
COMS 4115

Final Project

Card Game Language (CGL)
December 18th, 2012

Kevin Henrick

Ryan Jones

Mark Micchelli

Hebo Yang

Overview of CGL

• CGL is a programming language used for creating and

compiling turn-based card games.

• The compiler allows the creation of games that employ

cards from the standard 52-card deck:

Motivation
• Why Card Games?

 - Widespread popularity

 - Rich history

• Minimal data requirements, just player info and 52

symbols, but hard to define game rules using current

languages.

 - Turn order

 - Shuffling and dealing

 - Player actions

 - Complex Win Conditions

• CGL was designed to simplify encoding these

requirements.

Tutorial Introduction to CGL

• A CGL program is defined using four types of

blocks:

 PLAYER{ }

 SETUP{ }

 TURN 1 { }

 …

 TURN n { }

 WIN{ }

SETUP { } Block

• The only mandatory block.

• Runs immediately after an optional PLAYER { } block,
and serves as the entry point into the program.

• Global declarations of variables and functions.
– Function declarations ONLY in and at beginning of SETUP { }.

• Never runs again after initial termination.

SETUP { } Block

/* This setup block declares two players, sets out the player order,

creates a standard deck, shuffles it, and finally calls the turn function

on the first player. */

SETUP

{

string name1 = scan();

string name2 = scan();

player p1 = <name1, 1>;

player p2 = <name2, 1>;

p1.next = p2;

p2.next = p1;

list deck = STANDARD;

deck = shuffle(deck);

turn(p1);

}

CGL Source Code:

PLAYER { } Block

• Defines data structure for all players

 (defaults of name:String, turnID:Int)

• Optional, but necessary for most non-trivial games

• Player data accessed through p.varName where p is a

player reference.

/* This gives each player in the game a score, a turn count, and a

next player */

PLAYER

{

int score = 0;

int turnCount = 0;

player next = NEMO;

}

CGL Source Code:

TURN n { }

• Describes game rules and player strategy

 (both human and AI)

• Examples:
– query human player for move

– conservative AI agent’s logic

– aggressive AI agent’s logic

• Has access to the current player through the “your”
keyword

 turn(player p) : your = p

TURN n { }

/* If the top card of the deck is a red card, give the

player a point. Then, put the card on the bottom of the

deck. If the player has moved five times, move to the win

block. */

TURN 1

{

if (your.turnCount >= 5)

win();

card c = <- deck;

print(your.name ^ " drew " ^ intToString(value(c)) ^

suit(c) ^ "\n");

if (c == $*D || c == $*H)

your.score = your.score + 1;

print(your.name ^ "'s score is " ^ intToString(your.score)

^ "\n");

deck <+ c;

your.turnCount = your.turnCount + 1;

turn(your.next);

}

CGL Source Code:

WIN { }

• The WIN { } block is used to check win conditions and

terminate the program.

• This block runs whenever the win() function is called.

• It has access to each player reference, global variables,

and functions.

• Unlike TURN n { }, there is no current player reference.

WIN { }

/* Tests to see which player drew more red

cards, and declares that player the winner. */

WIN

{

if (p1.score > p2.score)

print(p1.name ^ " wins\n");

else if (p1.score < p2.score)

print(p2.name ^ " wins\n");

else

print("draw\n");

}

CGL Source Code:

Example 1: High-Low

the first card has value 10

will the next card be (h)igher or (l)ower?

l

new card's value is 2

correct prediction

will the next card be (h)igher or (l)ower?

h

new card's value is 8

correct prediction

will the next card be (h)igher or (l)ower?

h

new card's value is 5

incorrect prediction; game over

total score = 2

CGL Program:

Example 2: Black-Jack

Please enter Player name

Professor Edwards

Please enter 1 if human, or 2 if AI

1

Please enter Player name

Mark

Please enter 1 if human, or 2 if AI

1

Please enter Player name

Kevin

Please enter 1 if human, or 2 if AI

1

Please enter Player name

Dealer

Please enter 1 if human, or 2 if AI

2

Setup Stage:

Example 2: Black-Jack

Gameplay Stage:

Kevin’s turn; press enter to continue

you have KD 4H

type "h" for hit; anything else for stay

h

you got a 2S

Kevin's turn; press enter to continue

you have KD 4H 2S

type "h" for hit; anything else for stay

h

you got a 3H

you have KD 4H 2S 3H

Type “h” for hit; anything else for stay

s

Professor Edwards scored 21

Mark scored 16

Kevin scored 19

Dealer scored 0

Professor Edwards wins

How CGL was Implemented
• OCAML –

 1) Scanner.mll (ocamllex), parser.mly (ocamlyacc), ast.mli

 2) generator.ml, corelibrary.ml, javalibrary.ml, cgl.ml

 3) sast.mli, semantic_analyzer.ml

• JAVA –

 Main.java, CGLList.java, Card.java, Player.java.

• CGL–

 Unix commands to compile and run:

$.cgl/ -j source.cgl

$ javac *.java

$ java Main

Flow of Control / Dependencies

Roles and Responsibilities

• Kevin Henrick (Team Leader) – Semantic Analyzer /
SAST, test cases, and Makefile.

• Ryan Jones – Semantic Analyzer / SAST, test cases,
CGL Executable and Makefile.

• Mark Micchelli – Scanner, Parser, Abstract Syntax Tree,
Generator, CGL Executable, and Makefile.

• Hebo Yang – Test cases, and Bash Script.

CGL Games Created

• Finding the First Ace – Kevin Henrick and
Hebo Yang

• RedCard – Mark Micchelli

• HighLow – Mark Micchelli

• Blackjack – Mark Micchelli

Summary of the Project

• We implemented almost all of the LRM,

our original conception of the language.

• Future Work: external libraries, more

complete semantic analysis, more options

in the executable, and bug fixes.

Lessons Learned

• Don’t be afraid to change design choices

at the last minute.

• Try to keep all of the parts moving at once.

• Prioritizing starting early was really

beneficial!

