cglcolumbia/source/detail?r=18
https://code.google.com/p/cglcolumbia/source/detail?r=18
https://code.google.com/p/cglcolumbia/source/detail?r=18
https://code.google.com/p/cglcolumbia/source/detail?r=17
https://code.google.com/p/cglcolumbia/source/detail?r=17
https://code.google.com/p/cglcolumbia/source/detail?r=17
https://code.google.com/p/cglcolumbia/source/detail?r=17
https://code.google.com/p/cglcolumbia/source/detail?r=17
https://code.google.com/p/cglcolumbia/source/detail?r=17
https://code.google.com/p/cglcolumbia/source/detail?r=16
https://code.google.com/p/cglcolumbia/source/detail?r=16
https://code.google.com/p/cglcolumbia/source/detail?r=16
https://code.google.com/p/cglcolumbia/source/detail?r=16
https://code.google.com/p/cglcolumbia/source/detail?r=16
https://code.google.com/p/cglcolumbia/source/detail?r=16
https://code.google.com/p/cglcolumbia/source/detail?r=16
https://code.google.com/p/cglcolumbia/source/detail?r=16
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=15
https://code.google.com/p/cglcolumbia/source/detail?r=14
https://code.google.com/p/cglcolumbia/source/detail?r=14
https://code.google.com/p/cglcolumbia/source/detail?r=14
https://code.google.com/p/cglcolumbia/source/detail?r=14
https://code.google.com/p/cglcolumbia/source/detail?r=14
https://code.google.com/p/cglcolumbia/source/detail?r=13
https://code.google.com/p/cglcolumbia/source/detail?r=13
https://code.google.com/p/cglcolumbia/source/detail?r=13
https://code.google.com/p/cglcolumbia/source/detail?r=13
https://code.google.com/p/cglcolumbia/source/detail?r=13
https://code.google.com/p/cglcolumbia/source/detail?r=12
https://code.google.com/p/cglcolumbia/source/detail?r=12
https://code.google.com/p/cglcolumbia/source/detail?r=12
https://code.google.com/p/cglcolumbia/source/detail?r=12
https://code.google.com/p/cglcolumbia/source/detail?r=11
https://code.google.com/p/cglcolumbia/source/detail?r=11
https://code.google.com/p/cglcolumbia/source/detail?r=11
https://code.google.com/p/cglcolumbia/source/detail?r=11
https://code.google.com/p/cglcolumbia/source/detail?r=11

82

r10 I updated the tokens to

reflect the changes that

Mark would like to make

for naming conventions.

We need to check the calls

of tokens for the literals to

make sure that this makes

sense.

11-Nov-12 kevin.henrick1@gmail.com

r9 I updated the scanner to

reflect the changes that

Mark made for the uses of

lxm (ie intType,

doubleType, boolType,

stringType, cardType,

listType, etc.).

10-Nov-12 kevin.henrick1@gmail.com

r8 scanner 2 (mark) 10-Nov-12 markmicchelli@gmail.com

r7 [No log message] 10-Nov-12 kevin.henrick1@gmail.com

r6 [No log message] 10-Nov-12 kevin.henrick1@gmail.com

r5 [No log message] 10-Nov-12 kevin.henrick1@gmail.com

r4 I also updated the MicroC

scanner to reflect some of

the features within cgl.

10-Nov-12 Kevin.Henrick1@gmail.com

r3 I made some minor changes

to the parser to reflect the

features of our language

compared to the one in

MicroC.

10-Nov-12 Kevin.Henrick1@gmail.com

r2 test 23-Oct-12 kevin.henrick1@gmail.com

r1 Initial directory structure. 23-Oct-12 ---

https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=10
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=9
https://code.google.com/p/cglcolumbia/source/detail?r=8
https://code.google.com/p/cglcolumbia/source/detail?r=8
https://code.google.com/p/cglcolumbia/source/detail?r=8
https://code.google.com/p/cglcolumbia/source/detail?r=8
https://code.google.com/p/cglcolumbia/source/detail?r=7
https://code.google.com/p/cglcolumbia/source/detail?r=7
https://code.google.com/p/cglcolumbia/source/detail?r=7
https://code.google.com/p/cglcolumbia/source/detail?r=7
https://code.google.com/p/cglcolumbia/source/detail?r=6
https://code.google.com/p/cglcolumbia/source/detail?r=6
https://code.google.com/p/cglcolumbia/source/detail?r=6
https://code.google.com/p/cglcolumbia/source/detail?r=6
https://code.google.com/p/cglcolumbia/source/detail?r=5
https://code.google.com/p/cglcolumbia/source/detail?r=5
https://code.google.com/p/cglcolumbia/source/detail?r=5
https://code.google.com/p/cglcolumbia/source/detail?r=5
https://code.google.com/p/cglcolumbia/source/detail?r=4
https://code.google.com/p/cglcolumbia/source/detail?r=4
https://code.google.com/p/cglcolumbia/source/detail?r=4
https://code.google.com/p/cglcolumbia/source/detail?r=4
https://code.google.com/p/cglcolumbia/source/detail?r=4
https://code.google.com/p/cglcolumbia/source/detail?r=4
https://code.google.com/p/cglcolumbia/source/detail?r=3
https://code.google.com/p/cglcolumbia/source/detail?r=3
https://code.google.com/p/cglcolumbia/source/detail?r=3
https://code.google.com/p/cglcolumbia/source/detail?r=3
https://code.google.com/p/cglcolumbia/source/detail?r=3
https://code.google.com/p/cglcolumbia/source/detail?r=3
https://code.google.com/p/cglcolumbia/source/detail?r=3
https://code.google.com/p/cglcolumbia/source/detail?r=3
https://code.google.com/p/cglcolumbia/source/detail?r=2
https://code.google.com/p/cglcolumbia/source/detail?r=2
https://code.google.com/p/cglcolumbia/source/detail?r=2
https://code.google.com/p/cglcolumbia/source/detail?r=2
https://code.google.com/p/cglcolumbia/source/detail?r=1
https://code.google.com/p/cglcolumbia/source/detail?r=1
https://code.google.com/p/cglcolumbia/source/detail?r=1
https://code.google.com/p/cglcolumbia/source/detail?r=1

83

Appendix B. Complete Code Listing
scanner.mll

{

(* Author: Mark Micchelli *)

open Parser

let card_of_string card =

 let int_of_value value =

 if value = 'A' then 14 else

 if value = 'K' then 13 else

 if value = 'Q' then 12 else

 if value = 'J' then 11 else

 if value = '*' then 0 else

 let valueStr = Char.escaped value in

 int_of_string valueStr in

 if String.length card = 3 then (int_of_value card.[1], card.[2])

 else (10, card.[3])

}

(* useful subsections of lits and ids *)

let letter = ['a'-'z' 'A'-'Z']

let digit = ['0'-'9']

let punc = ['~' '`' '!' '@' '#' '$' '%' '^' '&' '*' '(' ')' '-' '+'

'='

 ',' '.' '?' '/' '<' '>' ':' ''' ';' '{' '}' '[' ']' '|'

' ']

84

let escape = ("\\n" | "\\t" | "\\\"" | "\\\\")

let value = ('2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | "10" |

 'J' | 'Q' | 'K' | 'A' | '*')

let suit = ['C' 'D' 'H' 'S' '*']

let cardExprPt1 = '$' '('

let cardExprPt2 = ')' suit

(* regular expressions for identifiers *)

let identifier = (letter) (letter | digit | '_')*

(* regular expressions for 6 of our 7 main data types;

 * lists are not included because they are recursive and

 * thus not definable by a regular expression *)

let intLit = ('-')? (digit)+

let doubleLit = ('-')? (digit)+ '.' (digit)*

let boolLit = ("true" | "false")

let stringLit = '"' (letter|digit|punc|escape)* '"'

let cardLit = '$' value suit

rule token = parse

['\n' '\r' '\t' ' '] { token lexbuf }

| "^M" { token lexbuf }

| "/*" { comment lexbuf }

(* Assignment Operator -- LRM 2.2.1 *)

85

| '=' { ASSIGN }

(* Arithmetic Operators -- LRM 2.2.2 *)

| '+' { PLUS }

| '-' { SUB }

| '*' { MULT }

| '/' { DIV }

| '%' { MOD }

(* Relational Operators -- LRM 2.2.3

(GT and LT also used for player -- LRM 1.7 *)

| ">=" { GEQ }

| "<=" { LEQ }

| ">" { GT }

| '<' { LT }

| "==" { EQ }

| "!=" { NEQ }

| "===" { TEQ }

| "!==" { TNEQ }

(* Boolean Operators -- LRM 2.2.4 *)

| "!" { NOT }

| "&&" { AND }

| "||" { OR }

(* String Operator -- LRM 2.2.5 *)

86

| '^' { CONCAT }

(* List Operators -- LRM 2.2.6 *)

| "+>" { ADDR }

| "<+" { ADDL }

| "<-" { REML }

| "->" { REMR }

(* Punctuators -- LRM 2.3 *)

| ';' { SEMI }

| '(' { LPAREN }

| ')' { RPAREN }

| '{' { LBRACE }

| '}' { RBRACE }

| ',' { COMMA }

(* Card Stuff -- LRM 1.5 *)

| cardExprPt1 { DOLLAR }

| cardExprPt2 as lxm { SUIT(lxm.[1]) }

(* List Stuff -- LRM 1.6 *)

| '[' { LBRACK }

| ']' { RBRACK }

(* Player Stuff -- LRM 1.7 *)

| '.' { DOT }

87

(* Preprocessing -- LRM 2.5 *)

| "#include" { INCLUDE }

(* Keywords -- LRM 2.6 *)

| "anytype" { TYPE(Ast.AnytypeType) }

| "bool" { TYPE(Ast.BoolType) }

| "card" { TYPE(Ast.CardType) }

| "def" { DEF }

| "double" { TYPE(Ast.DoubleType) }

| "ele" { ELE }

| "else" { ELSE }

| "foreach" { FOREACH }

| "if" { IF }

| "int" { TYPE(Ast.IntType) }

| "list" { TYPE(Ast.ListType) }

| "player" { TYPE(Ast.PlayerType) }

| "PLAYER" { PLAYER }

| "return" { RETURN }

| "SETUP" { SETUP }

| "string" { TYPE(Ast.StringType) }

| "TURN" { TURN }

| "while" { WHILE }

| "WIN" { WIN }

| "your" { YOUR }

88

(* Literals -- LRM 1 *)

