Drone War

&5 COLUMBIA | ENGINEERING

7 Vv The Fu Foundation School of Engineering and Applied Science

The Drone Language
A Stack-Based Imperative Language
Fall 2012
COMS 4115

George Brink
Shuo Qiu
Xiaotong Chen

Xiang Yao

Drone War

Content
Chapter 1: INtroduction & PUIPOSE........ciimissnssanns 5
1.1 PUrpose & BaCKZIOUNM.......ccouiimimsississssissasssssssssssnnens 5
1.2 The Drone LANGUAZEccuiiienmsmsnscsmsisssssssissnssssssssssasssssssssssnnens 5
1.3 The Drone War GAIE ... s ns 6
1.3.] GAINIE OVEIVIEW ...ereuecereererresressesesesessessessessessessssessessessessessesss et sessessessessessssessessessessessessssessessessessessenssssssessessessense 6
R T0 A) - PP 6
RS T0C 20] (o) U PP 6
1,314 BUILET oottt ettt b st s ss s £ £ R RS R R £ bbbt 7
1.3.5 DITOMNE ACLIOTIS cueureeeeueiueesseeseesessseseesseessesssesssesssesssessse e bbb s R AR R bbb st 7
3 0 8
08 1:1 0 10T W 1L 1) o 9
B O 4 E e) o 9
2.2 Compiling and running DIONEeS.... s s sns 10
ST VD g T2 0] U 74 0L, 10
B L1 1 U0) 11
2.5 Labels aNd JUIMPS cciiciiieiissnsssssssssssssssssssssssssssss s sssssssssssssssssssssssssssss st sas s ssssssssssssssssssssssssssssssnsssns 11
2.6 GUI OUEPUES.c.ciiiierierieiinininisisssssssssssssssssa s s s s s RE R AR AR AR AR AR SRR SRR R AR AR R R R R R R R AR R AR AR 13
2.6.1 TeXt STALUS Of DIOMES ...oureurieeeeeeereetectseeseesseese s e s bbb s s ss s s sa s b bbb s b s aees 13
T < N =) ¢ = T 1 PPN 13
Chapter 3: Reference Manualsssns 14
3.1. LANGUAZE SYNTAX wiverierierserseissississsssssmsssssssnssnssnsssssssssssssssssssssssssssssssnssnssssssssessesssssssssssssnssnssnssnssnssnssnssanses 14
311 KEYWOTAS oueureereerresessereessessesseessessessesssessessessssssessesssessessessesssessessesseessessessesssessesssessessesssssessesssssnessessessnessessessnsanes 14
3.1.2 Player defiNed NAIMEScccuriereeeeereetectseesees s esseesse s e s s s st s s s s sss s s s bbb s s saees 14
200 0 T 010 430 4) ¢ Lt PPN 14
31,4 FUNCLIOMIS c.octeeeeeeueeueesse s et s st sessseesseess s e bR SRR £ bbb s b e 15
305 LiADEL ettt R RS R AR R R R 16
3.2. FUNAAMENTAl TYPES ceruriimrmsmsamsssmssissssississsssss s ssssssssssssssssssss st sss s st sssas s sssssssassssssssssssssssssssssss sassss 17
R 20/708 B 01 Y < PP 17
R T = 10 1o) (= U U PPN 17
3.2.3 FIAES ciuueeeeueetreeuseesseessessseesse s bbbt sesss s s ss s E SRR SRR AR R R bR R RS 17
3.3, Variables ... 17
B 00+ T3 o= L0) o 18
R T 0 N 000 Lo Tol 0] oL = L o) PPN 18
3.4.2 LOZIC OPEIALOTS woucereueucesceeesessessessessessesessessessessessesssses s sessessessesss et st sessessessesss st sessessessessssssssssessessessessesssssssnsaes 18
I NS T 1o =4 Tolr o0} 1 1] Vo1 30 PPN 18
344 CONAILIONS wovueereereeueeseesseiseesseeseseesssessesssessssesseesse s s bR EseER RS ER R AR bbb e R b s ees 18
3.4.5 Variable ManiPUIation .. sssesessse st sesssessssssse s sssse s bbb s sssssssesssens 18
3.4.6 STACK MANIPUIATION..ceurieereeereeeeeeetseesectseeseesseese s bbbt s s e s s s e bbb st 19
3.5. Game SPeCifiC fUNCHIONS ...covrerririinr s 19
35,1 IMIOVE woureereureeereetseesseesse s eesse e e bbb s s s s s s x££ 2R SRR RS R LR R R e R R 19
3.5.2 SEOP reuureeeereetreesseesetsse s eesse e bbbk s RS RER x££ AR SRR AR R SRR ER AR bR R R R 19
35,3 SO0t ettt ettt bbbt s s s R R R R RS R AR bR R R bR 19
354 LLOOK ettt ettt bbbttt s R AR SRR AR e R bR 19
3D D IS F D ettt ettt bbbttt s R R R R R RS R AR R R R 20
35,0 IS ALY oot RR AR RSB R R e 20
R TR TN U] TP 20

