

Spidr

Final Report

Alex Dong aqd2000

Katherine Haas kah2190

Matt Meisinger mrm2205

Akshata Ramesh ar3120

1

Contents
1. Introduction .. 4

1.1 Background ... 4

1.2 Description .. 4

1.3 Features ... 5

2. Language Tutorial .. 6

2.1 Sample Program .. 6

2.2 How to Compile and Run the Sample Program .. 7

3. Language Reference Manual ... 10

3.1 Lexical Conventions ... 10

3.1.1 Tokens ... 10

3.1.2 Comments ... 10

3.1.3 Identifiers .. 10

3.1.4 Keywords .. 10

3.1.5 Constants ... 11

3.1.6 Boolean Constants .. 11

3.1.7 Integer Constants .. 11

3.1.8 String Literals.. 11

3.2 Identifiers .. 11

3.3 Functions ... 11

3.3.1 Defining Functions.. 11

3.3.2 Return Types ... 12

3.3.3 Main Function ... 12

3.4 Lists ... 12

3.4.1 List Types.. 12

3.4.2 Instantiating Lists .. 12

3.4.3 Accessing Elements ... 13

3.4.4 List Concatenation Operator (&) .. 13

3.5 Expressions ... 13

3.5.1 Primary Expressions ... 13

3.5.2 Postfix Expressions ... 13

2

3.5.3 Array References .. 14

3.5.4 Equality Expressions ... 14

3.6 Declarations ... 15

3.7 Statements ... 16

3.7.1 Expression Statement .. 16

3.7.2 Conditional Statement ... 16

3.7.3 While Statement .. 17

3.7.4 Loop Statement ... 17

3.7.5 Return Statement ... 17

3.8 Scope .. 18

3.9 Built-in Types .. 18

3.9.1 url type ... 18

3.9.2 Element type ... 18

3.9.3 Selector type .. 19

3.9.3.1 Element-selector .. 19

3.9.3.2 Attribute-selector (optional) .. 20

3.10 Built-in Functions ... 20

3.10.1 print() function .. 20

4. Project Plan .. 21

4.1 Management Process .. 21

4.2 Programming Style Guide... 23

4.3 Project Timeline .. 24

4.3.1 Estimated Event Log ... 24

4.3.2 Roles and Responsibilities .. 24

4.4 Software Development.. 25

4.4.1 Operating System Environment .. 25

4.4.2 Language Used.. 25

4.4.3 Version Control System Used ... 25

4.5 Project Log .. 26

5. Architectural Design .. 27

5.1 Block Diagram – Major Components ... 27

3

5.1.1 Interfaces Explained.. 27

5.2 Task Distribution .. 28

6. Test Plan... 29

6.1 Representative Source Programs and Java Output ... 29

6.1.1 Demo 1 .. 29

6.1.2 Demo 2 .. 35

6.2 Test Suites ... 39

7. Lessons Learned... 41

7.1 Alex Dong ... 41

7.2 Katherine Haas .. 41

7.3 Matt Meisinger .. 42

7.4 Akshata Ramesh.. 43

7.5 Future Advice.. 44

8. Appendix A………………………………………………………………………………46

4

1. Introduction

Spidr is a programming language that allows for users to quickly retrieve web pages and scan

them for content. Spidr allows users to easily follow all links on a page, retrieve words from

child pages, compile all links from a page into a list, get a list of the URLs of all the images,

documents, etc. on a page, and scan for dead links.

1.1 Background

The name “Spidr” alludes to the language’s focus on retrieving and scanning web pages.

Intended use cases for this language range from applications like the Craigslist scraper

PadMapper.com to language processing search engines like WolframAlpha.

1.2 Description

The language Spidr is developed using the Ocaml language. It compiles to Java as its

intermediate language, but has its own primitives and diverse syntax. The language has a main

function, like Java, but unlike Java each newline is the end of a statement. Spidr only requires a

few lines of code to retrieve a page and parse out all of the links, words, and image references on

the page. The user can then also follow all the links of the page through the few additional lines

of code. Concise list manipulation operations are built into the language. These make integrating

more sophisticated logic into the application easier. Functions can be called recursively,

allowing for the implementation of complex algorithms within Spidr.

5

1.3 Features
Spidr is a language that can take a large amount of HTML data, parse through it, and output to

the user a specific piece of information they are searching for. Our language is focused on being

simple, clean and powerful.

Simplicity

One of the most important functionalities of Spidr was to keep it simple and approachable so that

the user can quickly implement a program to solve their problem. Being that our language is

similar to many other procedural languages, it provides an easy environment to quickly grasp

the syntax and see results quickly. The compilation process was built to abstract as many of the

details out of the process as possible, so getting to “Hello world!” takes only a minute.

Clean

Spidr requires minimal code in order to traverse through webs of pages. The goal was for Spidr

code to contain as few unnecessary adornments as possible, making the intent of the original

author more obvious to later reviewers.

Powerful

 Though the language was built to be simple and clean, the core functionality is quite powerful. It

can parse through moderately ill-formatted HTML, and has powerful element-matching selectors

that make it easy to define which elements on a page you are looking for.

6

2. Language Tutorial

If users are familiar with the basic concepts of procedural programming, then Spidr syntax

should be relatively easy to pick up. This section provides users with the basic tools needed to

sift through an HTML page for specific data.

2.1 Sample Program

Below you will find a sample program implementing the Spidr language.

/*

The following demo craws site specified in startUrl, and returns all

active links the page, and all active links on those pages.

Warning: Two levels deep is a lot of links. It may take a couple minutes to

crawl any given site.

*/

function void main() {

string site = "http://www.cs.columbia.edu/~sedwards/software.html"

println("Starting to crawl site: " + site)

url startUrl = :site

url[] children = getChildUrls(startUrl, 2)

println("Completed!")

}

function url[] getChildUrls(url u, int depth) {

println(u)

http://www.cs.columbia.edu/~sedwards/software.html

7

2.2 How to Compile and Run the Sample Program

This section will walk the user through running and compiling the sample program that is in the

previous section.

 The prerequisites needed in order to effectively compile a Spidr program are the java

development environment (javac), and the Ocaml compiler.

 Ubuntu linux is recommended, though other platforms may work as well.

 To compile the spidr compiler and supporting java libraries:

Run ‘make’ at the root of the unzipped spidr folders.