| intLit as lxm { INT(int_of_string lxm) }

| doubleLit as lxm { DOUBLE(float_of_string lxm) }

| boolLit as lxm { BOOL(bool_of_string lxm) }

| stringLit as lxm { STRING(lxm) }

| cardLit as lxm { CARD(card_of_string lxm) }

(* Identifiers -- LRM 2.1 *)

| identifier as lxm { ID(lxm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character: " ^ Char.escaped

char)) }

and comment = parse

 "*/" { token lexbuf }

| _ { comment lexbuf }

parser.mly

%{

(* Author: Mark Micchelli *)

open Ast

%}

89

%token ASSIGN

%token PLUS SUB MULT DIV MOD

%token GEQ LEQ GT LT EQ NEQ TEQ TNEQ

%token AND OR NOT

%token CONCAT

%token ADDR ADDL REMR REML

%token DOT

%token SEMI COMMA LPAREN RPAREN LBRACE RBRACE

%token DOLLAR LBRACK RBRACK

%token INCLUDE

%token DEF ELSE ELE FOREACH IF PLAYER RETURN SETUP TURN WHILE WIN

YOUR

%token <Ast.datatype> TYPE

%token <int> INT

%token <float> DOUBLE

%token <bool> BOOL

%token <string> STRING

%token <int * char> CARD

%token <char> SUIT

%token <string> ID

%token EOF

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

%right ADDL

%left ADDR

90

%right REML

%left REMR

%left OR

%left AND

%left TEQ TNEQ

%left EQ NEQ

%left LT GT LEQ GEQ

%left CONCAT

%left PLUS SUB

%left MULT DIV MOD

%right NOT

%right DOT

%start program

%type <Ast.program> program

%%

/* program is a bdecl list */

program:

 bdecl_list { List.rev $1 }

bdecl_list:

 /* nothing */ { [] }

 | bdecl_list bdecl {$2 :: $1 }

91

bdecl:

 PLAYER LBRACE stmt_list RBRACE

 { { bname = "PLAYER"; bid = -1;

 funcs = []; bbody = List.rev $3; } }

 | SETUP LBRACE fdecl_list stmt_list RBRACE

 { { bname = "SETUP"; bid = -1; funcs = List.rev $3;

 bbody = List.rev $4; } }

 | TURN INT LBRACE fdecl_list stmt_list RBRACE

 { { bname = "TURN"; bid = $2; funcs = List.rev $4;

 bbody = List.rev $5; } }

 | WIN LBRACE fdecl_list stmt_list RBRACE

 { { bname = "WIN"; bid = -1; funcs = List.rev $3;

 bbody = List.rev $4; } }

fdecl_list:

 /* nothing */ { [] }

 | fdecl_list fdecl { $2 :: $1 }

fdecl:

 DEF TYPE ID LPAREN formal_opt RPAREN LBRACE stmt_list RBRACE

 { { fdt = $2;

 fname = $3;

 formals = $5;

 fbody = List.rev $8; }

 }

92

formal_opt:

 /* nothing */ { [] }

 | formal_list { List.rev $1 }

formal_list:

 formal { [$1] }

 | formal_list COMMA formal { ($3 :: $1) }

formal:

 TYPE ID { { pdt = $1; pname = $2; } }

vdecl:

 TYPE ID ASSIGN expr SEMI

 { { vdt = $1;

 vname = $2;

 value = $4; }

 }

stmt_list:

 /* nothing */ { [] }

 | stmt_list stmt { $2 :: $1 }

stmt:

 expr SEMI { Expr($1) }

 | RETURN expr SEMI { Return($2) }

 | vdecl { Vdecl($1) }

93

 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5,

Block([])) }

 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

 | FOREACH LPAREN expr RPAREN stmt { Foreach($3, $5) }

 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }

expr_opt:

 /* nothing */ { [] }

 | expr_list { List.rev $1 }

expr_list:

 expr { [$1] }

 | expr_list COMMA expr { $3 :: $1 }

expr:

 INT { Int($1) }

 | DOUBLE { Double($1) }

 | BOOL { Bool($1) }

 | STRING { String($1) }

 | CARD { Card(fst $1, snd $1) }

 | DOLLAR expr SUIT { CardExpr($2, $3) }

 | LBRACK expr_opt RBRACK { List($2) }

 | LT expr COMMA expr GT { Player($2, $4) }

 | ID { Id($1) }

 | ELE { Ele }

 | YOUR { Your }

94

 | expr ASSIGN expr { Binop($1, Assign, $3) }

 | expr PLUS expr { Binop($1, Plus, $3) }

 | expr SUB expr { Binop($1, Sub, $3) }

 | expr MULT expr { Binop($1, Mult, $3) }

 | expr DIV expr { Binop($1, Div, $3) }

 | expr MOD expr { Binop($1, Mod, $3) }

 | expr EQ expr { Binop($1, Eq, $3) }

 | expr NEQ expr { Binop($1, Neq, $3) }

 | expr TEQ expr { Binop($1, Teq, $3) }

 | expr TNEQ expr { Binop($1, Tneq, $3) }

 | expr LT expr { Binop($1, Lt, $3) }

 | expr LEQ expr { Binop($1, Leq, $3) }

 | expr GT expr { Binop($1, Gt, $3) }

 | expr GEQ expr { Binop($1, Geq, $3) }

 | expr AND expr { Binop($1, And, $3) }

 | expr OR expr { Binop($1, Or, $3) }

 | expr CONCAT expr { Binop($1, Concat, $3) }

 | expr ADDL expr { Binop($1, Addl, $3) }

 | expr ADDR expr { Binop($1, Addr, $3) }

 | expr DOT expr { Binop($1, Dot, $3) }

 | NOT expr { Unopl(Not, $2) }

 | REML expr { Unopl(Reml, $2) }

 | expr REMR { Unopr($1, Remr) }

 | ID LPAREN expr_opt RPAREN { Call($1, $3) }

 | LPAREN expr RPAREN { $2 }

95

ast.mli

(* Author: Mark Micchelli *)

type datatype = IntType | DoubleType | BoolType | StringType |

CardType |

 ListType | PlayerType | AnytypeType

type binop = Assign | Plus | Sub | Mult | Div | Mod | Eq | Neq |

Teq |

 Tneq | Lt | Leq | Gt | Geq | And | Or | Concat | Addl | Addr |

Dot

type unopl = Not | Reml

type unopr = Remr

type expr =

 Int of int

 | Double of float

 | Bool of bool

 | String of string

 | Card of int * char

 | CardExpr of expr * char

 | List of expr list

 | Player of expr * expr

 | Id of string

 | Ele

96

 | Your

 | Binop of expr * binop * expr

 | Unopl of unopl * expr

 | Unopr of expr * unopr

 | Call of string * expr list

 | Noexpr

type vdecl =

{

 vdt : datatype;

 vname : string;

 value : expr;

}

type stmt =

 Block of stmt list

 | Expr of expr

 | Vdecl of vdecl

 | Return of expr

 | If of expr * stmt * stmt

 | Foreach of expr * stmt

 | While of expr * stmt

type formal =

{

97

 pdt : datatype;

 pname : string;

}

type fdecl =

{

 fdt : datatype;

 fname : string;

 formals : formal list;

 fbody : stmt list;

}

type bdecl =

{

 bname : string;

 bid : int;

 funcs : fdecl list;

 bbody : stmt list;

}

type program = bdecl list

semantic_analyzer.ml

98

(* Author Ryan Jones and Kevin Henrick *)

(* The semantic analyzer takes in an AST and type checks each node

of the tree,*)

(* and returns the correctly checked node to the semantically

analyzed abstract*)

(* syntax tree (SAST). *)

open Ast

open Corelibrary

(* module StringMap = Map.Make(String) *)

(* Creating the symbol_table *)

type symbol_table = {

 parent : symbol_table option;

 functions : Ast.fdecl list;

 variables : Ast.vdecl list;

}

let typeEq t1 t2 = match t1,t2 with

| AnytypeType, _ -> true

| _, AnytypeType -> true

| _, _ -> if (t1 = t2)

 then true

 else false

let string_of_datatype = function

99

 IntType -> "IntType"

 | DoubleType -> "DoubleType"

 | BoolType -> "BoolType"

 | StringType -> "StringType"

 | CardType -> "CardType"

 | ListType -> "ListType"

 | PlayerType -> "PlayerType"

 | AnytypeType -> "AnytypeType"

let string_of_expr = function

 | _ -> "(not implemented yet)"

let string_of_binop = function

 | Assign -> "Assign"

 | Plus -> "Plus"

 | Sub -> "Sub"

 | Mult -> "Mult"

 | Div -> "Div"

 | Mod -> "Mod"

 | Eq -> "Eq"

 | Neq -> "Neq"

 | Teq -> "Teq"

 | Tneq -> "Tneq"

 | Lt -> "Lt"

 | Leq -> "Leq"

 | Gt -> "Gt"

100

 | Geq -> "Geq"

 | And -> "And"

 | Or -> "Or"

 | Concat -> "Concat"

 | Addl -> "Addl"

 | Addr -> "Addr"

 | Dot -> "Dot"

(* DEFAULT fdt is Ast.IntType *)

