COMS 4115
Final Project

Card Game Language (CGL)
December 18, 2012

Kevin Henrick
Ryan Jones
Mark Micchelli
Hebo Yang

Overview of CGL

« CGL is a programming language used for creating and
compiling turn-based card games.

« The compiler allows the creation of games that employ
cards from the standard 52-card deck:

‘ Z-y.*-t. 24-":1.
i BSe

: * P} v ve
: Zo;o 24‘0
L RS

: v ol ved

A 7 8

ve [Cve

v " "
v *oilee
v oAl & a3

A e o 20.0 §0.0
@ 8] 00
v LR ¢ o] ¢ o

Motivation

 Why Card Games?
- Widespread popularity
- Rich history

« Minimal data requirements, just player info and 52
symbols, but hard to define game rules using current
languages.

- Turn order

- Shuffling and dealing

- Player actions

- Complex Win Conditions

 CGL was designed to simplify encoding these
requirements.

Tutorial Introduction to CGL

A CGL program is defined using four types of
blocks:
PLAYER{}

SETUP{}
TURN 1 {}

TU&Nn{}
WIN{ }

SETUP {} Block

The only mandatory block.

Runs immediately after an optional PLAYER { } block,
and serves as the entry point into the program.

Global declarations of variables and functions.
— Function declarations ONLY in and at beginning of SETUP { }.

Never runs again after initial termination.

SETUP { } Block

CGL Source Code:

/* This setup block declares two players, sets out the player order,
creates a standard deck, shuffles it, and finally calls the turn function
on the first player. */

SETUP

{

string namel = scan();
string name2 = scan();
player pl = <namel, 1>;
player p2 = <name2, 1>;
pl.next = p2;

p2.next = pl;

list deck = STANDARD;
deck = shuffle(deck);
turn (pl) ;

}

PLAYER { } Block

* Defines data structure for all players
(defaults of name:String, turniD:Int)
« Optional, but necessary for most non-trivial games

* Player data accessed through p.varName where p is a
player reference.

CGL Source Code:

/* This gives each player in the game a score, a turn count, and a

next player */

PLAYER

{

int score = 0;

int turnCount = 0;
player next = NEMO;

}

TURN n {}

Describes game rules and player strategy
(both human and Al)

Examples:

— query human player for move
— conservative Al agent’s logic
— aggressive Al agent’s logic

Has access to the current player through the “your”
keyword

turn(playerp) : your=p

TURN n {}

CGL Source Code:

/* If the top card of the deck is a red card, give the
player a point. Then, put the card on the bottom of the
deck. If the player has moved five times, move to the win
block. */

TURN 1

{

if (your.turnCount >= 5)
win () ;

card c = <- deck;

print (your.name ~ " drew " 7~ intToString(value(c))
suit(c) ~ "\n");

if (c == $*D || c == $*H)

your.score = your.score + 1;

print (your.name ~ "'s score is " * intToString(your.score)
~ "\n");

deck <+ c;

your.turnCount = your.turnCount + 1;

turn (your.next) ;

}

A

WINER!

The WIN { } block is used to check win conditions and
terminate the program.

This block runs whenever the win() function is called.

It has access to each player reference, global variables,
and functions.

Unlike TURN n { }, there is no current player reference.

WINER!

CGL Source Code:

/* Tests to see which player drew more red
cards, and declares that player the winner. */

WIN

{

1f (pl.score > pZ.score)
print (pl.name ~ " wins\n");
else 1f (pl.score < pZ.score)
print (p2.name ~ " wins\n");
else

print ("draw\n") ;

}

Example 1: High-Low

CGL Program:

the first card has wvalue 10
will the next card be (h)igher or (1l)ower?
1

new card's value is 2

correct prediction

will the next card be (h)igher or (1)ower?
h

new card's value is 8

correct prediction

will the next card be (h)igher or (1)ower?
h

new card's value 1is 5
incorrect prediction; game over
total score = 2

Example 2: Black-Jack

Setup Stage.:

Please enter Player name
Professor Edwards

Please enter 1 if human,
1

Please enter Player name
Mark

Please enter 1 if human,
1

Please enter Player name
Kevin

Please enter 1 if human,
1

Please enter Player name
Dealer

Please enter 1 if human,
2

Example 2: Black-Jack

Gameplay Stage:

Kevin’s turn; press enter to continue
you have KD 4H

type "h" for hit; anything else for stay
h

you got a 2S

Kevin's turn; press enter to continue
you have KD 4H 2S

type "h" for hit; anything else for stay
h

you got a 3H

you have KD 4H 2S 3H

Type “h” for hit; anything else for stay
s

Professor Edwards scored 21
Mark scored 16

Kevin scored 19

Dealer scored 0

Professor Edwards

How CGL was Implemented
« OCAML —

1) Scanner.mll (ocamllex), parser.mly (ocamlyacc), ast.mli
2) generator.ml, corelibrary.ml, javalibrary.ml, cgl.ml
3) sast.mli, semantic_analyzer.m|

« JAVA —

Main.java, CGLList.Java, Card.java, Player.java.

« CGL-

Unix commands to compile and run:

$.cgl/ -j source.cgl

$ javac *.java
$ java Main

Flow of Control / Dependencies

Roles and Responsiblilities

Kevin Henrick (Team Leader) — Semantic Analyzer /
SAST, test cases, and Makefile.

Ryan Jones — Semantic Analyzer / SAST, test cases,
CGL Executable and Makefile.

Mark Micchelli — Scanner, Parser, Abstract Syntax Tree,
Generator, CGL Executable, and Makefile.

Hebo Yang — Test cases, and Bash Script.

CGL Games Created

Finding the First Ace — Kevin Henrick and
Hebo Yang

RedCard — Mark Micchelli
HighLow — Mark Micchelli

Blackjack — Mark Micchelli

Summary of the Project

« We implemented almost all of the LRM,
our original conception of the language.

* Future Work: external libraries, more
complete semantic analysis, more options
In the executable, and bug fixes.

| essons Learned

* Don’t be afraid to change design choices
at the last minute.

* Try to keep all of the parts moving at once.

 Prioritizing starting early was really
beneficiall