 To execute a source file:

if (depth == 0) {

return [u]

}

else {

string[] links = u * <<a@href>>

url[] activeChildren = []

loop (links l) {

if (live(:l)) {

activeChildren = activeChildren + getChildUrls(:l, depth-1)

}

}

return [u] + activeChildren

}

}

8

Run './spidr -e < myfile.spidr' to compile and execute the spidr source file.

 To run the test suite, type either of the following when in the root of the project:

make test

(Tests whether the spidr tests compile into the expected java code.)

OR type:

make testexe

(Also tests whether the java compiles and when the java is run the output is correct.)

 By typing:

‘make clean’

You remove all unnecessary files from all of the spidr folders.

The three java classes (SUrl.java, SSelector.java, and SAttSelector.java) below are needed in

order to compile the Spidr files.

SUrl.java:
import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import org.jsoup.Jsoup;

import org.jsoup.nodes.Element;

public class SUrl {

 public String url;

 public SUrl(String url) {

 this.url = url;

 }

 public String toString(){

 return ":\"" + this.url + "\"";

 }

}

9

SSelector.java:

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import org.jsoup.Jsoup;

import org.jsoup.nodes.Element;

public class SSelector {

 public String elementName;

 public String className;

 public String attr;

 public String attrValue;

 public SSelector innerSelector;

 public SAttSelector attSelector;

 public SSelector(String elementName, String className, String attr,

String attrValue) {

 this.elementName = elementName;

 this.className = className;

 this.attr = attr;

 this.attrValue = attrValue;

 this.innerSelector = null;

 this.attSelector = null;

 }

 public String toString(){

 return "<<" + this.elementName + (this.className.isEmpty() ?

"" : "." + this.className + (this.attr.isEmpty() ? "" : ("[" + this.attr +

(this.attrValue.isEmpty() ? "" : "=\"" + this.attrValue + "\"") + "]"))) +

(this.attSelector == null ? "" : this.attSelector.toString()) + ">>";

 }

}

SAttSelector.java

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import org.jsoup.Jsoup;

import org.jsoup.nodes.Element;

public class SAttSelector {

 public String att;

 public SAttSelector(String att) {

 this.att = att;

 }

 public String toString(){

 return "@" + this.att;

 }

10

}

3. Language Reference Manual

3.1 Lexical Conventions

3.1.1 Tokens

The following constitute the tokens in Spidr: identifiers, reserved keywords, constants, string

literals, operators, newlines, and other separators. Blanks, spaces and horizontal and vertical tabs

may be used to separate tokens. In selectors, spaces are significant otherwise they are ignored.

3.1.2 Comments

The characters /* introduce a comment, which terminates with the characters */. Comments

cannot be nested. They do not occur within a string or character literals. Any characters within

these comments are ignored.

3.1.3 Identifiers

An identifier is any alpha-numeric sequence. The first character of an identifier must be a letter.

Upper and lower case letters in an identifier are considered to be different. Identifiers may have

any length.

3.1.4 Keywords

The following identifiers are reserved for the use as keywords, and may not be used otherwise

url int main

loop string false

selector for true

if while return

null void boolean

11

3.1.5 Constants

In Spidr there are integer constants, and string literals.

3.1.6 Boolean Constants

Boolean constants can hold a value of true or false.

3.1.7 Integer Constants

An integer constant may contain any numbers from 0 to 9 and is stored as a signed integer.

3.1.8 String Literals

Anything between double quotes is considered a string literal. String literals may be

concatenated using the ‘+’ sign. A string literal may not be concatenated as a different type.

3.2 Identifiers
Each primitive, object and function is represented by an identifier.

3.3 Functions

3.3.1 Defining Functions

Functions are defined by using the function keyword. They follow the syntax:

function type functionName ([parameter list]) { expression }

Example:

function int addTwo(int num1, int num2) {

 return num1 + num2

}

Functions cannot be overloaded.

12

3.3.2 Return Types

Functions may return any type of object. They may also be marked as void, in which case no

return statement is needed in the body of the function.

3.3.3 Main Function

Spider looks for a main function with a return type of void to use as a entry point when running

an application. If this function is not found, an error is thrown at compile-time.

3.4 Lists
Primitives and objects may be declared either as a single-value variable, or a as an array variable.

3.4.1 List Types

A list may only contain elements of a single type. If an attempt is made to concatenate two lists

of different types, an error will be thrown.

3.4.2 Instantiating Lists

Lists may be instantiated with initial values by listing identifiers and/or constants, separated by

commas, and surrounding them with square brackets (“[“and“]”). The following instantiate

arrays:

[“Value1”]

[exampleValue]

[“Value1”, “Value2”, “Value3”]

[“Value1”, exampleValue]

[15, 42, 54]

An empty array can be initialized as the following:

 string [] me =[]

When instantiating a new list with initial values, all of the values must be of the same type;

otherwise, a compile-time error is thrown.

13

3.4.3 Accessing Elements

Members of a list may be accessed by placing square brackets after the list identifier. For

instance:

int[] values = [1, 4, 6, 7]
int singleValue = values[2]
(* singleValue is 6 *)

3.4.4 List Concatenation Operator (&)

Lists may be concatenated using the + operator, resulting in a new list. The elements from the

list on the right will be at the beginning of the resulting lists.

 string[] newList = [“val1”, “val2”] + “val3” + [“val4”, “val5”]

3.5 Expressions

3.5.1 Primary Expressions

Primary expressions are identifiers, constants, strings, or expressions in parentheses.

primary-expression
identifier
constant
string
(expression)

An identifier is a primary expression that has type pointer, object, or value. An identifier is

always an lvalue as its type is always a pointer. A constant is a primary expression. A string

literal is a primary expression with type pointer to char, the address to the first character in the

string array. A expression surrounded by parentheses is a primary expression identical to one

without them.

3.5.2 Postfix Expressions

The operators in postfix expressions group left to right.

postfix-expression:

14

primary-expression

postfix-expression[expression]

postfix-expression++

postfix-expression-­-­

argument-expression-list:

assignment-expression

assignment-expression-list, assignment-expression

All of these expressions behave as they do in C.

