
Sriramkumar Balasubramanian
Evan Drewry
Timothy Giel

Nikhil Helferty

aML – “a-Mazing Language”

Can be used to solve mazes by feeding

instructions to a bot which is located at

the entrance to the maze

The maze can either be defined by the

user in the form of text files or can be

randomly generated by the standard

library functions

The language serves as an instruction set

to the bot, hence the movement of the bot

determines accessing of various data

AML is designed to not only make the

process of solving mazes easier for a

programmer, but also to introduce

programming to the common man

through mazes

A brief introduction to syntax

 Java/C-like syntax (not exact) enabling

you to move a bot around a maze

Use functions, data types for more

complex behavior than just a sequence of

moves

AML provides a visualization of a bot with

your program navigating the maze

Maze provided in .txt file or randomized

Have a limited set of available datatypes
• Integer

• Boolean

• Cell

• List<datatype> (FIFO)

Functions can either return a variable
type (x():Integer { }) or be void

Can take parameters as well
The main function must be void,

parameterless

Maze text format:

5 6

0 1 1 1 0 0

1 1 2 0 1 1

0 0 1 1 1 0

0 1 1 0 1 3

0 3 1 0 1 1

• First two numbers are # rows and

columns

• Then an integer follows for every

cell in row x columns maze

• 0’s are “holes”

• 1’s are “walkable” cells

• 2 is the start point (only one)

• 3’s are targets (multiple possible)

5 6

0 1 1 1 0 0

1 1 2 0 1 1

0 0 1 1 1 0

0 1 1 0 1 3

0 3 1 0 1 1

A very dumb bot:

#load-random

// function that is run by program initially

main():void {

 goRight();

}

function goRight():void {

 cell c := (CPos); // variables at start

 move_R(); // moves the bot to the

right

 if (NOT isTarget(c)) {

 goRight();

 };

}

How to compile

• (Run “make” to

construct AML)

• Run aml on .aml source

(for example, aml -c

example.aml)

• Run the newly created

java code: java

example

#load-random

main():void{

 integer x := gcd(7,49);

 print(x);

 exit();

}

function gcd(integer n, integer m):integer{

 if(n = m){

 return n;

 }

 else{

 if (n > m) {

 return gcd(n - m, m);

 }

 else{

 return gcd(m - n,n);

 }

 }

}

AML will not stop your bot from looping

aimlessly into oblivion
• Could have prevented this possibility in previous

program by, for example, limiting the number of

attempts with an Integer

Can design much more complex

functions using Lists, recursion, bot’s

“memory”

Use the revert() function to backtrack

Creating the system

1 • Lexical Analyzer

2 • Parser

3 • Semantic Analysis

4 • Translator

5 • Top-level

assignment – type consistency
 function calls – two pass run
Unique main and function definitions

checking
Checking for return statements inside

“if’s”
Functions – actual and formal parameters
Validity Checking: Program -> Function

-> Statement list -> Statement ->
Expression

Do’s and Don’ts for the future

Start early

Split up work s.t. team members aren’t

blocking each others progress

Keep repository updated, use

incremental development style

Don’t plan for “a lot” of features

prematurely

Unit testing

Figure out what tools exist and use them!
• OCAMLRUNPARAM='p’

• ocamldep for makefiles

Don’t assume anything about your

teammates; figure out their strengths and

split up the work accordingly