Drone War

R JE TR - TP 20
3.5.9 GETHEAIN. ..ottt ettt bR R SRR bR bR 20
3.5.010 TANMA O cvurrersresseeesseerseesseessseesssesssseesseeess s eesseees s s8R R R R RS R R R RS R e 20
3.6. PSEUAO-COMMANUS ..uvuieresesmsssessssssssssssssssssssssssssssssssssssss s sass s s s s AR AR AR AR AR AR AR AR AR R AR 21
R 2300 010 ' e L) o U 21
G T07 /8 10 o) o 13PN 21
Chapter 4: Drone-BasiC ... ssses 23
4.1 The conditional DranChiNg ..ottt sb s b ss s 23
4.2 The CONAItIONAL JOOPS oureuriereereereetect sttt seesessse s et sess e se s s es s bbb bbb s b 23
4.3 THE COUNTEA 100D oeurieurieurienreireeneeese ettt seesses e ss e s s ss s s b b bbb R 24
4.4 User procedures and fUNCHIOMNS ..o reereeseeseesesesesesssesssesssesssessssssssssss st sssssesssssssasssssssssasssssssns 24
I U =0 PPN 24
4.6 The game-related fUNCHIOMNS ..t seesse s sse s s s bbb b sa s 24
4.7 TRE SEATCH PIOCEAUIEceuieeeeeeeeeeectseesees st bbb bbb ss s s s bbb bR 25
4.8 Comparison between the base Drone language and Drone-BasiC.......coneneneeneeneeseeseesseesneens 25
Chapter 5: Project Plan..... v csssssssssnssns 27
LS T o (0 27
5.1 71 PLANIING cotrittetreeueeuseeseessetseessessessesssesesssessseesseesse s s bR seER RS R AR bbb e b e 27
5.1.2 SPECITICATION coevveereeeee ettt ettt seesse s seesse s bbb bR s R R bbb s bbb 27
5.1.3 DEVEIOPIMIENT ettt sesseesestseesse s seesse s bbb s bR R R bbb s b b 27
5114 TESTINE ceuevueeeeueeseeuseesseessesseesse s s s s sssesss s sss s bR SRR R R R R bbb s b b e 28
5.2 Programming StYle GUIAEcuiimnmneiiminisssssssssssssssssssssssss s s s sssssssasssssssssssssssssssssssssasass 28
5.2.1 General Programming PrinCiPLes..... o reiecenseiesssesssesssesssessssssss s esssssssssssssssasssssssesssees 28
5.2.2 Keep TeStNG EVETYtRING .ot eese et sess s s sss s st sns s 29
5.2.3 KEEP COMMUNICATIONS couvreuieureereeeeeseetseesseesseessesssesssesssesssesssssssessesssesssesssasssessssssss s ssss s ssssssssssssssasssssssesssees 29
5.2.4 USing Version CONIIOL TOOL .. seeseeeseeseeseeseissessesesssesssesssssssessssssss s ssssss s st sasssssssesssees 29
5.2.5 MULUAL COAE REVIEW ..ccoreercreeseescermeerees s s sssess s ssssssss s ssssssessssssssssss s ssses s sssesssssssssssssessssessanes 30
5.2.6 Code Documentation & COMIMENLS ... rreereesmerserseesssessssssessssessssssssessssessssssssssssessssessssssssessssessanes 30
5.3 Project TimMeElINe.. ..o ssssss s st ss s s s e s s s s s s sas s 30
LI 3 o 1) =T o 0, 31
5.5 Team ReSPONSIDIlILY ..o s s s s 33
5.6 Development ENVIFrONMENt ... sssssssss s sssssssssssssssssssssssssssssssssassss 34
Chapter 6: Architecture Design ... ——————— 35
L D 223 Fea Q0 L] o4 35
6.2 Interfaces Between the COMPONENTSoccvinmiimsmsmsmsssmsmsssssssssss s sns 37
6.2.1 Scanner (scanner.mll -AUthOTr: GEOTZE). ...t essees s bbb sesssssssesssees 37
6.2.2 Parser (parser.mly -Author: George, Xiaotong, Xiang)c.ceeomeenseesmesnmeensesssessesssessssssessees 37
6.2.3 AST (QST.INL -AULNOT: GEOTZE) cuieuueeereesseesseeseesseessessseese s s sess s sess s ssssssse s bbb b s s s ssees 37
6.2.4 Arena (arena.ml -Author: George, Xiaotong, Xiang, SHU0)ccoeeemrenreenmrenmeenseeneeeseeeseessessseeaens 37
6.2.5 Drone (drone.ml -Author: George, Xiaotong, Xiang, SHU0)cccnrenmienseennenseneeeseesseseseesens 37
6.2.6 Bullet (bullet.ml -Author: Xiaotong, Xiang)cceeessesseesssssessssssssssssssssssssssssssssesssees 38
6.2.7 GUI (gui.ml -AUthOr: ShU0, GEOTZE) w..ouveeeeueeereeeereeseieee et sesssess s sss e ssessss bbb s sasssssesssees 38
6.2.8 Helper Funcs (utils.ml -Author: Xiaotong, Xiang)eeneseemeeseessssssessssssssssssssssssssssssees 38
6.2.9 Drone-Basic (scanner_dbt.mll and parser_dbt.mly —Author: GEOTZE)curvenmerreerreerreemreesreennens 38
Chapter 7: TeSt Plan ... sssssssssssssssssssssssssssssssssssans 39
780 B0 (U o T, 39
0 000 R 021X < PP 39
8 O 03120 013 o 1 N 40

