alVIL

Sriramkumar Balasubramanian
Evan Drewry
Timothy Giel
Nikhil Helferty

Overview

aML - “a-Mazing Language”

Can be used to solve mazes by feeding
instructions to a bot which is located at
the entrance to the maze

The maze can either be defined by the
user in the form of text files or can be
randomly generated by the standard
library functions

Overview (cont.)

The language serves as an instruction set
to the bot, hence the movement of the bot
determines accessing of various data
AML is designed to not only make the
process of solving mazes easier for a
programmer, but also to introduce
programming to the common man
through mazes

AML Tutorial

AML Tutorial

Java/C-like syntax (not exact) enabling
you to move a bot around a maze

Use functions, data types for more
complex behavior than just a sequence of
moves

AML provides a visualization of a bot with
your program navigating the maze

Maze provided in .txt file or randomized

AML Tutorial

Have a limited set of available datatypes

- Integer
- Boolean

- Cell

- List<datatype> (FIFO)
Functions can either return a variable
type (x():Integer { }) or be void

Can take parameters as well
The main function must be void,
parameterless

Maze text format:

56

011100
112011
GOl 110
011013
031011

AML Tutorial

First two numbers are # rows and
columns

Then an integer follows for every
cell in row x columns maze

O’s are “holes”

1’s are “walkable” cells

2 1s the start point (only one)

3’s are targets (multiple possible)

56

011100
112011
001110
011013
031011

AML Tutorial

A very dumb bot:

#load-random

// function that is run by program initially
main():void {

}

AML Tutorial

goRight();

function goRight():void {

right

cell c := (CPos); // variables at start
move_R(); // moves the bot to the

if (NOT isTarget(c)) {

%

goRight();

How to compile

* (Run “make” to
construct AML)

* Run aml on .aml source
(for example, aml -c
example.aml)

* Run the newly created
java code: java
example

Bot failed to move RIGHT
Bot failed to move RIGHT
Bot failed to move RIGHT
Bot failed to move RIGHT

Mazes apart ... GCD

#load-random

main():void{
integer x := gcd(7,49);

print(x);
exit();
}
function gcd(integer n, integer m):integer{
if(n = m){
return n;
}
else{
if(m>m){
return gcd(n - m, m);
}
else{
return gcd(m - n,n);
}
}

Some points to note

AML will not stop your bot from looping
almlessly into oblivion

- Could have prevented this possibility in previous
program by, for example, limiting the number of
attempts with an Integer

Can design much more complex
functions using Lists, recursion, bot’s
“memory”

Use the revert() function to backtrack

AML Implementation

Architectural Design

1
z
4 ° Semantic Analysis

4
5

Some Implementation Specifics

assignment — type consistency

function calls — two pass run

Unique main and function definitions
checking

Checking for return statements inside
‘its

Functions — actual and formal parameters
Validity Checking: Program -> Function
-> Statement list -> Statement ->
Expression

Lessons Learned

Lessons LLearned

Start early

Split up work s.t. team members aren't
blocking each others progress

Keep repository updated, use
incremental development style
Don’t plan for “a lot” of features
prematurely

Lessons LLearned

Unit testing

Figure out what tools exist and use them!
- OCAMLRUNPARAM="p’
- ocamldep for makefiles

Don’t assume anything about your
teammates; figure out their strengths and
split up the work accordingly