3.5.3 Array References

An array expression followed by an expression inside of square brackets denotes an array

reference. The first element of the array is held at index 0, and the length of the array can be

obtained using calling list.length.

string[] food = [“cake”, “apple”, “tiger”]

 food[0] -> returns “cake”

3.5.4 Equality Expressions

The notation “==” compares whether the values of the adjoining expressions are equal. When

more than two expressions are listed in succession, the comparison is made between all

expressions. When the type of the two expressions are not the same, false is returned.

 string urlList = [“http://www.google.com”, “http://www.microsoft.com”]

 string urlList2 = [“http://www.google.com”, “http://www.columbia.edu”]

 string urlList3 = [“http://www.google.com”, “http://www.columbia.edu”]

15

 boolean test1 = urlList[0] == urlList2[0] -> returns True

 boolean test2 = urlList == urlList2 -> returns False

 boolean test3 = urlList2 == urlLIst3 -> returns True

 boolean test4 = urlList == urlList2 == urlList3 -> returns False

 boolean test5 = urlList[0] == urlList -> returns False

This notation can be used to compare the pointer values of urls, strings, and any other types.

When more than two expressions are listed in succession, the comparison is made between all

expressions.

string urlList = [“http://www.google.com”, “http://www.microsoft.com”]

 string urlList2 = [“http://www.google.com”, “http://www.columbia.edu”]

 string urlList3 = [“http://www.google.com”, “http://www.columbia.edu”]

 boolean test1 = urlList .= urlList2 -> returns False

 boolean test2 = urlList .= urlList3 -> returns False

 boolean test3 = urlList .= urlList -> returns True

The notation “!=” and “.!=” designate the negation of the values of the “==” and “.=” operator,

respectively.

3.6 Declarations
To declare an identifier, the one of the following syntaxes must be used:

datatype identifier

datatype identifier = expression

datatype identifier = null

16

If the initial value expression is not provided as part of the declaration, the identifier is initialized

with a null value.

The following datatype tokens are allowed:

● int

● string

● url

● element

● selector

The following are valid declarations:

 int a

 int b = null

 int c = 0

 int testList = [4, 2, 5, 6, 74, -4]

 string e = [“first”, “second”]

 url f =: http://www.columbia.edu

3.7 Statements
Except as indicated, assume that all statements are executed in sequence. Each statement must

be terminated by a semicolon.

3.7.1 Expression Statement

Most statements will be expression statements. To view the form, refer to 6.2.

Usually expression statements are a pointer to an object, value, or pointer to another list.

3.7.2 Conditional Statement

The two forms of conditional statements are:

if (expression) statement

17

if (expression) statement else statement

In both cases the expression is evaluated, and it if it is non-zero, then the first statement will be

executed. In the second case, the second statement will be executed if the first expression is

equal to zero.

3.7.3 While Statement

The while statement takes the form of:

while (expression) statement

This statement can be executed repeatedly as long as the expression never takes the value of

zero.

3.7.4 Loop Statement

The loop statement takes on the following form:

loop (expression1, expression2, expression3) statement

The first expression specifies initialization for the loop. The second expression specifies a test,

made before each iteration, where the loop will exit when the expression becomes 0. The third

expression specifies incrementing that is performed after each iteration.

3.7.5 Return Statement

The return statement is used when a function returns to its caller and it takes on the following

forms:

return

18

return expression

In the first case the value is undefined, whereas in the second case the value of the expression is

returned to the caller of the function.

3.8 Scope
An object that is declared in a block has its scope restricted to that block and any sub-blocks. All

functions are declared in the global scope.

3.9 Built-in Types

3.9.1 url type

The url type may be instantiated by placing a colon directly in front of a string literal. For

instance:

url microsoftUrl = :”http://www.microsoft.com”

Appending the colon to the front of a parenthesized expression yields the same result as if there

weren’t any parentheses:

url microsoftUrl = :”http://www.microsoft.com”

 url micUrl = :(“http://www.microsoft.com”)

3.9.2 Element type

The element type represents a XML-type formatted string. It may have child elements. This

type can be automatically cast into a string, or filtered by applying a selector to it.

19

3.9.3 Selector type

A selector object is used to parse through an element tree and returns an array of either element

or string objects that match the selection criteria. A selector is instantiated using the following

syntax:

 <<element_selector@attribute_selector>>

A selector may be applied to any element object, url object, or list of either of these two

types of object.

3.9.3.1 Element-selector

This is a special selector that has its own set of token rules, separate from the rest of the

language. This token may contain any combination of the following types of example token

patterns:

input - All elements on the page of with a certain name can be selected by simply using

that name. This example code returns all input controls on the page.

div input - If two selectors are separated by a space, it matches the first selector, then

finds all of their children that match the second selector. In this example, the selector

returns all inputs that are children of a div.

.headerimage - A period prefixing a string indicates that all items matching that contain

the class matching that string be returned.

20

[href] - If a string is surrounded with square brackets, all elements that contain that

attribute will be returned. In this case, all elements that contain the attribute href will be

returned (though whether href has a value or not is not checked).

[href=“*images*”] - In attribute selectors, the star may be used as a wildcard selector.

It matches any character(s). In this example, only elements that have an href attribute

and the contain the word ‘images’ in this attribute will be returned.

Here is an example of how an element selector can be used to gather a list of all input html

elements that exist with the class of “survey”:

 url testUrl = :“http://www.columbia.edu/”

 element[] inputFields = testUrl <div.survey input>

3.9.3.2 Attribute-selector (optional)

This selector is optional, and indicates whether an attribute should be read from each of the

elements selected and returned. An ‘at’ sign (@) must precede the attribute selector. The

selector may be the name of an attribute, or an underscore to return the contents of the attribute.

For instance, the following example shows how to retrieve a string array of all hrefs from all

anchors on a page:

 url testUrl = :“http://www.columbia.edu/”

string[] links = testUrl <<a@href>>

3.10 Built-in Functions

3.10.1 print() function

The print function converts any object to a string and displays it in the console.

21

For instance:

print(55)

Output:

 55

If the type is a list, it uses the notation “[“element1”, “element2”, “element3”]” to to show

the differing elements in the list.

If the object being printed has sub-lists of objects underneath it, it will print out all child objects

also, up to a depth of 5. After 5, it will show all child lists as “[…]”.