Drone War

7.1.3 VATTADLES .ottt et sessese st s ss s ess s e s beER SRR bbb bbb 40
7.1.4 ATItNMETIC OPEIATOTS couvrurieeeereeeerereessesseseessesseseessesses e st st s s s e s s R s eE s e r s nr s 41
7.1.5 LiOZIC COMSEANES...ceurieusreueemeesseeseesseeseessesssessseesseessesssessse s bbb s bR s R AR bbb s b b s s e 42
7.1.6 LOZIC OPEIALOTS weucercueuenceersessessessessessesessessessessessesssses s sessessessesss et st sessessessesss st sessessessessssssssssessessessessesssssssnsaes 42
7.1.7 STACK MANTPUIATION . ieurieereeereeeeeeetseesectseeseesseese s s bbb ss s s ss s sa s e bbb st 44
7% 98 20 20 o ot o) o LT PPN 46

728 R 7 o TR 47
0 00 O 07 PP 47

728 00 1 PSP 48
728 00 100 4 Vo o TP 48
728 00 1 20 1100) PSP 48

728 00 T o TP 49
7. 1. 15 SAILY et e ss e s s s R RS R R R RS ERenE 49
78 0 T U] PSP 50

728 00 PO 50
71,18 GEEHEAIEN oottt et bbb s b bR bbbt 51
7.1.19 RANAOIM.c.cteiuieeeeeeisseesseiseesse e s s st sesss s seesss s e seEb R R SRR R R bbb st s 51
7.1.20 ENALESS LOOP coureuieuseeureiseesseiseesesssesesssesssesssesssssssessse s st sessse s ss s sss s s s bbbt s s st sesssees 52
7.1.271 CONAItiONAL LOOP courreurieureenreereeeeeseesestsessseesseessesssesssesssesssesssss st sesssssssssssessssssse s s bbb sasssasssesssees 53

70 0 PSP 56
71,23 Hf-@IS ettt sttt b et e s s s R AR RS R AR bbb e R bR 57
7.2 Integration Test: An ExXample Programs........sssssssssssssssssssssssssssssssas 58
7.2.1 DTONIE BEISEIK ..oueeieieuiiseenseeneeeeissetest e sssesssessse s bbb bbb bbbt 58
7.2.2 DIONIE RADDIT ettt ettt b s s bbb 71
Chapter 8: LeSSONS Learned.........osmmsses 80
£ 0 R CT-T0 0 o0 53 o 1 G 80
8.2 SHUO QU e 80
RIS € =1 17 £ T L 81
8.4 Xia0toNg Chem ..o e 81
L] 0= 1 L 83
SOUICE COAE LiSTING ..uuiuiuiiiirninicsismsssssssmssssssss s s ss s s sss s ss s e s e m s e p R s e e 83
1o SCANMET ML .ottt es bbb s s SRS £ ER R bbb s bbb 83