(* Core functions *)

let f1 = {pdt = Ast.IntType; pname = "int"}

let intToString = { fdt = Ast.StringType; fname =

"intToString"; formals = [f1]; fbody = []; }

let f1 = {pdt = Ast.DoubleType; pname = "double"}

let doubleToString = { fdt = Ast.StringType; fname =

"doubleToString"; formals = [f1]; fbody = []; }

let f1 = {pdt = Ast.StringType; pname = "string"}

let stringToInt = { fdt = Ast.IntType; fname =

"stringToInt"; formals = [f1]; fbody = []; }

let f1 = {pdt = Ast.StringType; pname = "double"}

let stringToDouble = { fdt = Ast.DoubleType; fname =

"stringToDouble"; formals = [f1]; fbody = []; }

101

let f1 = {pdt = Ast.CardType; pname = "valueCard"}

let value = { fdt = Ast.IntType;

fname = "value"; formals = [f1]; fbody =

[]; }

let scan = { fdt = Ast.StringType;

fname = "scan"; formals = []; fbody = []; }

let f1 = {pdt = Ast.StringType; pname = "printString"}

let print = { fdt = Ast.IntType;

fname = "print"; formals = [f1]; fbody =

[]; }

let f1 = {pdt = Ast.CardType; pname = "suitString"}

let suit = { fdt = Ast.StringType;

fname = "suit"; formals = [f1]; fbody

= []; }

let random = { fdt = Ast.ListType; fname =

"random"; formals = []; fbody = []; }

let f1 = {pdt = Ast.ListType; pname = "deck"}

let shuffle = { fdt = Ast.ListType; fname =

"shuffle"; formals = [f1]; fbody = []; }

let f1 = {pdt = Ast.PlayerType; pname = "player"}

let turn = { fdt = Ast.IntType;

fname = "turn"; formals = [f1]; fbody

= []; }

102

let win = { fdt = Ast.IntType;

fname = "win"; formals = []; fbody

= []; }

(* Core variables *)

let standard = { vdt = Ast.ListType; vname = "STANDARD"; value

= Ast.Noexpr }

let nemo = { vdt = Ast.PlayerType; vname = "NEMO"; value

= Ast.Noexpr }

(* Pre-defined player data fields *)

let name = { vdt = Ast.StringType; vname = "$PVARname";

value = Ast.Noexpr }

let turnID = { vdt = Ast.IntType; vname = "$PVARturnID";

value = Ast.Noexpr }

let global_scope = {

 parent = None;

 variables = [standard; nemo; name; turnID];

 functions = [intToString; doubleToString;

 stringToInt; stringToDouble;

 value; suit;

 scan; print;

 random; shuffle;

 turn; win];

}

103

(* Finding the variable in the scope by its name*)

let rec find_variable scope name =

 try

 List.find (fun {vdt=_; vname=s; value=_} -> s = name)

scope.variables

 with Not_found ->

 match scope.parent with

 | Some(parent) -> find_variable parent name

 | _ -> let pTrim st = (if (String.length st) > 4

 then (String.sub st 0 5)

else st)

 in

 if ((pTrim name) <> "$PVAR")

 then find_variable scope ("$PVAR"^name)

 else

 (* raise (Failure("Var not found in

scope (TMP message)")) *)

 let outName = if (String.length

name) > 4

 then

 (String.sub name 5 (String.length name-5))

else name

 in

 raise (Failure("Variable "^outName^" not found in

scope"))

104

 (* find-string starts with PVAR but still not found,

i.e. not a player var *)

(*

 let _ = (

 let rec getGlobalScope scope = match scope.parent with

 | None -> scope

 | Some(parent) -> (getGlobalScope parent)

 |

 let build_string tmpString nextString = tmpString^"

\n"^nextString in

 let func_names_string = List.fold_left build_string("")

(List.map (fun {fdt=_; fname=n; formals=_; fbody=_} -> n)

(getGlobalScope scope).functions) in

 let num_funcs = List.length (getGlobalScope scope).functions in

 let var_names_string = List.fold_left build_string("")

(List.map (fun {vdt=_; vname=n; value=_} -> n) (getGlobalScope

scope).variables) in

 let num_vars = List.length (getGlobalScope scope).functions in

 raise(Failure("At end, vars found were "^((string_of_int

num_vars)^var_names_string)

 ^" \n\nand funcs found were "^((string_of_int

num_funcs)^func_names_string)))

) in

*)

(* check if a function is present in global scope *)

let rec find_function scope name =

105

 let rec getGlobalScope scope = match scope.parent with

 | None -> scope

 | Some(parent) -> (getGlobalScope parent)

 in

 try

 List.find (fun {fdt=_; fname=s; formals=_; fbody=_} -> s =

name) (getGlobalScope scope).functions

 with Not_found ->

 let build_string tmpString nextString = tmpString^"

\n"^nextString in

 let func_names_string = List.fold_left build_string("")

(List.map (fun {fdt=_; fname=n; formals=_; fbody=_} -> n)

(getGlobalScope scope).functions) in

 let num_funcs = List.length (getGlobalScope

scope).functions in

 raise(Failure("Function "^name^" not found in global scope,

funcs found were "^(string_of_int num_funcs)^func_names_string))

(* Used identifiers must be defined: use find_variable function OR

find_func function *)

(* Identifier references must be variables or functions *)

(* Function calls must refer to functions: use find_func function *)

(* Left side of assign binop must be existing variable of same type

as right side. *)

let rec exprCheck scope = function

106

 (* pass literals right through, already validated in the scanner

*)

 | Ast.Int i -> Sast.Int(i), Ast.IntType

 | Ast.Double d -> Sast.Double(d), Ast.DoubleType

 | Ast.Bool b -> Sast.Bool(b), Ast.BoolType

 | Ast.String s -> Sast.String(s), Ast.StringType

 | Ast.Card (i,c) -> Sast.Card(i,c), Ast.CardType

 | Ast.CardExpr (e,c) ->

 let is_valid expr = match expr with

 | Ast.Int i -> if (i>1 && i<15) then

 true (* value is valid *)

 else

 raise (Failure ("card integer value must be between 2 and 14

(inclusive), but found "^(string_of_int i)^"."))

 | Ast.Id id -> let curVdecl = find_variable scope id

in

 if(typeEq curVdecl.vdt

Ast.IntType) (* id must refer to IntType in CardExpr*)

then true

 else

raise (Failure ("Id in CardExpr must be type Int, found type " ^

string_of_datatype curVdecl.vdt))

 | Ast.Ele -> let eleType = (find_variable

scope "ele").vdt (* lookup what ele currently refers to in local

symbol table *)

 in

107

 if

(typeEq eleType Ast.IntType)

then true

 else

raise (Failure ("Ele must refer to an element of type Int, found

type " ^ (string_of_datatype eleType)))

 | _ -> raise (Failure ("card expression

is wrong type, found "^string_of_expr expr^" ."))

 in

 if (is_valid e) then

 Sast.CardExpr(exprCheck scope e, c), Ast.CardType (*

SUCCESS RETURN VALUE *)

 else raise (Failure ("card expression value or type is

wrong"))

 | Ast.List (elements) -> Sast.List(List.map (exprCheck scope)

elements), Ast.ListType

 | Ast.Player (e1, e2) ->

 let is_valid_player expr1 expr2 = match snd(exprCheck

scope e1), snd(exprCheck scope e2) with

 | Ast.StringType, Ast.IntType -> true

 | _ , _ -> false

 in

 if is_valid_player e1 e2

 then Sast.Player(exprCheck scope e1 , exprCheck

scope e2), Ast.PlayerType

108

 else

 raise(Failure("Invalid player name or turn

id, e1 type: "^(string_of_datatype (snd(exprCheck scope e1)))^" e2

type:"^(string_of_datatype (snd(exprCheck scope e2)))))

 | Ast.Id(s) -> (* use find_variable and find_function *)

 let newVdecl = find_variable scope s in

 Sast.Id(newVdecl.vname), newVdecl.vdt (* look for it as a

variable with find_variable *)

 | Ast.Ele -> Sast.Ele, (find_variable scope "ele").vdt

 | Ast.Your ->

 if((find_variable scope "your").vname = "your")

 then Sast.Your, Ast.PlayerType

 else

 raise(Failure("Your referenced outside of turn

block"))

 (* MIGHT NOT BE REACHED EVER *)

 | Ast.Binop (expr1, op, expr2) -> (* taken from MicroC Type

Checker*)

 (

 (* The types of operands for unary and binary operators

must be consistent. *)

 let e1 = exprCheck scope expr1 in

 (* if only operator is dot, than add look for

player.___ !!!!!!!!!!!!!*)

 let e2 = exprCheck scope expr2 in

109

 let _, t1 = e1 (* Get the type of each child *) in

 let _, t2 = e2 in

 match t1, op, t2 with

 | (AnytypeType | BoolType), (And| Or),

(AnytypeType | BoolType) -> (* Bool *)

 Sast.Binop(e1, op, e2), Ast.BoolType

 | (AnytypeType | IntType), Mod, (AnytypeType |

IntType) -> (* Ints mod *)

 Sast.Binop(e1, op, e2), Ast.IntType

 | (AnytypeType | IntType | DoubleType), (Lt | Leq

| Gt | Geq), (AnytypeType | IntType| DoubleType) -> (* Int

operations *)

 Sast.Binop(e1, op, e2), Ast.BoolType

 | (AnytypeType | IntType), (Plus | Sub | Mult |

Div), (AnytypeType | IntType) -> (* Ints or Floats (with above

cases excluded) *)

 Sast.Binop(e1, op, e2), Ast.IntType

 | (AnytypeType | IntType | DoubleType), (Plus |

Sub | Mult | Div), (AnytypeType | IntType | DoubleType) -> (* Ints

or Floats *)

 Sast.Binop(e1, op, e2), Ast.DoubleType

 | _, (Eq | Neq | Teq | Tneq), _ -> (* Anything?