Example code:

print(example)

Output:

[[1, 2] , [30, 40]]

4. Project Plan

4.1 Management Process
After the project was first introduced, our group met during the second week of classes in

September, and during the first five minutes of initially meeting one another at the end of the

lecture, we immediately started the planning process. We agreed to meet later on that week to

brainstorm ideas for a functional and practical language to implement.

22

From then on, we met every Wednesday night at precisely 7:30 in the library to combine our

ideas. Our meetings would last anywhere from 1-4 hours, and we would meet extra days if

necessary, depending on the different material we were working on and if we met our weekly

goal(s).

After submitting the first project proposal, having feedback from both the TA and the Professor,

we agreed that our syntax needed a little sugar; it was too similar to that of java. Idea after idea,

we finally came up with designs on how to make our language have a different look that would

not be too intricate to implement.

Because at first everyone was still unfamiliar with the Ocaml Language, we all agreed to sit

down and wrap our heads around the different files and concepts we needed to implement in

order to have an operational language. Concrete tasks were assigned and checked upon at each

meeting between team members. If someone was assigned a task, they would bring it to the table

the following week to show the progress and/or to ask any questions.

Email and text messaging were the two forms of primary communication used between the

group; each member felt comfortable enough to contact one another with questions or comments

regarding the project. GoogleDocs were used to edit and share the project proposal and language

reference manual, and BitBucket was the version control system we used in order to commit,

push, and pull all of the code for the project.

As each file was coded, testing was conducted immediately after in order to fix errors in the

beginning stages. Each member was responsible to assist in the testing and development process

so that they could familiarize themselves with the code and how the compilation process

functioned.

23

4.2 Programming Style Guide

 Keep the code neat and clean; commenting not required but helpful

 Update code regularly in order to keep team members in sync

 When committing code via BitBucket, always submit a commit messages explaining

what you did and errors if any

 If ran into certain code issues, submit the issue through BitBucket so it notified each

member and outlined it in the code

 Filenames should all be consistent with one another, using lowercase letters and hyphens

in between words (i.e. test-if-else.spidr, test-for-loop.spidr)

 Keep all code in appropriate files within BitBucket (i.e. all test files should stay in test

folder, all src files stay in src folder)

24

4.3 Project Timeline

4.3.1 Estimated Event Log

Event Number Estimate Date Done Event Name

1 9/12/2012 Finalized group, decided on first meet date

2 9/15/2012 Decided on Spidr Language

3 9/26/2012 Submitted Project Proposal

4 9/28/2012 Met with TA to go over proposal feedback

5 10/29/2012 Submitted Language Reference Manual

6 11/7/2012 "Hello World" Program working

7 11/21/2012 Parser/Scanner working

8 11/28/2012 Semantic Analysis working

9 12/19/2012
Compiler complete, Presentation, Submitted

Final Report

4.3.2 Roles and Responsibilities

Name Role and Responsibilities

Alex Dong
Responsible for Parser, Scanner (in corporation with Matt and Akshata), and

Testing

Katherine
Haas

Responsible for helping with SAST (in corporation with Matt), testing, and
assembling final report

Matt
Meisinger

Responsible for Parser, Scanner (in corporation with Alex and Akshata), SAST,
Testing, Makefile

Akshata
Ramesh Responsible for Parser, Scanner (in corporation with Matt and Alex), Testing

25

4.4 Software Development

4.4.1 Operating System Environment

When testing, compiling and creating code, each member worked in a Linux environment. Some

members used a virtual machine in order to use Linux from their laptop. However, the project

has been tested on both Windows and Linux, and runs normally on both.

4.4.2 Language Used

The Language we used in order to develop and implement our language was mainly Ocaml and

Java. We also used the jsoup Java library that is used for HTML parsing, finding and extracting

data, and manipulating HTML elements and attributes.

4.4.3 Version Control System Used

The version control system we used in order to commit and keep all of our code in sync with all

of the group members was GIT, hosted by BitBucket. It was an easy way to keep all of our

source code together and organized. For file sharing, we used GoogleDocs (for documents such

as the project proposal and the language reference manual) which made it efficient for editing

back and forth between team members; it also allowed multiple users to edit at the same time,

which was extremely useful.

26

4.5 Project Log

Date Task Accomplished

9/12/2012 Team formed

9/15/2012 First meeting, initial plan, brainstorm language ideas

9/19/2012
Second meeting, project/language title, set time and day of week to meet every week
(Wednesday)

9/26/2012 Third meeting, submitted proposal, started LRM logistics

10/3/2012 Fourth meeting, talk through project objectives and goals

10/10/2012 Fifth meeting, discuss what needs to be done in terms of LRM

10/17/2012 Sixth meeting, continue to work on LRM and language syntax

10/24/2012
Seventh meeting, finalize LRM and any last minute details we wanted to change after
meeting with TA

10/31/2012
Eighth meeting, submitted LRM, discussed what happens next in terms of
responsibilities

11/7/2012
Ninth meeting, start to decide how to split up work and what files we need for
compiler, "hello world" program working

11/14/2012
Tenth meeting, assign different roles to team members, work on compiler, start
parser/scanner

11/21/2012
Eleventh meeting, parser/scanner working, start semantic analysis, continue working
on compiler

11/28/2012 Twelth meeting, semantic analysis working, start creating test cases

12/5/2012 Thirteenth meeting, continue working on compiler, testing

12/7/2012
Fourteenth meeting, most of language completed, continue testing, fixing shift reduce
errors

12/10/2012 Fifteenth meeting, work on final report, testing, very minimal shift reduce errors left

12/14/2012
Seventeenth meeting, continue to work on final report, testing, debugging, work on
final test case for exact language

12/17/2012 Eighteenth meeting, finish up final report, continue testing all cases

12/18/2012 Nineteenth meeting, finalize report, finalize compiler, practice presentation points

12/19/2012 Project Presentation, final report due, compiler complete

27

5. Architectural Design

5.1 Block Diagram – Major Components

Below is a block diagram identifying the major components of the translator for Spidr.

5.1.1 Interfaces Explained

The above diagram describes how the Spidr source is compiled. The spidr.ml file is the first file

that is called when one gives a command to compile the Spidr source. The compiler goes through

the following steps:

 The scanner.mll scans the source and produces a string of tokens from the source.

 These tokens are parsed by the parser.mly, and then converted into an abstract syntax

tree that represents the entire program.