2 PaAT ST PLY oottt e s s R £ R R AR R R R bR 85

B AST N oot R RS RS R R R RS E 88

LD) (10 0 (=0 1 0 PPN 91

5 ATEINIAIMNL ettt b et b e s ea s s £ £ R R R AR AR bRt 100

6. TNMATTLINI] oottt bbbt ea s s s £ £ R AR AR 104

70 GULIMNIL oottt bbbt b s a s £ £ AR AR AR bbbt 105

B DUILEEIM L ettt ettt a bbb bR s R R bbb R R R 108

O TSN Lttt ettt ea s s bR SRR RS R R R R R AR R R R 110
10. scanner_dbt.mll (George Brink’s individual contribution)......ccueemenneemeenseenseensesnseeseesseceseenns 110
11. parser_dbt.mly (George Brink’s individual contribution)ccueeonenseenneenseenseenseeneeeseesseeeseenns 113

Drone War

Chapter 1: Introduction & Purpose

1.1 Purpose & Background

Drone War is a video game, which belongs to the “programming game” genre. As in all such
games, the player has no direct influence on the course of the game. Instead, a player writes a
program, which acts as an Al for the game characters and watch how those characters interact.
The Drone War is based on a concept of a battle-royal between several drones (each with its
own Al program). Drones are randomly dropped into the arena and fight with each other until
only one is left or the time limit for the battle is exceeded.

Since the Drone War’s primary concept is a battle, the language for the Als used in it should
encourage writing fast, predictable, and efficient algorithms. On the other hand, the Drone War
is essentially a game and its intended audience is as wide as possible, but not all potential
players know the art of programming and have experience in playing with the programming
game. So, in order to lower the threshold, the language for drones should be simple and it
should have as few operators and concepts as possible.

To satisfy these requirements, the Drone Language was designed.

1.2 The Drone Language

Drone language is a stack-based imperative language. The stack accepts only integers,
booleans, and flags. Integers can be used as arithmetic operands or parameters of the functions.
Booleans are subject to stack manipulation operations and as parameter for conditional jump
operators. Flags are subject to stack manipulation operations and special functions which check
the flag is it of the expected kind and leave boolean true or false on the stack. Each word read
from the source code is either a comment, integer, boolean, call to a user defined function,
label, variable, or operator.

To make the Drone Language easier to use, we added conditional execution, endless loops
and conditional loops. Those compound statements are considered to be “a syntactic sugar”.
They are not executed directly, but translated into a set of labels and conditional jumps.

Drone War

1.3 The Drone War Game

1.3.1 Game Overview

The battle in the Drone War game happens in fixed-size arena and with multiple drones
acting individually, under control of Al programs written by players. Each Al file passed to the
game from command line is considered to be individual drone (it is possible to run several
drones against each other under the control of the same Al). Before the battle starts, drones
can be separated into different teams and if drone’s Al is smart enough, several drones of the
same team can help each other.

Drones can move around the Arena, look around and shoot Bullets. Bullets are flying to a
specified distance in the specified direction and once distance is reached or Bullet hits the wall
of the Arena, Bullet explodes. The explosion of the Bullet damages all Drones which are close
enough. Once Drone life reach 0, it considered “dead”.

The concept of the “fighting machine” and simplicity of the Drone Language lead to the very
strict unforgiveness of the errors in programming, any error in Al is considered to be a fatal one
and if it happened, the drone instantly become “brain dead”. There is no graceful error
handling in the drones’ Al. The drone which encounter such problem become frozen and while
it is not technically dead yet, it does nothing for the remainder of the battle and become an
easy prey for the opponents.

The flow of the battle is controlled by ticks. Each operation performed by the Al takes
exactly one tick to complete. The moving of drones and bullets also happens under the same
tick counter. That ensures that each drones are moving simultaneously and the Al which acts
more efficiently has a better chance of winning against a not so efficient drones.

