
Qishu Chen

Xuechen Feng

Lianhao Qu

Yu Wan

Wanqiu Zhang
Columbia University

December 2012

Introduction-TrML
 A simple programming language that allows user to

express trigonometry concept, and construct/solve
complex trigonometry problems.

 C-like structure

 Functional language

 Allow programmers to easily express trigonometry
concepts and solve trigonometry problems.

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

TrML Tutorial
 There are two data types in TrML: value and triangle.

Value is a floating point number, and triangle is a
triangle in 2D plane.

@This is a comment

@assign 4.0 to value i

value i 4.0;

@assign three vertex values to triangle ABC

triangle ABC V [(1.1, 2.2),(3.3, 4.4),(5.5,

6.6)];

@assign three side-length values to triangle DEF

triangle DEF L [4.2, 3.5, 3.6];

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

TrML Tutorial
@Sample code: “Hello World!”

initialize:

rule:

operation:

prints("Hello \nWorld!\n");

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

TrML Tutorial
initialize:

value i 4.0;

value sum 0.0;

rule:

operation:

while(i > 0){

 sum = sum + i;

 i = i - 1;

}

prints("The sum of ");

printv(i);

prints(" is:")

printv(sum);

@the result should be: The sum of 4.0 is 10.0

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

Block Diagram

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

AST

Compiler
 Internal structure:

 Rule table

 Environment table

 Operation variable

 One stack register

 Code structure:

 Environment variable followed by “rul” followed by rules
defination followed by “opt” followed by operations
definition

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

Interpreter
 Java Based

 Two arguments lists

 Rule Argument, [rule counter]

 Operation Argument, [operation counter]

 Global variable list

 Register stack

 30+ instruction sets

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

Summary
 Main goals:

Acquire language and compiler design experience

Have a coherent design and implement it correctly and
in-time

 Outcome:

TrML is a comprehensive and simple language

Implementation was finished before the deadline and
the compiler follows the design specification

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

Summary
Suggestions for the future:

 Getting a head start:

 All group members were on the same page with
starting early, but actually coordinating and forming
the right pace for the team could still be improved.

 Pick a topic with passion:

 Pick a topic that most members are passionate about
will make the experience worthwhile and enjoyable.

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

Testing code
 @ keyw||d "initialize:" starts triangle initialization phase
 initialize:
 @ initialize triangle with 2-D vertex location
 triangle ABC V [(1.1, 2.2) , (3.3, 4.4) , (5.5, 6.6)];
 @initialize triangle with line segment length
 triangle DEF L [4.2, 3.5, 3.6];
 value agl 10.0;
 value opq 5.0;

 @ Keyw||d "rules:" starts rules construction phase
 rules:
 identical_triangle (triangle Tri_1, triangle Tri_2)
 (
 [[triangle Tri_1.sideA == triangle Tri_2.sideA] && [triangle Tri_1. sideB == triangle Tri_2. sideB] && [triangle Tri_1. sideC == triangle Tri_2. sideC]]
 || [[triangle Tri_1.sideA == triangle Tri_2.sideB] && [triangle Tri_1. sideB ==triangle Tri_2. sideC] && [triangle Tri_1. sideC == triangle Tri_2. sideA]]
 || [[triangle Tri_1. sideA == triangle Tri_2. sideC] && [triangle Tri_1. sideB ==triangle Tri_2. sideA] &&[triangle Tri_1. sideC == triangle Tri_2. sideB]]
) {true};

 @ Explain angleC in terms of sides
 @ This is a calculation rule
 angle_C (triangle ABC) (true) {arccos((triangle ABC.sideA * triangle ABC.sideA) + (triangle ABC.sideB * triangle ABC.sideB) - (triangle ABC.sideC * triangle ABC.sideC) / 2.0 *

triangle ABC.sideA *triangle ABC.sideB)};

 @ keyw||d "operations:" starts operation && calculation phase
 operations:
 agl = rule identical_triangle (triangle ABC, triangle ABC);
 opq = 5.0;
 printv (value agl);
 if (value agl) {
 prints ("ABC and DEF are identical");
 }
 if (1.0)
 {
 prints ("is regular triangle");
 }

 Columbia University TrML Team Chen, Feng, Qu, Wan, Zhang