 Next, the sast.ml distills the ast into finer types, and performs the type-checking for

the various type-constrained portions of Spidr such as ensuring formal and actual

parameters of functions match, binary operations are done on compatible types, etc.

28

 The printer.ml file uses the results of the sast.ml to generate the actual java source

code. The file jhelpers.ml contains Java snippets and references that complete the

generated Java code. Together, the printer.ml and jhelpers.ml produce the full Java

code necessary to execute the program described in the Spidr source.

 This Java source code needs the other helper classes and libraries for it to be

compiled and executed. It is at this step that other helper classes, and the JSoup

HTML parser library are packaged along with the generated Java code to create the

complete executable .jar file.

When the Spidr source is compiled with the –s flag, only the .java file is generated without the

packaging of the other dependencies. Using the –e flag instead will automatically package the

.java file with the helper classes and the JSoup library as mentioned above, and will execute the

resulting .jar file.

5.2 Task Distribution

Component Implementer(s)

scanner.mll Matt, Alex

parser.mly Matt, Alex

ast.ml Matt, Alex, Akshata

sast.ml Kate, Matt, Alex, Akshata

Makefile Matt, Alex

spidr.ml Matt, Alex

jehlpers.ml Matt, Alex

printer.mll Matt, Alex

Tests All Members

Report Kate

29

6. Test Plan
As soon as we had the Scanner, Parser and Ast in place, we created a Hello World test case, to

test whether it would compile out the java code as expected. From there, we built up more test

cases for each of the new features that created, and exceptions that should be thrown at compile-

time. We kept the details from the LRM in mind, and our primary example program as we tried

to build up all of the features required to run that program.

6.1 Representative Source Programs and Java Output
The following source programs can be found in the 'demos' directory in the source package. In

order to compile the java as shown below, run the compiler with the '-s' option. The following

commands were used to export the java of these two files:

 $./spidr -s < demos/demo2.spidr > demo1.java

 $./spidr -s < demos/demo1.spidr > demo2.java

6.1.1 Demo 1
This demo prints a long array of all image urls on the page the following demo
craws site specified in startUrl, and returns all active links the page, and all
active links on those pages.

Warning: Two levels deep is a lot of links. It may take a couple minutes

to crawl any given site.

Spidr Source:

function void main() {

 string site = "http://www.cs.columbia.edu/~sedwards/software.html"

 println("Starting to crawl site: " + site)

 url startUrl = :site

 url[] children = getChildUrls(startUrl, 2)

 println("Completed!")

}

function url[] getChildUrls(url u, int depth) {

 println(u)

30

 if (depth == 0) {

 return [u]

 }

 else {

 string[] links = u * <<a@href>>

 url[] activeChildren = []

 loop (links l) {

 if (live(:l)) {

 activeChildren = activeChildren + getChildUrls(:l,

depth-1)

 }

 }

 return [u] + activeChildren

 }

}

Java Output (please note that the Spidr helper java classes and JSoup

library are required for this java code to compile):

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import org.jsoup.Jsoup;

import org.jsoup.nodes.Element;

public class app {

 public static app spidr_app = new app();

public static SUrl[] getChildUrls(SUrl u, int depth) throws Exception {

System.out.println(u);

if (depth==0)

{

return app.array(u);

}

else {

String[] links = applyAttSelector(u,combineSelectors(new

SSelector("a","","",""),new SAttSelector("href")));

SUrl[] activeChildren = {};

for(String l : links){

if (live(new SUrl(l))) {

activeChildren = arrayConcat(activeChildren,app.getChildUrls(new

SUrl(l),depth-1));

}

}

return arrayConcat(app.array(u),activeChildren);

}

}

public static void main(String[] args) throws Exception {

 try {

String site = "http://www.cs.columbia.edu/~sedwards/software.html";

System.out.println("Starting to crawl site: "+site);

SUrl startUrl = new SUrl(site);

31

SUrl[] children = app.getChildUrls(startUrl,2);

System.out.println("Completed!");

 } catch (Exception e) {

 e.printStackTrace();

 }

}

 public static SUrl[] array(SUrl... values){

 return values;

 }

 public static SSelector[] array(SSelector... values){

 return values;

 }

 public static SUrl[] arrayConcat(SUrl[] array1, SUrl[] array2){

 SUrl[] array3 = new SUrl[array1.length + array2.length];

 for(int i=0; i<array3.length; i++){

 if(i<array1.length)

 array3[i] = array1[i];

 else

 array3[i-array1.length] = array2[i-array1.length];

 }

 return array3;

 }

 public static SSelector[] arrayConcat(SSelector[] array1,

SSelector[] array2){

 SSelector[] array3 = new SSelector[array1.length +

array2.length];

 for(int i=0; i<array3.length; i++){

 if(i<array1.length)

 array3[i] = array1[i];

 else

 array3[i-array1.length] = array2[i-array1.length];

 }

 return array3;

 }

 private static String[] applyAttSelector(SUrl u, SSelector s) throws

Exception {

 Element[] urlElements =

Jsoup.connect(u.url).get().children().toArray(new Element[] {});

 return applyAttSelector(urlElements, s);

 }

 private static String[] applyAttSelector(Element[] sourceList,

SSelector a) throws Exception {

 if (a.attSelector != null) {

 return

applyAttSelector(getElementsMatchingSelector(sourceList, a),

a.attSelector);

 }

 else if (a.innerSelector != null) {

 return applyAttSelector(sourceList, a.innerSelector);

 }

32

 else {

 throw new Exception("Internal error #1");

 }

 }

 private static String[] applyAttSelector(Element[] sourceList,

SAttSelector a){

 List<String> ret = new ArrayList<String>();

 for (Element e : sourceList) {

 if (e.hasAttr(a.att)) {

 ret.add(e.attr(a.att));

 }

 }

 return ret.toArray(new String[] {});

 }

 private static SSelector combineSelectors(SSelector s1, SSelector

s2){

 if (s1.innerSelector == null){

 s1.innerSelector = s2;

 return s1;

 }

 else {

 combineSelectors(s1.innerSelector, s2);

 return s1;

 }

 }

 private static SSelector combineSelectors(SSelector s1, SAttSelector

s2) throws Exception{

 if (s1.attSelector != null)

 throw new Exception("This selector already has an

attribute selector applied to it. Only one attribute selector may be

applied per selector.");

 if (s1.innerSelector == null){

 s1.attSelector = s2;

 return s1;