*)

 Sast.Binop(e1, op, e2), Ast.BoolType

110

 | (StringType | AnytypeType), Concat, (StringType

| AnytypeType) -> (* Strings *) (* DOUBLE CHECK ANYTYPE ALLOWED*)

 Sast.Binop(e1, op, e2), Ast.StringType

 | (ListType|AnytypeType), Addl, (IntType |

CardType | DoubleType | StringType | BoolType | ListType |

PlayerType | AnytypeType) -> (* expr lists *)

 Sast.Binop(e1, op, e2), Ast.ListType

 | (IntType | CardType | DoubleType | StringType |

BoolType | ListType | PlayerType | AnytypeType), Addr,

(ListType|AnytypeType) -> (* expr lists *)

 Sast.Binop(e1, op, e2), Ast.ListType

 | PlayerType, Dot, t -> if (typeEq t AnytypeType)

 then Sast.Binop(e1, op,

e2), Ast.AnytypeType(* left expr is expr * expr or Id, right expr

is Id *)

 else raise(Failure("player dotted with wrong type

(should never throw compile-time error?)"))

 | _, Assign, _ -> if (typeEq t1 t2)

 then Sast.Binop(e1, op, e2), Ast.AnytypeType

(* !?! DANGEROUS !?! --> FIX RETURN TYPE *)

 else raise(Failure("Operand types must

match for Assign operator"))

 | tA, op, tB -> raise(Failure("Binop "^

(string_of_binop op) ^" has improper operands, found "^

(string_of_datatype tA) ^", "^ (string_of_datatype tB) ^ "\n"))

)

111

 | Ast.Unopl (op, expr) ->

 (

 let e1 = exprCheck scope expr in

 let _, t1 = e1 in (* Get the type of each child *)

 match op, t1 with

 | Not, BoolType -> Sast.Unopl(op, e1), Ast.BoolType (*

Bool *)

 | Reml, ListType -> Sast.Unopl(op, e1), Ast.AnytypeType

 | _,_ -> raise(Failure("Invalid operand ("^string_of_datatype

t1^") for left-associative unary operator"))

)

 | Ast.Unopr (expr, op) ->

 (

 let e1 = exprCheck scope expr in

 let _, t1 = e1 in (* Get the type of each child *)

 match t1, op with

 | ListType, Remr -> Sast.Unopr(e1, op), Ast.ListType

 | _ -> raise(Failure("Invalid operand

("^string_of_datatype t1^") for right-associative unary operator"))

)

 | Ast.Call (string, exprList) ->

 (

 let funcFound = find_function scope string in

 let formalTypes = List.map (fun {pdt=s; pname=_} -> s)

funcFound.formals in

112

 let checkedExprs = List.map (exprCheck scope) exprList in

 let checkedTypes = List.map snd(checkedExprs) in

 (* check each type from checked list against fdecl param

types in scope's function list *)

 let rec typesMatch list1 list2 = match list1,list2 with

 | [], [] -> true

 | [], _ -> raise(Failure(" found parameters when expecting

none "))

 | _ , [] -> raise(Failure(" found no parameters when

expecting parameters"))

 | _ , _ ->

 try

 (typeEq (List.hd(list1)) (List.hd(list2))) &&

typesMatch (List.tl(list1)) (List.tl(list2))

 with Failure("hd") ->

 raise(Failure(" trying List.hd on [] in

exprCheck:Ast.Call"))

 in

 if (typesMatch formalTypes checkedTypes)

 then Sast.Call (string , checkedExprs) , funcFound.fdt

 else

 raise(Failure("Arguments for function: "^ string ^" do

not match function signature"))

)

 | Ast.Noexpr -> Sast.Noexpr, Ast.AnytypeType

113

(* adds player data fields to global scope so that player.x is

visible in any turn block. *)

(* INS: curScope:symbol_table , prevScope:symbol_table ,

scopeStack:(symbol_table list) , vd:Vdecl *)

(* OUTS: out:symbol_table*)

let empty_table = (* empty table will be a flag to indicate the

first function call *)

(*Some(symbol_table) or None (i.e. symbol_table Option *)

 { parent = None;

 functions = [];

 variables =

[]; }

let rec addPvarGlobal curScope prevScope scopeStack vd = match

curScope, prevScope, scopeStack with

| cur, prev, [] -> (* empty table will be a flag to indicate the

first function call *)

 (* let _ = print_string " cur,prev,[] called in

addPvarGlobal \n" in *)

 let symNonOpt s =

match s with

 | Some(sym_tab)

-> sym_tab

 | None ->

(let _ = print_string("hack should work around this (in

addPvarGlobal)") in empty_table)

 in

 let prevIsEmpty

prev = match prev with

114

 | Some(sym_tab)

-> (sym_tab = empty_table)

 | _ -> false

 in

 (* if (prev = empty_table) (*ascending*) *)

 if (prevIsEmpty

prev) (*ascending*)

 then

 (*

let _ = print_string("ascending (stack+) \n") in *)

 let

curParentNone cur = match cur with

 |

Some(sym_tab) -> (sym_tab.parent = None)

 | _ ->

false

 in

 (* if

(cur.parent = None) (*started right in the global*) *)

 if

(curParentNone cur) (*started right in the global*)

 then let newVd =

 { vdt =

vd.vdt;

 vname =

"$PVAR"^vd.vname;

value = vd.value; }

 in

 let

newGlobal =

115

 { parent = None;

 functions =

(symNonOpt cur).functions;

variables = newVd::((symNonOpt cur).variables) } in

Some(newGlobal)

 else

(addPvarGlobal (symNonOpt cur).parent cur (cur::[]) vd)

 else (*

cur.parent = prev , i.e. descending *)

 (* let _ =

print_string "final descend \n" in *)

 cur (* FINAL

RETURN VALUE *)

| cur, prev, h::t ->

 let _ = print_string " cur,prev,h::t called in

addPvarGlobal \n" in

 let symNonOpt s = match s with

 | Some(sym_tab)

-> sym_tab

 | None ->

(let _ = print_string("hack should work around this (in

addPvarGlobal)\n") in empty_table)

 in

 if (symNonOpt prev).parent = cur (*ascending*)

 then

 let

_ = print_string("ascending (stack+) \n") in

 if (symNonOpt cur).parent = None then

(*middle state, prev is global scope*)

116

let newVd =

{ vdt = vd.vdt;

vname = "$PVAR"^vd.vname;

value = vd.value; } in

 let newGlobal =

 { parent = None;

 functions

= (symNonOpt cur).functions;

variables = newVd::((symNonOpt cur).variables); } in

 let newCur =

{ parent = Some newGlobal;

variables = (symNonOpt h).variables;

 functions = (symNonOpt h).functions; }

 in

addPvarGlobal (Some newCur) (Some newGlobal) t vd

 else (addPvarGlobal (symNonOpt cur).parent

cur (cur::(h::t)) vd) (*walking state*)

 else

 if

(symNonOpt cur).parent = prev (*descending*)

 then

 let _

= print_string ("descending (stack-) \n") in

 addPvarGlobal h cur t vd

117

 else

 let _

= print_string "shouldn't be reached \n" in None

(* The below function iteratively checks each statement in CGL by

folding over an intermediate scope/statement list tuple. *)

let rec processStatement (scope,stmtList) stmt =

 let newScope = {

 parent = Some scope; (* set parent to newglobalscope

parameter *)

 functions = [];

 variables = [];

 } in

 match stmt with

 | Expr(e1) -> scope, Sast.Expr(exprCheck scope e1)::stmtList

 | Vdecl(vd) ->

 let exprType = snd(exprCheck scope vd.value) in

 if (typeEq vd.vdt exprType) (* TODO: Refactor and make

sequential *)

 then if (try (find_variable scope vd.vname).vname = vd.vname

with Failure(msg) -> false) (* Failure is good because no

duplicate declaration *)

 then raise(Failure("Duplicate variable

declaration for var:"^vd.vname))

 else

 let updScope =

 { parent = scope.parent;

118

 functions = scope.functions;

 variables = vd::(scope.variables) } in

 let updScopePvar = (

 let emptyScope = { parent = None;

functions = [];

variables = []; }

 (* serves as flag for

addPvarGlobal *) in

 if (try let _ = find_variable scope

"IS_IN_PLAYER" in true with Failure(msg) -> false) (* if current

block is player block*)

 then

 (* let _ = print_string("is

IS_IN_PLAYER \n") in *)

 match (addPvarGlobal (Some

updScope) (Some emptyScope) [] vd) with (* add player variable

to global scope as PVARname *)

 | Some(sym_tab) -> sym_tab

 | None -> let _ = print_string

"should never be reached (in process:stmt)" in emptyScope

 else

 (* let _ = print_string("not

IS_IN_PLAYER \n") in *)

 updScope

)

119

 in

 let retVdecl = fst(vd, exprType) in

 updScopePvar, Sast.Vdecl(retVdecl)::stmtList

(* !!!!!!! until updScopePvar WORKS *)

 else raise(Failure("Assignment variable

type:"^(string_of_datatype vd.vdt)^

 " does not match expression

type:"^(string_of_datatype exprType)))

 | Block(stmts) -> scope, Sast.Block(snd(List.fold_left

processStatement(newScope,[]) stmts))::stmtList

 | If(e, s1, s2) ->

 let ec = exprCheck scope e in

 let _, t1 = ec in

 if (typeEq t1 Ast.BoolType) then

 let newS1, s1c = (processStatement(newScope, []) s1)

in

 let _, s2c = (processStatement (newScope, []) s2) in

 try

 newS1, Sast.If(ec, List.hd(s1c),

List.hd(s2c))::stmtList

 with Failure("hd") ->

 raise(Failure(" trying List.hd on [] in

processStatement:If"))

 else raise(Failure("predicate of If must be boolean

expression, found "^(string_of_datatype t1)))

120

 | While(e, s) ->

 let ec = exprCheck scope e in

 let _, t1 = ec in

 if (typeEq t1 Ast.BoolType) then

 let newS1, sc = (processStatement(newScope, []) s) in

 try

 newS1, Sast.While(ec, List.hd(sc))::stmtList

 with Failure("hd") ->

 raise(Failure(" trying List.hd on [] in

processStatement:While"))

 else raise(Failure("predicate of While must be boolean

expression, found "^(string_of_datatype t1)))

 | Foreach(e, s) -> (* Includes ELE *)

 let ec = exprCheck scope e in

 let _, t1 = ec in

 let ele = {

 vdt = Ast.AnytypeType; (* evaluate e and get type of

first element, b/c e should be a list *)

 vname = "ele";

 value = Ast.Ele; (* evaluate e and get value of first

element, b/c e should be a list *)

 } in

 let eleScope = (* eleScope extends newScope to include Ele

*)

 {

 parent = newScope.parent; (* set parent to newglobalscope

parameter *)

121

 functions = newScope.functions;

 variables = ele::newScope.variables;

 } in

 if (typeEq t1 Ast.ListType) then

 let newS1, sc = (processStatement(eleScope, []) s) in

 try

 newS1, Sast.Foreach(ec, List.hd(sc))::stmtList

 with Failure("hd") ->

 raise(Failure(" trying List.hd on [] in

processStatement:Foreach"))

 else raise(Failure("predicate of Foreach must be ListType

expression, found "^(string_of_datatype t1)))

 | Return(e) ->

 let curReturnType = (find_variable scope "return").vdt (*

store return type of current function in scope *)

 in

 let ec = exprCheck scope e in

 let _, t1 = ec in

 if (typeEq t1 curReturnType)

 then scope, Sast.Return(ec)::stmtList

 else raise(Failure("Return type of function body doesn't

match return type of function signature,

 found"^(string_of_datatype t1)^", expected

"^(string_of_datatype curReturnType)))

