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Motivation
● Easy HTML manipulation: for extracting images, links, and other content 

from specific portions of the page.

● Traversing the hierarchical structure of an HTML page in a not-too-
complicated manner.

● For example, might want to retrieve all links that a given url is linked to.

● If using Java, need to add extra Java-specific code, libraries, etc.

● Make something that has familiar Java/C++ type syntax, yet does not
contain a lot of pre-processing.



Initial Idea
● Have an object oriented structure for the language: have Url, Page, and 

others as objects.

● Implement helper functions to make frequent processes easier to re-
compute.

● Keep syntax close to Java/C++ which we are all familiar with.
● Sounded too much like Java! So, decided to discard the object-oriented 

construct and some of the syntax.

● Decouple HTML parsing. Could be handled by something else: like a 
library in another language.

● Started working with Java's JSoup HTML parsing library.
● Chose JSoup because it seemed intuitive, and uses jQuery-like selectors to 

pick out parts of the HTML.

● Finally came up with something simpler than our initial idea, yet 
rigorous.



Tutorial I

● 3 different loop structures: typical for/while, and a special 'loop' which is 
very much like a for-each:

int[] list = [1,2,3]
loop(list i) 

print(i) /*prints 123*/

● List initializers, unlike Java, may be passed as arguments of functions:

print([1,2,3])

function int foo(int x){
int a = x
double b = 2.5
boolean = true /*or false*/
if(a) {return 2} else {return 3}

}

function void main(){
string s = "Hello World"
println(s)

}



Tutorial II : The Return

● Special types: urls and selectors.

● url 

-> Created from a string using the colon operator:

string columbia = "http://www.columbia.edu"
url c_link = :columbia

● selector

-> Used to pick out specific parts of html

-> Syntax: <<element_name@attribute>>

<<element_name.class_name@attribute>>

-> For example:
selector s = <<a@href>>

string[] links = c_link * s 



Example
/*The following demo crawls site specified in startUrl, and returns all
active links the page, and all active links on those pages. */
function void main() {

url startUrl = :"http://www.cs.columbia.edu/~sedwards/software.html"
url[] children = getChildUrls(startUrl, 2)
println("Completed!")

}
function url[] getChildUrls(url u, int depth) {

if (depth == 0) 
return [u]

else {
string[] links = u * <<a@href>>
url[] activeChildren = []
loop (links l) {

if (live(:l)) 
activeChildren = activeChildren + getChildUrls(:l, depth-1)

}
return [u] + activeChildren

}
}
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Implementation
● Compilation

-> Simple .java file using -s option

-> Includes standard helpers in the output Java file

-> Java file requires references to SUrl, SSelector and SAttSelector

classes, and JSoup Java library

-> -e option 
-> compiles the input into .java

-> jars it with the helper classes and JSoup library

-> runs the resulting executable .jar file

● Tests
-> Test java output and actual output when executed

-> Over the course of the project built up suite of 74 tests

-> Execute test suite with 'make test' or 'make testexe'



Lessons Learned
● Splitting up the work: harder because of the interdependencies of 

different portions of the compiler. Could potentially lead to a lot of 
bugs, confusion, and delays.

● Unforeseen ambiguities in syntax and semantics: took up more 
time than we had planned for.

● A better intuition on such issues before we started could have left 
us with more time to enhance certain parts of the language.

● Coding in Ocaml: @&*$^#! -> Steep learning curve.
However, the idea of parsing, scanning, and abstract syntax trees 
made much more sense mostly due to the nature of the functional 
style of programming in Ocaml.

● Debugging: Learnt the most because bugs can exist at the most 
obscure levels.



Who Did What

● parser.mly/scanner.mll: Matt, Alex
● ast.ml: Matt, Alex, Akshata
● sast.ml: Matt, Alex, Kate, Akshata
● Makefile: Matt, Alex
● spidr.ml: Matt, Alex
● jhelpers.ml: Matt, Alex
● printer.ml: Matt, Alex, Akshata
● Testing: All members
● Final Report: Kate (in collaboration with Matt, 

Alex, & Akshata)