 }

 else {

 combineSelectors(s1.innerSelector, s2);

 return s1;

 }

 }

 private static Element[] getElementsMatchingSelector(SUrl u,

SSelector s) throws Exception {

 Element[] urlElements =

Jsoup.connect(u.url).get().children().toArray(new Element[] {});

 return getElementsMatchingSelector(urlElements, s);

 }

 private static Element[] getElementsMatchingSelector(Element[]

sourceList, SSelector s) throws Exception {

 List<Element> ret = new ArrayList<Element>();

 for (Element e : sourceList) {

 boolean isMatching = true;

33

 if (!s.elementName.isEmpty() && e.tagName() !=

s.elementName) isMatching = false;

 if (!s.className.isEmpty() &&

!e.classNames().contains(s.className)) isMatching = false;

 if (!s.attr.isEmpty() && !e.hasAttr(s.attr)) isMatching =

false;

 if (!s.attr.isEmpty() && !s.attrValue.isEmpty() &&

e.attr(s.attr) != s.attrValue) isMatching = false;

 if (isMatching && s.innerSelector != null) {

 Element[] matches =

getElementsMatchingSelector(e.children().toArray(new Element[] {}),

s.innerSelector);

 for (Element c : matches) {

 ret.add(c);

 }

 }

 else if (isMatching && s.innerSelector == null) {

 ret.add(e);

 }

 else {

 Element[] matches =

getElementsMatchingSelector(e.children().toArray(new Element[] {}), s);

 for (Element c : matches) {

 ret.add(c);

 }

 }

 }

 return ret.toArray(new Element[] {});

 }

 private static boolean live(SUrl s) {

 try {

 java.net.HttpURLConnection connection =

(java.net.HttpURLConnection)new java.net.URL(s.url).openConnection();

 connection.setRequestMethod("HEAD");

 int responseCode = connection.getResponseCode();

 if (responseCode >= 200 && responseCode < 400) {

 return true;

 }

 else {

 return false;

 }

 } catch (Exception e) {

 return false;

 }

 }

 private static SUrl[] live(SUrl[] u) {

 List<SUrl> ret = new ArrayList<SUrl>();

 for (SUrl s : u) {

 if (live(s)) {

 ret.add(s);

 }

34

 }

 return ret.toArray(new SUrl[] {});

 }

 public static String[] arrayConcat(String[] array1, String[]

array2){

 String[] array3= new String[array1.length+array2.length];

 System.arraycopy(array1, 0, array3, 0, array1.length);

 System.arraycopy(array2, 0, array3, array1.length,

array2.length);

 return array3;

 }

 public static int[] arrayConcat(int[] array1, int[] array2) {

 int[] array3= new int[array1.length+array2.length];

 System.arraycopy(array1, 0, array3, 0, array1.length);

 System.arraycopy(array2, 0, array3, array1.length,

array2.length);

 return array3;

 }

 public static double[] arrayConcat(double[] array1, double[]

array2){

 double[] array3= new double[array1.length+array2.length];

 System.arraycopy(array1, 0, array3, 0, array1.length);

 System.arraycopy(array2, 0, array3, array1.length,

array2.length);

 return array3;

 }

 public static boolean[] arrayConcat(boolean[] array1, boolean[]

array2){

 boolean[] array3= new boolean[array1.length+array2.length];

 System.arraycopy(array1, 0, array3, 0, array1.length);

 System.arraycopy(array2, 0, array3, array1.length,

array2.length);

 return array3;

 }

 public static int[] array(int... values){

 return values;

 }

 public static String[] array(String... values){

 return values;

 }

 public static boolean[] array(boolean... values){

 return values;

 }

}

35

6.1.2 Demo 2
This demo prints images urls on a page and crawls a page and returns all image
urls found on the page.
Spidr Source:

function void main() {

 string site =

"http://www.cs.columbia.edu/~sedwards/classes/2012/w4115-fall/index.html"

 println("Looking for images on site: " + site)

 string[] imageReferences = :site * <<img@src>>

 println("Found images:")

 print(imageReferences)

 println()

 println("Finished.")

}

Java Output (please note that the Spidr helper java classes and JSoup

library are required for this java code to compile):

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import org.jsoup.Jsoup;

import org.jsoup.nodes.Element;

public class app {

 public static app spidr_app = new app();

public static void main(String[] args) throws Exception {

 try {

String site = "http://www.cs.columbia.edu/~sedwards/classes/2012/w4115-

fall/index.html";

System.out.println("Looking for images on site: "+site);

String[] imageReferences = applyAttSelector(new

SUrl(site),combineSelectors(new SSelector("img","","",""),new

SAttSelector("src")));

System.out.println("Found images:");

System.out.print(java.util.Arrays.toString(imageReferences));

System.out.println("");

System.out.println("Finished.");

 } catch (Exception e) {

 e.printStackTrace();

 }

}

 public static SUrl[] array(SUrl... values){

 return values;

 }

36

 public static SSelector[] array(SSelector... values){

 return values;

 }

 public static SUrl[] arrayConcat(SUrl[] array1, SUrl[] array2){

 SUrl[] array3 = new SUrl[array1.length + array2.length];

 for(int i=0; i<array3.length; i++){

 if(i<array1.length)

 array3[i] = array1[i];

 else

 array3[i-array1.length] = array2[i-array1.length];

 }

 return array3;

 }

 public static SSelector[] arrayConcat(SSelector[] array1,

SSelector[] array2){

 SSelector[] array3 = new SSelector[array1.length +

array2.length];

 for(int i=0; i<array3.length; i++){

 if(i<array1.length)

 array3[i] = array1[i];

 else

 array3[i-array1.length] = array2[i-array1.length];

 }

 return array3;

 }

 private static String[] applyAttSelector(SUrl u, SSelector s) throws

Exception {

 Element[] urlElements =

Jsoup.connect(u.url).get().children().toArray(new Element[] {});

 return applyAttSelector(urlElements, s);

 }

 private static String[] applyAttSelector(Element[] sourceList,

SSelector a) throws Exception {

 if (a.attSelector != null) {

 return

applyAttSelector(getElementsMatchingSelector(sourceList, a),

a.attSelector);

 }

 else if (a.innerSelector != null) {

 return applyAttSelector(sourceList, a.innerSelector);