122

let processFdecl curScope fdecl = match fdecl.fbody with

 | [] -> raise(Failure("Empty functions not allowed"))

 | x ->

 let retVdecl = {

 vdt = fdecl.fdt;

 vname = "return";

 value = Ast.Noexpr;

 } in

 let formalToVdecl = function

 | frml -> { vdt = frml.pdt;

 vname = frml.pname;

 value = Ast.Noexpr }

 in

 let retScope = {

 parent = curScope.parent;

 functions = curScope.functions;

 variables = (List.map formalToVdecl

(fdecl.formals))@(retVdecl::curScope.variables);

 } in

 let checkedFdecl =

 {

 fdt = fdecl.fdt;

 fname = fdecl.fname;

 formals = fdecl.formals;

 fbody = fst(x, (List.fold_left processStatement(retScope,

[]) fdecl.fbody)); (* UGLY HACK (x) *)

 } in

123

 checkedFdecl

let processFdecls bname fdecls scope = match bname, fdecls with

| "SETUP", fdecl_list ->

 (

 (* LOAD all funcs in list into symbol table (b/c all funcs

should be able to "find" i.e. call each other) *)

 let addFunc scope fdecl =

 { parent = scope.parent;

 functions = fdecl::scope.functions;

 variables = scope.variables }

 in

 let newGlobal = List.fold_left addFunc(scope) fdecls

(* new scope containing all funcs in setup *)

 in

 let subScope = {

 parent = Some newGlobal; (* set parent to

newglobalscope parameter *)

 functions = [];

 variables = [];

 }

 in

 (* MAP through each function and check *)

 (List.map (processFdecl subScope) fdecl_list), newGlobal

(* newFdecls, newScope *)

124

)

| _ , [] -> [], scope (* Non-"SETUP" bname should have empty

fdecls list *)

| _ , _ -> raise(Failure("Functions can only be declared in

SETUP (at beginning)"))

let processBdecl (scope, checkedBdecls) bdecl =

 let funcsAndScope = processFdecls bdecl.bname bdecl.funcs

scope in

 (* IN: bname, funcs list --->> OUT: func list, updated symbol

table *)

 let updScope = snd(funcsAndScope) in

 let yourVdecl = {vdt = Ast.PlayerType; vname = "your";

value = Ast.Noexpr; } in (* dummy "value" *)

 let updScopeYour = {

 parent = updScope.parent;

 functions = updScope.functions;

 variables = yourVdecl::updScope.variables;

 } in

 (* let _ = print_string ("\n\nbdecl.name is

"^(bdecl.bname)^"\n") in *)

 if bdecl.bname = "TURN"

 then

125

 let bbodyAndScope = List.fold_left

processStatement(updScopeYour,[]) bdecl.bbody

 in (* IN: stmtList, scope, bbody -->> OUT: stmt list,

updated symbol table *)

 let returnBdecl = {

 bname = bdecl.bname;

 bid = bdecl.bid;

 funcs = fst funcsAndScope;

 bbody = fst(bdecl.bbody, snd bbodyAndScope); (* UGLY

HACK (ast instead of sast) *)

 } in

 fst(bbodyAndScope), returnBdecl::checkedBdecls (*

intermediate scope and bdecl list *)

 else if (bdecl.bname = "PLAYER") (* HANDLE DIFFERENTLY

FROM OTHERS *)

 then

 let newV = {vdt = Ast.BoolType; vname="IS_IN_PLAYER";

value=Ast.Noexpr} in

 let flaggedUpdScope = {

 parent = updScope.parent;

 functions = updScope.functions;

 variables = (newV::updScope.variables;) } in (*

flag is_in_player so that all player vdecls are added to global

with a special string prefix *)

 let unFlag scopeF = let newVars = (List.filter (fun x

-> (x.vname)<>"IS_IN_PLAYER") scopeF.variables) in

126

 { parent = scopeF.parent;

functions = scopeF.functions;

 variables = newVars }

 in

 let bbodyAndScope = List.fold_left

processStatement(flaggedUpdScope,[]) bdecl.bbody

 in (* IN: stmtList, scope, bbody -->> OUT: stmt list,

updated symbol table *)

 let rec isAllVdecls stmtList = match stmtList with

 | [] -> true

 | Ast.Vdecl(x)::tail -> isAllVdecls tail

 | _ -> false

 in

 let returnBdecl = {

 bname = bdecl.bname;

 bid = bdecl.bid;

 funcs = fst funcsAndScope;

 bbody = fst(bdecl.bbody, snd bbodyAndScope); (* UGLY

HACK (ast instead of sast) *)

 } in

 if isAllVdecls bdecl.bbody (* PLAYER bbody must only

have variable declarations *)

 then (unFlag (fst(bbodyAndScope))),

returnBdecl::checkedBdecls (* intermediate scope and bdecl list *)

 else raise(Failure("Player block must consist only of

variable declarations"))

127

 else

 let bbodyAndScope = List.fold_left

processStatement(updScope,[]) bdecl.bbody

 in (* IN: stmtList, scope, bbody -->> OUT: stmt list,

updated symbol table *)

 let returnBdecl = {

 bname = bdecl.bname;

 bid = bdecl.bid;

 funcs = fst funcsAndScope;

 bbody = fst(bdecl.bbody, snd bbodyAndScope); (* UGLY

HACK (ast instead of sast) *)

 } in

 fst(bbodyAndScope), returnBdecl::checkedBdecls (*

intermediate scope and bdecl list *)

(* START valid next blocks for each block - - - - - - - - - - - -

- - - - - - - - - - -*)

(* remove numbers from end of TURN blocks *)

let turnTrim string =

 if ((String.length string > 3) && (String.sub string 0 4 =

"TURN"))

 then "TURN"

 else string

128

let curValid state block = match (turnTrim state, turnTrim block)

with ("START", "PLAYER") -> true

 | ("START", "SETUP") -> true

 | ("PLAYER", "SETUP") -> true

 | ("SETUP", "TURN") -> true

 | ("SETUP", "WIN") -> true

 | ("SETUP", "END") -> true

 | ("TURN", "TURN") -> true

 | ("TURN", "WIN") -> true

 | ("TURN", "END") -> true

 | ("WIN", "END") -> true

 | _ -> false

(* check that blocks are in a valid order *)

let rec allValid state blocks = match blocks with

 | [] -> let _ = print_string "Order check finished \n" in

true

 | head::tail -> if curValid state head && allValid head

tail

 then true

 else raise(Failure("Blocks not in correct order"))

let startState = "START"

let check_order block_list =

 let extract_name bdecl = bdecl.bname in

129

 let block_name_list = List.map extract_name block_list in

 allValid startState block_name_list

(* END valid next blocks for each block - - - - - - - - - - - - -

- - - - - - - - - -*)

(* MAIN *)

(* Parameters: Ast.Program, Symbol_Table(global) *)

(* Output: Sast.Program *)

let checkProgram program globalTable =

 let _ = check_order program in

 let endScope, _ = List.fold_left processBdecl(globalTable, [])

program in

 (* endScope *)

 (*

 (* debug info below *)

 let rec getGlobalScope scope = match scope.parent with

 | None -> scope

 | Some(parent) -> (getGlobalScope parent)

 in

 let build_string tmpString nextString = tmpString^"

\n"^nextString in

130

 let func_names_string = List.fold_left build_string("") (List.map

(fun {fdt=_; fname=n; formals=_; fbody=_} -> n) (getGlobalScope

endScope).functions) in

 let num_funcs = List.length (getGlobalScope endScope).functions

in

 let var_names_string = List.fold_left build_string("") (List.map

(fun {vdt=_; vname=n; value=_} -> n) (getGlobalScope

endScope).variables) in

 let num_vars = List.length (getGlobalScope endScope).functions in

 let _ = print_string ("At end, funcs found were "^((string_of_int

num_vars)^var_names_string)^" \n"

 ^"and var found were "^((string_of_int

num_funcs)^func_names_string)) in

 *)

 endScope

sast.mli

(* Author Ryan Jones and Kevin Henrick *)

open Ast

type expr_detail =

131

 Int of int

 | Double of float

 | Bool of bool

 | String of string

 | Card of int * char

 | CardExpr of expr * char

 | List of expr list

 | Player of expr * expr

 | Id of string

 | Ele

 | Your

 | Binop of expr * Ast.binop * expr

 | Unopl of unopl * expr

 | Unopr of expr * Ast.unopr

 | Call of string * expr list

 | Noexpr

 and expr = expr_detail * Ast.datatype

type stmt =

 Block of (stmt list) (* statement list and var list - only

line changed here*)

 | Expr of expr

 | Vdecl of Ast.vdecl

 | Return of expr

 | If of expr * stmt * stmt

132

 | Foreach of expr * stmt

 | While of expr * stmt

type formal =

{

 pdt : Ast.datatype;

 pname : string;

}

type fdecl =

{

 fdt : Ast.datatype;

 fname : string;

 formals : Ast.formal list;

 fbody : stmt list;

}

type bdecl =

{

 bname : string;

 bid : int;

 funcs : fdecl list;

 bbody : stmt list;

}

type program = bdecl list

133

generator.ml

(*

 * Author: Mark Micchelli

 * The generator takes in a CGL AST and converts it to a string of

a Java

 * program. The two functions from here you'd want to call are

 * string_of_player_class and string_of_main_class.

 *)

open Ast

open Corelibrary

let string_of_datatype = function

 IntType -> "Integer"

 | DoubleType -> "Double"

 | BoolType -> "Boolean"

 | StringType -> "String"

 | CardType -> "Card"

 | ListType -> "CGLList"

 | PlayerType -> "Player"

 | AnytypeType -> "Object"

let string_of_binop = function

134

 Assign -> "="

 | Plus -> "+"

 | Sub -> "-"

 | Mult -> "*"

 | Div -> "/"

 | Mod -> "%"

 | Eq -> "never reached"

 | Neq -> "never reached"

 | Teq -> "never reached"

 | Tneq -> "never reached"

 | Lt -> "<"

 | Leq -> "<="

 | Gt -> ">"

 | Geq -> ">="

 | And -> "&&"

 | Or -> "||"

 | Concat -> "+"

 | Addl -> "never reached"

 | Addr -> "never reached"

 | Dot -> "never reached"

let rec string_of_expr = function

 Int(i) -> "new Integer(" ^ string_of_int i ^ ")"

 | Double(d) -> "new Double(" ^ string_of_float d ^ ")"

 | Bool(b) -> "new Boolean(" ^ string_of_bool b ^ ")"

 | String(s) -> "new String(" ^ s ^ ")"

135

 | Card(i, c) ->

 "new Card(" ^ string_of_int i ^ ", '" ^ Char.escaped c ^

"')"

 | CardExpr(e, c) ->

 "new Card(" ^ string_of_expr e ^ ", '" ^ Char.escaped c ^

"')"

 | List(el) ->

 "new CGLList(" ^ String.concat ", "

 (List.map string_of_expr el) ^ ")"

 | Player(e1, e2) ->

 "new Player(" ^ string_of_expr e1 ^ ", " ^

 string_of_expr e2 ^ ")"

 | Id(s) -> s

 | Ele -> "ele"

 | Your -> "your"

 | Binop(e1, o, e2) ->

 let string_of_binop_expr e1 o e2 = match o with

 Eq -> string_of_expr e1 ^ ".equals(" ^ string_of_expr e2

^ ")"

 | Neq -> "!" ^ string_of_expr e1 ^ ".equals(" ^

string_of_expr e2 ^ ")"

 | Teq -> "teq(" ^ string_of_expr e1 ^ ", " ^ string_of_expr

e2 ^ ")"

 | Tneq -> "!teq(" ^ string_of_expr e1 ^ ", " ^

string_of_expr e2

 ^ ")"

 | Addl ->

 string_of_expr e1 ^ ".addLast(" ^ string_of_expr e2 ^

")"

136

 | Addr ->

 string_of_expr e2 ^ ".addFirst(" ^ string_of_expr e1 ^

")"

 | Dot -> string_of_expr e1 ^ "." ^ string_of_expr e2

 | _ -> string_of_expr e1 ^ " " ^ string_of_binop o ^ " " ^

 string_of_expr e2

 in string_of_binop_expr e1 o e2

 | Unopl(o, e) ->

 let string_of_unopl_expr o e = match o with

 Not -> "!" ^ string_of_expr e

 | Reml -> string_of_expr e ^ ".removeFirst()"

 in string_of_unopl_expr o e

 | Unopr(e, o) -> string_of_expr e ^ ".removeLast()"

 | Call(f, el) ->

 f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^

")"

 | Noexpr -> ""

let rec string_of_stmt = function

 Block(stmts) ->

 "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^

"}\n"

 | Expr(expr) ->

 string_of_expr expr ^ ";\n"

 | Vdecl(vdecl) ->

 string_of_datatype vdecl.vdt ^ " " ^ vdecl.vname ^ " = " ^

 string_of_expr vdecl.value ^ ";\n"

 | Return(expr) ->

137

 "return " ^ string_of_expr expr ^ ";\n";

 | If(e, s, Block([])) ->

 "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s

 | If(e, s1, s2) ->

 "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s1 ^

 "else\n" ^ string_of_stmt s2

 | Foreach(e, s) ->

 "list = " ^ string_of_expr e ^ ".toArray();

 for (Object ele : list)

 " ^ string_of_stmt s ^ "

 "

 | While(e, s) ->

 "while (" ^ string_of_expr e ^ ") \n" ^ string_of_stmt s

(*

 * Appends each formal with a "$". There is no risk of variable

name

 * overlap because "$" is a character that's allowed in Java

identifiers,

 * but not CGL ones.

 *)

let string_of_formal formal =

 "Object " ^ formal.pname ^ "$$"

(*

 * Makes Java function declarations, but this requires a lot of

care because

138

 * CGL is pass-by-value and Java is pass-by-reference. I get around

this

 * by cloning each formal at the beginning of each function, and by

 * referring only to the cloned variables throughout the rest of

the

 * function. Because each formal is appended with a "$", the cloned

 * variables can be referred to by their unaltered CGL names.

 *)

let string_of_fdecl fdecl =

 (* Clone all non-primitive formals into the original variables.

*)

 let clone formal =

 let name = formal.pname in

 match formal.pdt with

 IntType ->

 "

 Integer " ^ name ^ "$ = (Integer) " ^ name ^ "$$;

 Integer " ^ name ^ " = new Integer(" ^ name ^

"$.intValue());

 "

 | DoubleType ->

 "

 Double " ^ name ^ "$ = (Double) " ^ name ^ "$$;

 Double " ^ name ^ " = new Double(" ^ name ^

"$.doubleValue());

 "

 | BoolType ->

 "

 Boolean " ^ name ^ "$ = (Boolean) " ^ name ^ "$$;

139

 Boolean " ^ name ^ " = new Boolean(" ^ name ^

 "$.booleanValue());

 "

 | StringType ->

 "

 String " ^ name ^ "$ = (String) " ^ name ^ "$$;

 String " ^ name ^ " = new String(" ^ name ^ "$);

 "

 | CardType ->

 "

 Card " ^ name ^ "$ = (Card) " ^ name ^ "$$;

 Card " ^ name ^ " = new Card(value(" ^ name ^ "$),

suit(" ^

 name ^ "$));

 "

 | ListType ->

 "

 CGLList " ^ name ^ "$ = (CGLList) " ^ name ^ "$$;

 CGLList " ^ name ^ " = new CGLList();

 ListIterator iter$$$ = " ^ name ^ "$.listIterator(0);

 while (iter$$$.hasNext())

 " ^ name ^ ".addLast(iter$$$.next());

 "

 (* needs work -- how do you copy over other fields? *)

 | PlayerType ->

 "

 Player " ^ name ^ "$ = (Player) " ^ name ^ "$$;

140

 Player " ^ name ^ " = new Player(" ^ name ^ "$.name, "

^ name ^

 "$.turnID);

 "

 (* also needs work -- probably won't clone properly *)

 | AnytypeType -> "Object " ^ name ^ " = " ^ name ^ "$$;"

 in

 (* Finally, the Java code proper. *)

 "private static " ^ string_of_datatype fdecl.fdt ^ " " ^

fdecl.fname

 ^ "(" ^ String.concat ", " (List.map string_of_formal

fdecl.formals) ^

 ")\n{\n" ^

 String.concat "" (List.map clone fdecl.formals) ^

 String.concat "" (List.map string_of_stmt fdecl.fbody) ^

 "}\n"

(* Creates the Player class *)

let string_of_player_class bdecl_list =

 let first_block = List.hd bdecl_list in

 (* Creates the variables at the bottom of the class *)

 let make_player_vars bdecl =

 if bdecl.bname = "PLAYER" then

 let string_of_player_var stmt = match stmt with

 Vdecl(vdecl) ->

 "public " ^ string_of_datatype vdecl.vdt ^ " " ^

 vdecl.vname ^ ";\n"

 | _ -> ""

141

 in

 String.concat "" (List.map string_of_player_var

bdecl.bbody)

 else ""

 in

 (* Assigns values to those variables in the constructor *)

 let make_player_construct bdecl =

 if bdecl.bname = "PLAYER" then

 let string_of_player_assn stmt = match stmt with

 Vdecl(vdecl) ->

 vdecl.vname ^ " = " ^ string_of_expr vdecl.value

^ ";\n"

 | _ -> ""

 in

 String.concat "\t" (List.map string_of_player_assn

bdecl.bbody)

 else ""

 in

 "

 public class Player

 {

 public Player(String name, Integer turnID)

 {

 this.name = name;

 this.turnID = turnID;

 " ^ make_player_construct first_block ^ "

 }

142

 public boolean equals(Object other)

 {

 if (other instanceof Player)

 {

 Player that = (Player) other;

 boolean sameName = this.name.equals(that.name);

 boolean sameID = this.turnID.equals(that.turnID);

 return sameName && sameID;

 }

 return false;

 }

 public static Player NEMO = new Player(\"NEMO\", -1);

 public String name;

 public Integer turnID;

 " ^ make_player_vars first_block ^ "

 }

 "

(* Writes the turn() function of the core library *)

let string_of_turn_block_list block_list =

 if List.length block_list > 0 then

 let string_of_turn_block block =

 "

 if (your.turnID == " ^ string_of_int block.bid ^ ")

 {" ^

143

 String.concat "" (List.map string_of_stmt block.bbody)

^

 "}

 else " in

 "private static void turn(Player your)

 {

 " ^ String.concat "" (List.map string_of_turn_block

block_list) ^

 "if (your.turnID < 0)

 win();

 System.exit(0);

 }

 "

 else ""

(* Writes the win() function of the core library *)

let string_of_win_block block =

 "private static void win()

 {

 " ^ String.concat "" (List.map string_of_stmt block.bbody) ^

 "

 System.exit(0);

 }

 "

(* The primary Java code generator function. *)

let make_main setup turn_list win =

144

 (* strips the vdecls in the main() block of their datatypes and

access

 * level modifiers, because vdecls are global variables *)

 let string_of_setup_stmt stmt = match stmt with

 Vdecl(vdecl) ->

 vdecl.vname ^ " = " ^ string_of_expr vdecl.value ^

";\n"

 | _ -> string_of_stmt stmt

 in

 (* makes the vdecls global variables *)

 let string_of_setup_vdecl stmt = match stmt with

 Vdecl(vdecl) ->

 "private static " ^ string_of_datatype vdecl.vdt ^ " "

^

 vdecl.vname ^ ";\n"

 | _ -> ""

 in

 (* converts the turn and win blocks into their corresponding

strings *)

 let turn_block = string_of_turn_block_list turn_list in

 let win_block = match win.bname with

 "WIN" -> string_of_win_block win

 | _ -> "public static void win() {}" in

 (* creates the string of the setup block by invoking Java's

main()

 * function; also accounts for other necessary parts of the

program *)

145

 "

 import java.util.*;

 public class Main {

 " ^ turn_block ^ "\n" ^ win_block ^ "\n" ^

 String.concat "\n" (List.map string_of_fdecl setup.funcs) ^

 Corelibrary.coreFunc ^ "\n" ^

 "

 public static void main(String[] args)

 {" ^

 Corelibrary.fillConst ^ "\n" ^

 String.concat "" (List.map string_of_setup_stmt setup.bbody)

^

 "}

 " ^

 Corelibrary.coreConst ^ "\n" ^

 String.concat "" (List.map string_of_setup_vdecl setup.bbody) ^

"\n" ^

 "private static Object[] list;

 }\n"