 }

 else {

 throw new Exception("Internal error #1");

 }

 }

 private static String[] applyAttSelector(Element[] sourceList,

SAttSelector a){

 List<String> ret = new ArrayList<String>();

 for (Element e : sourceList) {

 if (e.hasAttr(a.att)) {

 ret.add(e.attr(a.att));

 }

 }

37

 return ret.toArray(new String[] {});

 }

 private static SSelector combineSelectors(SSelector s1, SSelector

s2){

 if (s1.innerSelector == null){

 s1.innerSelector = s2;

 return s1;

 }

 else {

 combineSelectors(s1.innerSelector, s2);

 return s1;

 }

 }

 private static SSelector combineSelectors(SSelector s1, SAttSelector

s2) throws Exception{

 if (s1.attSelector != null)

 throw new Exception("This selector already has an

attribute selector applied to it. Only one attribute selector may be

applied per selector.");

 if (s1.innerSelector == null){

 s1.attSelector = s2;

 return s1;

 }

 else {

 combineSelectors(s1.innerSelector, s2);

 return s1;

 }

 }

 private static Element[] getElementsMatchingSelector(SUrl u,

SSelector s) throws Exception {

 Element[] urlElements =

Jsoup.connect(u.url).get().children().toArray(new Element[] {});

 return getElementsMatchingSelector(urlElements, s);

 }

 private static Element[] getElementsMatchingSelector(Element[]

sourceList, SSelector s) throws Exception {

 List<Element> ret = new ArrayList<Element>();

 for (Element e : sourceList) {

 boolean isMatching = true;

 if (!s.elementName.isEmpty() && e.tagName() !=

s.elementName) isMatching = false;

 if (!s.className.isEmpty() &&

!e.classNames().contains(s.className)) isMatching = false;

 if (!s.attr.isEmpty() && !e.hasAttr(s.attr)) isMatching =

false;

 if (!s.attr.isEmpty() && !s.attrValue.isEmpty() &&

e.attr(s.attr) != s.attrValue) isMatching = false;

 if (isMatching && s.innerSelector != null) {

 Element[] matches =

getElementsMatchingSelector(e.children().toArray(new Element[] {}),

s.innerSelector);

38

 for (Element c : matches) {

 ret.add(c);

 }

 }

 else if (isMatching && s.innerSelector == null) {

 ret.add(e);

 }

 else {

 Element[] matches =

getElementsMatchingSelector(e.children().toArray(new Element[] {}), s);

 for (Element c : matches) {

 ret.add(c);

 }

 }

 }

 return ret.toArray(new Element[] {});

 }

 private static boolean live(SUrl s) {

 try {

 java.net.HttpURLConnection connection =

(java.net.HttpURLConnection)new java.net.URL(s.url).openConnection();

 connection.setRequestMethod("HEAD");

 int responseCode = connection.getResponseCode();

 if (responseCode >= 200 && responseCode < 400) {

 return true;

 }

 else {

 return false;

 }

 } catch (Exception e) {

 return false;

 }

 }

 private static SUrl[] live(SUrl[] u) {

 List<SUrl> ret = new ArrayList<SUrl>();

 for (SUrl s : u) {

 if (live(s)) {

 ret.add(s);

 }

 }

 return ret.toArray(new SUrl[] {});

 }

 public static int[] array(int... values){

 return values;

 }

 public static String[] array(String... values){

 return values;

 }

 public static boolean[] array(boolean... values){

 return values;

39

 }

}

6.2 Test Suites
We created a suite of 74 tests to test different aspects of our language. Of the test cases, 54 were

created to test each piece of functionality within the language, and 20 were created to test the

exceptions that are supposed to be thrown by the Spidr compiler. Most of the tests were created

as we were working on new features, but we also created additional tests as we found bugs in the

compiler, and used the test as a sort of to-do list to keep track of what we still needed to fix

before the project should be considered complete.

We created a test script to run all the tests quickly. It was inspired by the MicroC test script (and

named identically to it). Normally, the Makefile will be used to build the compiler and execute

the test script.

The command...

 make testexe

... compiles the Spidr core and runs the entire suite of tests, displaying

which tests passed and failed to the user, along with a summary at the end

of the tests. On Ubuntu it usually takes about 30 seconds to a minute to

run the tests.

The following tests are used to test functionality and should compile:

 test-array-assign-element

 test-array-concat

 test-array-declare-simple

 test-array-declare

 test-array-empty-declare

 test-array-loop-simple-str

 test-array-loop-simple

 test-array-null

 test-array-single-string

 test-array-single

 test-binop

 test-comment

 test-empty-print

 test-for-if-else

 test-for-init-out-inner-scope

 test-for-init-out

40

 test-for-initialize-scope

 test-for

 test-func-arg-array

 test-func-arg-nullarray

 test-func-arg

 test-func-call

 test-func-multiple-args

 test-gcd

 test-get-link-urls-for-imgs

 test-global-var-mult-func

 test-global-var

 test-hello-world-newline

 test-hello-world

 test-if-withoutbrace

 test-ifelse-withoutbrace

 test-ifelse

 test-internal-func-call-withargs

 test-internal-func-call

 test-live

 test-loop

 test-mult-global-var-init-decl

 test-mult-globalvar-init

 test-multiple-global-dec

 test-return-int

 test-return-literal-int

 test-return-literal-string

 test-return-string

 test-selector-apply-to-url

 test-selector

 test-selectors-chained

 test-shorthand-binop

 test-ultimate

 test-url-init

 test-variable-multiple

 test-variable-one-line-decl-assign

 test-variable

 test-while

 test-whitespace

The following tests test compile-time exceptions and should not compile:

 test-err-initlist-arg

 test-err-invalid-return

 test-err-loop-outside-scope

 test-err-loop-requires-arr

 test-error-func-notfound

 test-error-func-overload

 test-error-if-cond

 test-error-index-of-nonarray

 test-error-invalid-args

 test-error-listinit-nonarray

 test-error-multiple-var-wrong-type-switch

 test-error-no-return

 test-error-selector-applied-to-string-array

 test-error-type-exp-simple

41

 test-error-type-exp

 test-error-type-expected-url

 test-error-type-mismatch-binop

 test-error-type-undeclared-url

 test-error-undeclared-var-main

 test-error-var-overload-main

7. Lessons Learned
Below you will find each team member’s perspective on the lesson(s) he/she has learned

throughout the process of this project.