(* Figures out the PLAYER/SETUP/TURN/WIN structure of the CGL

program, and

 * then calls make_main with the appropriate arguments

 *)

let string_of_main_class bdecl_list =

 let empty = { bname = ""; bid = 0; funcs = []; bbody = []; } in

146

 let a = Array.of_list bdecl_list in

 let length = Array.length a in

 let first = a.(0) in

 let last = a.(length - 1) in

 if first.bname = "PLAYER" then

 let setup = a.(1) in

 if last.bname = "WIN" then

 let turn_array = Array.sub a 2 (length - 3) in

 let turn_list = Array.to_list turn_array in

 make_main setup turn_list last

 else

 let turn_array = Array.sub a 2 (length - 2) in

 let turn_list = Array.to_list turn_array in

 make_main setup turn_list empty

 else

 let setup = a.(0) in

 if last.bname = "WIN" then

 let turn_array = Array.sub a 1 (length - 2) in

 let turn_list = Array.to_list turn_array in

 make_main setup turn_list last

 else

 let turn_array = Array.sub a 1 (length - 1) in

 let turn_list = Array.to_list turn_array in

 make_main setup turn_list empty

147

corelibrary.ml

(* Author: Mark Micchelli *)

let teq =

 "

 private static boolean teq(Object o1, Object o2)

 {

 return o1.getClass().isAssignableFrom(o2.getClass());

 }

 "

let intToString =

 "

 private static String intToString(Object toCast)

 {

 Integer i = (Integer) toCast;

 return i.toString();

 }

 "

let doubleToString =

 "

 private static String doubleToString(Object toCast)

 {

 Double d = (Double) toCast;

148

 return d.toString();

 }

 "

let stringToInt =

 "

 private static Integer stringToInt(Object toCast)

 {

 String s = (String) toCast;

 return Integer.parseInt(s);

 }

 "

let stringToDouble =

 "

 private static Double stringToDouble(Object toCast)

 {

 String s = (String) toCast;

 return Double.parseDouble(s);

 }

 "

let scan =

 "

149

 private static String scan()

 {

 Scanner input = new Scanner(System.in);

 return input.nextLine();

 }

 "

let print =

 "

 private static void print(Object toCast)

 {

 String toPrint = (String) toCast;

 System.out.print(toPrint);

 }

 "

let value =

 "

 private static Integer value(Object toCast)

 {

 Card c = (Card) toCast;

 return c.getValue();

 }

 "

let suit =

150

 "

 private static String suit(Object toCast)

 {

 Card c = (Card) toCast;

 return c.getSuit();

 }

 "

let random =

 "

 private static Integer random(Object toCast1, Object toCast2)

 {

 Integer lower = (Integer) toCast1;

 Integer higher = (Integer) toCast2;

 Random r = new Random();

 return lower + r.nextInt(higher + 1);

 }

 "

(* The Fisher-Yates shuffle: en.wikipedia.org/wiki/Fisher-

Yates_shuffle *)

let shuffle =

 "

 private static CGLList shuffle(Object toCast)

 {

 CGLList l = (CGLList) toCast;

 Object[] a = l.toArray();

151

 int len = a.length;

 Random r = new Random();

 for (int i = len - 1; i >= 1; i--)

 {

 int j = r.nextInt(i + 1);

 Object temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 CGLList res = new CGLList();

 for (Object ele : a)

 res.addLast(ele);

 return res;

 }

 "

let nemo =

 "private static Player NEMO = Player.NEMO;\n"

let standard =

 "private static CGLList STANDARD;\n"

let fillConst =

 "STANDARD = new CGLList();

 STANDARD.addLast(new Card(2, 'C'));

152

 STANDARD.addLast(new Card(3, 'C'));

 STANDARD.addLast(new Card(4, 'C'));

 STANDARD.addLast(new Card(5, 'C'));

 STANDARD.addLast(new Card(6, 'C'));

 STANDARD.addLast(new Card(7, 'C'));

 STANDARD.addLast(new Card(8, 'C'));

 STANDARD.addLast(new Card(9, 'C'));

 STANDARD.addLast(new Card(10, 'C'));

 STANDARD.addLast(new Card(11, 'C'));

 STANDARD.addLast(new Card(12, 'C'));

 STANDARD.addLast(new Card(13, 'C'));

 STANDARD.addLast(new Card(14, 'C'));

 STANDARD.addLast(new Card(2, 'D'));

 STANDARD.addLast(new Card(3, 'D'));

 STANDARD.addLast(new Card(4, 'D'));

 STANDARD.addLast(new Card(5, 'D'));

 STANDARD.addLast(new Card(6, 'D'));

 STANDARD.addLast(new Card(7, 'D'));

 STANDARD.addLast(new Card(8, 'D'));

 STANDARD.addLast(new Card(9, 'D'));

 STANDARD.addLast(new Card(10, 'D'));

 STANDARD.addLast(new Card(11, 'D'));

 STANDARD.addLast(new Card(12, 'D'));

 STANDARD.addLast(new Card(13, 'D'));

 STANDARD.addLast(new Card(14, 'D'));

 STANDARD.addLast(new Card(2, 'H'));

 STANDARD.addLast(new Card(3, 'H'));

153

 STANDARD.addLast(new Card(4, 'H'));

 STANDARD.addLast(new Card(5, 'H'));

 STANDARD.addLast(new Card(6, 'H'));

 STANDARD.addLast(new Card(7, 'H'));

 STANDARD.addLast(new Card(8, 'H'));

 STANDARD.addLast(new Card(9, 'H'));

 STANDARD.addLast(new Card(10, 'H'));

 STANDARD.addLast(new Card(11, 'H'));

 STANDARD.addLast(new Card(12, 'H'));

 STANDARD.addLast(new Card(13, 'H'));

 STANDARD.addLast(new Card(14, 'H'));

 STANDARD.addLast(new Card(2, 'S'));

 STANDARD.addLast(new Card(3, 'S'));

 STANDARD.addLast(new Card(4, 'S'));

 STANDARD.addLast(new Card(5, 'S'));

 STANDARD.addLast(new Card(6, 'S'));

 STANDARD.addLast(new Card(7, 'S'));

 STANDARD.addLast(new Card(8, 'S'));

 STANDARD.addLast(new Card(9, 'S'));

 STANDARD.addLast(new Card(10, 'S'));

 STANDARD.addLast(new Card(11, 'S'));

 STANDARD.addLast(new Card(12, 'S'));

 STANDARD.addLast(new Card(13, 'S'));

 STANDARD.addLast(new Card(14, 'S'));"

let coreFunc =

154

 teq ^ intToString ^ stringToInt ^ doubleToString ^

stringToDouble ^ suit ^

 value ^ print ^ scan ^ random ^ shuffle

let coreConst = nemo ^ standard

javaclasses.ml

(* Author: Mark Micchelli *)

let string_of_card_class =

"

 public class Card {

 public Card(Integer value, String suit) {

 this.value = value;

 this.suit = suit;

 }

 public Card(int i, char s) {

 value = new Integer(i);

 suit = String.valueOf(s);

 }

 public Integer getValue() { return value; }

155

 public String getSuit() { return suit; }

 public boolean equals(Object other)

 {

 if (other instanceof Card)

 {

 Card that = (Card) other;

 boolean sameValue = false;

 boolean sameSuit = false;

 if (value.equals(that.getValue()) ||

 that.getValue().intValue() == 0)

 sameValue = true;

 if (suit.equals(that.getSuit()) ||

that.getSuit().equals(\"*\"))

 sameSuit = true;

 return sameValue && sameSuit;

 }

 return false;

 }

 private Integer value;

 private String suit;

 }

"

let string_of_list_class =

"

import java.util.*;

156

public class CGLList

{

 public CGLList()

 {

 list = new LinkedList<Object>();

 }

 public CGLList(Object... elements)

 {

 list = new LinkedList<Object>();

 for (Object ele : elements)

 list.addLast(ele);

 }

 public void addFirst(Object ele)

 {

 list.addFirst(ele);

 }

 public void addLast(Object ele)

 {

 list.addLast(ele);

 }

 // the remove methods are the source of the casting warnings

157

 public <T> T removeFirst()

 {

 return (T) list.removeFirst();

 }

 public <T> T removeLast()

 {

 return (T) list.removeLast();

 }

 public int size()

 {

 return list.size();

 }

 public Object[] toArray()

 {

 return list.toArray();

 }

 public ListIterator<Object> listIterator(int index)

 {

 return list.listIterator(index);

 }

 public boolean equals(Object other)

158

 {

 if (other instanceof CGLList)

 {

 CGLList that = (CGLList) other;

 if (this.size() != that.size()) return false;

 ListIterator<Object> i1 = this.listIterator(0);

 ListIterator<Object> i2 = that.listIterator(0);

 while (i1.hasNext())

 {

 if (!i1.next().equals(i2.next())) return false;

 }

 return true;

 }

 return false;

 }

 private LinkedList<Object> list;

}

"

cgl.ml

(* Author: Ryan Jones and Mark Micchelli *)

open Parser

159

open Generator

open Javaclasses

open Semantic_analyzer

type action = Semantic | Java | Classes | Execute

exception InvalidOption of string

exception WrongNumOfArguments of string

let usage_string = "Usage: ./cgl [-s|-j|-c|-e] filename.cgl"

let _ =

 let num_args = Array.length Sys.argv in

 let get_action =

 if num_args == 3 then

 match Sys.argv.(1) with

 "-s" -> Semantic

 | "-j" -> Java

 | "-c" -> Classes

 | "-e" -> Execute

 | _ -> raise (InvalidOption(usage_string))

 else raise (WrongNumOfArguments(usage_string)) in

 let in_channel = open_in Sys.argv.(2) in

 let lexbuf = Lexing.from_channel in_channel in

 let program = Parser.program Scanner.token lexbuf in

 let main_string = Generator.string_of_main_class program in

 let player_string = Generator.string_of_player_class program in

 let card_string = Javaclasses.string_of_card_class in

160

 let list_string = Javaclasses.string_of_list_class in

 let execute_action = match get_action with

 Semantic ->

 (

 try

 let _ = checkProgram program global_scope in

 print_string "passed semantic checking \n"

 with Failure(msg) ->

 print_string ("didn't pass semantic checking: \n" ^ msg ^

"\n")

)

 | Java ->

 let create_files =

 let main_java = open_out "Main.java" in

 let player_java = open_out "Player.java" in

 let card_java = open_out "Card.java" in

 let list_java = open_out "CGLList.java" in

 output_string main_java main_string;

 output_string player_java player_string;

 output_string card_java card_string;

 output_string list_java list_string

 in

 create_files

 | Classes -> print_string "not yet implemented\n"

 | Execute -> print_string "not yet implemented\n"

 in execute_action

161

makefile

Authors: Kevin Henrick, Ryan Jones, and Mark Micchelli

OBJS = scanner.cmo parser.cmo corelibrary.cmo javaclasses.cmo

generator.cmo semantic_analyzer.cmo cgl.cmo

cgl: $(OBJS)

 ocamlc -o cgl $(OBJS)

scanner.ml : scanner.mll

 ocamllex scanner.mll

parser.ml parser.mli: parser.mly

 ocamlyacc parser.mly

%.cmo : %.ml

 ocamlc -c $<

%.cmi : %.mli

 ocamlc -c $<

.PHONY : clean

clean :

 rm -rf *.cmo *.cmi *.java *.class cgl parser.mli parser.ml

scanner.ml

162

generated by ocamldep

cgl.cmo: scanner.cmo parser.cmi javaclasses.cmo generator.cmo

cgl.cmx: scanner.cmx parser.cmx javaclasses.cmx generator.cmx

corelibrary.cmo:

corelibrary.cmx:

generator.cmo: corelibrary.cmo ast.cmi

generator.cmx: corelibrary.cmx ast.cmi

generatorbackup.cmo: corelibrary.cmo ast.cmi

generatorbackup.cmx: corelibrary.cmx ast.cmi

javaclasses.cmo:

javaclasses.cmx:

parser.cmo: ast.cmi parser.cmi

parser.cmx: ast.cmi parser.cmi

scanner.cmo: parser.cmi ast.cmi

scanner.cmx: parser.cmx ast.cmi

ast.cmi:

parser.cmi: ast.cmi

semantic_analyzer.cmo: ast.cmi sast.cmi

Appendix C. Example Games

C.1 Simplified Blackjack

PLAYER

{

163

 player next = NEMO;

 list hand = [];

 int score = 0;

 bool bust = false;

}

SETUP

{

 /* card function */

 def string valueToString(int value)

 {

 if (value == 14) return "A";

 else if (value == 13) return "K";

 else if (value == 12) return "Q";

 else if (value == 11) return "J";

 else if (value == 0) return "*";

 else if (value < 2 || value > 14) return "INVALID";

 else return intToString(value);

 }

 /* list function */

 def int length (list l)

 {

 int length = 0;

 foreach(l) { length = length + 1; }

 return length;

 }

164

 /* list function */

 def anytype get(int index, list l)

 {

 if (index > length(l))

 {

 print("index too high\n");

 return -1;

 }

 else

 {

 int i = 1;

 foreach(l)

 {

 if (i == index) return ele;

 i = i + 1;

 }

 }

 return "never reached";

 }

 /* list function */

 def bool in(anytype e, list l)

 {

 bool in = false;

 foreach(l)

 {

165

 if (ele === e && ele == e)

 in = true;

 }

 return in;

 }

 def int bigBreak()

 {

 print("\n"

^

"\n");

 return 0;

 }

 /* calculates blackjack score (ace is always 11 for convenience

*/

 def int score (list hand)

 {

 int handScore = 0;

 foreach (hand)

 {

 if (ele == $A*) handScore = handScore + 11;

 else if (ele == $J* || ele == $Q* || ele == $K*)

 handScore = handScore + 10;

 else handScore = handScore + value(ele);

 }

 return handScore;

166

 }

 /* takes in player name and AI info */

 def list addPlayers(list validIDs)

 {

 list players = [];

 while (length(players) < 4)

 {

 print("please enter player name\n");

 string name = scan();

 print("please enter 1 if human, or 2 if AI\n");

 string id = scan();

 int turnID = stringToInt(id);

 if (in(turnID, validIDs))

 players <+ <name, turnID>;

 else

 print("invalid input\n");

 }

 return players;

 }

 /* code proper */

 list players = addPlayers([1, 2]);

 player p1 = <- players;

 player p2 = <- players;

 player p3 = <- players;

 player p4 = <- players;

167

 p1.next = p2;

 p2.next = p3;

 p3.next = p4;

 p4.next = NEMO;

 int maxScore = 21;

 list deck = STANDARD;

 deck = shuffle(deck);

 p1.hand <+ <- deck;

 p2.hand <+ <- deck;

 p3.hand <+ <- deck;

 p4.hand <+ <- deck;

 p1.hand <+ <- deck;

 p2.hand <+ <- deck;

 p3.hand <+ <- deck;

 p4.hand <+ <- deck;

 turn(p1);

}

TURN 1

{

 your.score = score(your.hand);

 bool done = false;

 print(your.name ^ "'s turn; press enter to continue\n");

168

 scan();

 bigBreak();

 print("you have ");

 foreach (your.hand)

 {

 print(valueToString(value(ele)) ^ suit(ele) ^ " ");

 }

 print("\ntype \"h\" for hit; anything else for stay\n");

 string s = scan();

 if (s == "h")

 {

 card c = <- deck;

 your.hand <+ c;

 print("you got a " ^ valueToString(value(c)) ^ suit(c) ^

"\n");

 your.score = score(your.hand);

 if (your.score > maxScore)

 {

 your.bust = true;

 your.score = 0;

 bigBreak();

 print("bust!\n");

 turn(your.next);

 }

 else

 turn(your);

 }

169

 else

 {

 bigBreak();

 turn(your.next);

 }

}

/* AI turn */

TURN 2

{

 your.score = score(your.hand);

 if (your.score <= 14) /* AI only hits if score lower than 14 */

 {

 your.hand <+ <- deck;

 your.score = score(your.hand);

 if (your.score > maxScore)

 {

 your.bust = true;

 your.score = 0;

 turn(your.next);

 }

 else

 turn(your);

 }

 else

 turn(your.next);

}

170

WIN

{

 player best = NEMO;

 int bestScore = 0;

 list scores = [];

 scores <+ p1.score;

 scores <+ p2.score;

 scores <+ p3.score;

 scores <+ p4.score;

 print(p1.name ^ " scored " ^ p1.score ^ "\n");

 print(p2.name ^ " scored " ^ p2.score ^ "\n");

 print(p3.name ^ " scored " ^ p3.score ^ "\n");

 print(p4.name ^ " scored " ^ p4.score ^ "\n");

 int i = 0;

 while (length(scores) != 0)

 {

 int playerScore = <- scores;

 if (playerScore > bestScore)

 bestScore = playerScore;

 }

 if (p1.score == bestScore) print(p1.name ^ " wins\n");

 if (p2.score == bestScore) print(p2.name ^ " wins\n");

 if (p3.score == bestScore) print(p3.name ^ " wins\n");

 if (p4.score == bestScore) print(p4.name ^ " wins\n");

171

}

C2. Finding_the_First_Ace

/* Author: Kevin Henrick, Hebo Yang */

/* This is a typical, but very short game that is used during a poker game to determine who deals

first.*/

/* In this example, there are four players. */

/* Finding_the_First_Ace */

PLAYER{

 player next = NEMO;

}

SETUP {

 print("please enter name for player 1\n");

 string name1 = scan();

 print("please enter name for player 2\n");

 string name2 = scan();

 print("please enter name for player 3\n");

 string name3 = scan();

 print("please enter name for player 4\n");

 string name4 = scan();

 player p1 = <name1, 1>;

 player p2 = <name2, 1>;

 player p3 = <name3, 1>;

172

 player p4 = <name4, 1>;

 list deck = STANDARD;

 deck = shuffle(deck);

 p1.next = p2;

 p2.next = p3;

 p3.next = p4;

 p4.next = p1;

 card c = $2H;

 turn(p1);

}

TURN 1

{

 bool properInput = false;

 while (!properInput){

 print("please (d)raw a card from the deck\n");

 string draw = scan();

 properInput = true;

 if (draw == "d"){

 c = <- deck;

 if (c == $A*){

 print(your.name ^ " drew " ^ "A" ^ suit(c) ^ ", the first Ace, and gets to deal.

Shuffle 'em up!\n");

173

 }

 else if (c != $A*){

 print(your.name ^ " drew " ^ intToString(value(c)) ^ suit(c) ^ ", " ^

your.next.name ^ "'s turn\n");

 turn(your.next);

 }

 }

 else if (draw != "d"){

 print("invalid input\n");

 properInput = false;

 }

 }

}

C.3 highlow

/* Author: Mark Micchelli. Note: last year's DesCartes team implemented

high-low in 82 lines; CGL's implementation only takes 47 */

SETUP

{

 int score = 0;

 list deck = STANDARD;

 deck = shuffle(deck);

 player p = <"", 1>;

174

 card c = <- deck;

 int lastValue = value(c);

 print("the first card has value " ^ intToString(lastValue) ^ "\n");

 deck <+ c;

 turn(p);

}

TURN 1

{

 bool properInput = false;

 bool high = true;

 while (!properInput)

 {

 print("will the next card be (h)igher or (l)ower?\n");

 string guess = scan();

 properInput = true;

 if (guess == "l")

 high = false;

 else if (guess != "h")

 {

 print("invalid input\n");

 properInput = false;

 }

 }

175

 c = <- deck;

 int thisValue = value(c);

 deck <+ c;

 print("new card's value is " ^ intToString(thisValue) ^ "\n");

 if ((thisValue > lastValue && high) || (thisValue < lastValue && !high))

 {

 print("correct prediction\n");

 score = score + 1;

 lastValue = thisValue;

 turn(p);

 }

 else

 {

 print("incorrect prediction; game over\n");

 print("total score = " ^ intToString(score) ^ "\n");

 }

}

APPENDIX D. Changes to the LRM

1) Deleted a feature about $12H being a valid card declaration; you must use $QH. - Mark Micchelli

2) Made change about SETUP block function scoping: Functions can now only be defined at the

beginning of the SETUP block. - Kevin Henrick

3) Furthermore, the user can no longer declare functions in TURN n and WIN, only SETUP.

176

4) We got rid of external libraries altogether. There is no #include statement in the submitted

version of CGL. - Mark Micchelli

5) There are now two new core library functions: doubleToString and stringToDouble. This was an

obvious oversight in our original LRM, and it didn’t take us long to realize we needed them. - Mark

Micchelli