7.1 Alex Dong
Writing a compiler is much more complicated than simple string parsing. If you are confused on

some part, chances are someone else in your group can help you. Having a different perspective

on the problem is also helpful. Definitely start early on the compiler because, even though we

met at least once every week after finishing the LRM, we're still crunched for time trying to

finish the entire thing. OCaml takes a while to get used to, so, if you're struggling at the

beginning, that's natural. The more you work on the compiler, the more you get used to it. Shift

reduce and reduce conflicts are the most trivial and tedious errors to work through.

7.2 Katherine Haas
Throughout the course of this project, I have learned many lessons; the most important being I

was at first very intimidated and discouraged because I barely understood Ocaml. This journey

forced me to learn a language I was unfamiliar with and to also absorb the necessary components

and actions taken to create a programming language. I also didn’t fully comprehend how each

file was pieced together and how the compiler patched each module together to allow for Spidr

to be implemented properly, which is what the testing stages allowed me to understand.

42

I have also learned how to use a virtual machine through my personal laptop in order to run a

Linux environment, how to program in Ocaml, how to test and debug a new and unfamiliar

language, and how to work with team mates of different levels. Each team member had a

different technique to bring to the table, allowing for a very diverse and strong project. Alex,

Matt and Akshata did an awesome job of showing up promptly to each meeting, always having

tasks accomplished on time, and putting forth more effort than a group could ask for.

I can honestly say this project has given me a much better interpretation of how languages are

compiled, created, implemented, and the deep through process that goes behind new language

ideas.

7.3 Matt Meisinger
When we started on this project, I expected Ocaml to be difficult to learn. What I didn't expect

was how hard it would be to grasp the concepts of ASTs and SASTs, to design a non-ambiguous

yet simple syntax, and to root out all the obscure bugs in our language. It took last month before

the project was due that we were able to figure out how to implement an SAST. But once we got

a hold of that concept as a group, it was smooth sailing. By the end of the project, we were

amazed at how quickly we were able to identify areas to improve the syntax and functionality of

our language and how fast and effectively we could implement the changes.

If I had it all to do over again, I would have used the TAs more, and consulted with them earlier

about the basics of Ocaml. That may have sped up the learning process. I learned far more

about GIT, Ocaml, lexical analysis, and the Linux development environment than I thought I

would going into the class. Additionally, I learned how simple the rules for the syntax of a

43

programming language are, but how much thought and planning has to go into those simple rules

to make the language simple and powerful simultaneously.

For future groups, when initially planning your language, try focusing on the example programs.

If you analyze them enough in the beginning, you may be able to avoid a lot of pitfalls later on in

the project, and may avoid having to change your syntax. Discussions about how to create a

language can sometimes be too abstract, and getting sample code down on paper most quickly

shows the disconnect between the visions different team members. And finally, put aside a lot of

time for the project. It just takes time to figure out Ocaml and the structure of a compiler, and

there are plenty of examples from previous classes to refer to. And it takes time. But it pays off

in the end.

7.4 Akshata Ramesh
Before starting this project, I was extremely excited to get a chance to create something of our

own. Although that excitement fluctuated through the course of the project, I still remain quite

excited about the finished product. What I feel I learnt most was a better understanding of the

inner workings of a computer language. Moreover, I learnt that the parallels of scanning, parsing,

and ‘ast generation’ that are fundamental in communication is something we use everyday.

Ocaml was a tricky one: grasping the functional programming style of OCaml is the biggest

obstacle I had to face. It’s one of those things that just ‘clicks’ all of a sudden when you’re doing

the most mundane things. The seemingly recursive notion of having functions operating on

functions, which make more functions all seemed to make sense, slowly but surely. I feel like it

44

is one of those things that must be understood at a deeper level, after which that understanding

can bubble-up to understand concrete pieces of code.

While building parts of a compiler, another obstacle I faced was that it was hard to keep a mental

map of all that was going on in the rest of the compiler. But I learned that for each

functionality/enhancement that was introduced into the language, the trick was to mentally

decouple it from the rest of the language, and owing to the nature of OCaml syntax/structure, it

often required only minute to moderate changes. Moreover, keeping track of what each person is

doing and how they are doing it is a hard task, in any team scenario. But communication with the

team is what I felt really helped our project forward.

I learnt a great deal about how applying simple rules in different quantities and flavors, and

abstracting this out from the user, can create a programming language! It is tedious, and time

consuming, and can get very monotonous at times, but you will be highly satisfied with the end

result.

7.5 Future Advice
Although this is a very cliché point to emphasize, it truly is very important; start early on your

project and get a head start on all the components. It may like you have a long time to complete

this project, but it is a lot of work that takes up the whole semester. If there is ever a dull moment

and you aren’t working on some element of the project, then you need to figure out something to

work on, because in the end it will make a huge difference.

Once you have an idea, make sure you stick to it and just implement, implement, implement.

Obviously, if minor ideas change such as syntax, that is perfectly fine. After all, this is a learning

45

process and finding out which functionalities are too complicated to implement are perfectly

okay. Do not be afraid to get feedback from the TA’s or the Professor; they are only there to help

guide you through the vigorous process. The more help you get, the stronger your project will be.

Organization is a key tool to keep throughout the project; set a day or two to meet weekly, with a

consistent time and place; it makes it easier for team members to take the routine of meeting with

the group and add it into their schedules.

It can be a challenge to work with other students when not everyone has the same schedule; but

that it what technology is for. Using a control version system allows everyone to work remotely

almost any time of the day and anywhere. Take advantage of this system and stay open to any

and all communication with your group!

Lastly, good luck to you and keep in mind all of the different references you are given from the

Professor and other teams; it definitely is useful and helps direct you on what this project entails.

46

Appendix A - Code Listing of Translator

Appendix A.1 – scanner.mll

47

48

Appendix A.2 – parser.mly

49

50

51

52

53

54

Appendix A.3 – ast.ml

55

56

57

58

59

Appendix A.4 – sast.ml

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Appendix A.5 – spidr.ml

76

77

78

Appendix A.6 – printer.ml

79

80

81

82

Appendix A.7 – jhelpers.ml

83

/

84

85

86

87

88

Appendix A.8 – Makefile

89