The battle continues until only one drone is left in play or battle for the predefined length of
time.

1.3.2 Arena

Arena is a square of size 1000*1000 units enclosed by impenetrable walls. Drone which hits
the wall receive some damage. Bullet which hits the wall immediately explodes.

1.3.3 Drone

In the arena, Drone is represented as a land vehicle with a freely turning cannon (meaning a
drone can move in one direction while shooting in another). Each Drone has 100 health points

Drone War

at the start of the battle. Once drone’s HP reaches 0, it cannot do anything and leaves its body
in the arena.
At the start of the battle, drones are put on the Arena at random X and Y coordinates.

1.3.4 Bullet

Bullets are shot by drones. They are not controlled by players in any way. Bullet always flies
until it reaches the specified distance or hit the wall of the arena.

Bullet’s explosion has a radius of 50 points and damage received by the drone inside the
blast radius is proportional to the distance from the center of explosion. If a drone was hit
directly it receives 50 points of damage. If distance to the epicenter was 1 point, drone receives
49 points of damage. Distance of 50 points or more is completely safe. A drone can be damaged
by its own projectile if it blows up close enough. Bullet’s speed is 5 points per tick. A Bullet
cannot travel for more than 500 points (half of the arena).

1.3.5 Drone Actions

1.3.5.1 Move

Drone can move around the arena by issuing command: move with one parameter direction.
Once the command is issued, the drone starts moving in the desired direction until next move
command changes it or the stop command cancel the movement. Drone does not have “mass”
so there is no need to worry about inertia. If drone hits the wall of the arena it loses 10 HP as a
result of the hit. The movement speed is set to 1 unit per step.

1.3.5.2 Look

Drone can see other drones and walls of the arena by issuing a command: ook with one
parameter direction. Look has an “angle of vision” with the side angle of 30 degrees. This means,
the drone sees not just objects on the straight line but in the area of a triangle. The distance to
the wall is calculated by the exact direction of the look.

The look command returns a list of tuples: [dronel [drone2 ...]] wall

Where each tuple consists of a flag (what this tuple describes?), direction (exact direction
the object), and distance (distance to the object). The ‘type’ flags can be one of FOE, ALLY, or
WALL. The WALL tuple is always the last one in the list and acts as an indicator that there were
no more drones seen in the given direction.

Drone War

1.3.5.3 Shoot

Drone can shoot by issuing command: shoot with two parameters direction and distance,
which mean where and how far the bullet will fly before exploding. Drone can issue a shoot
command once every 10 ticks. This timeout represents “gun is reloading” or “cooling off
period”. If drone attempts to shoot more often, the shoot will return FALSE. If shooting was
successful — TRUE.

NB: this return code does not tell was the target hit or not.

1.4 GUI

The GUI of the Drone War Game shows the state of the battle tick by tick, as well as stats of
each drone on the battlefield.

The GUI representation of the arena depends on the size of the window and arena does not
always look like square but it shows the correct position of each object.

The detail information of drones is displayed to the right of the arena. “The total ticks”
shows the total number of ticks since the battle started. And “Al ticks” of each drone will show
its live time.

The drones are drawn as a triangle with a line coming from its center. The direction that the
acute angle pointing at is the moving direction of drone and the direction of the line is the
drone’s gun direction. Also, drones in different teams will be displayed in different color with
their names and health near them. When a drone is dead, a red cross will be shown over it.

The bullet in GUI is a black solid circle and when bullet explodes, it will be a red solid five-
pointed star that we can easily find out whether a drone is damaged by this bullet.

Drone War

Chapter 2: Tutorial

2.1 Getting Started

The idea is to create a drone to beat others’. As to “write” a drone, you may need
operations like: dup, drop, dropall, swap, over, or rot to manipulate the stack. Operations like
read and store can help declare or use variables. Labels in conjunction with operations Jump
and jumpif can help build a complex control flow (or you can choose the easier way: use begin,
while, again to make loops and if, else, endif for branching; just like in any high-level
programming language). Like in other languages and, or, and not are logic operators to deal
with boolean. As stated, Drone language is a game language thus, there are several game
oriented functions: move, shoot, look, wait, getHealth, isFoe, isAlly, isWall. By using these
functions and operations above, a programmer can easily create a smart drone to fight with
other drones.

Here is a simple example of a drone:

// This drone is a kind of wimp.
// It continues running from one wall to another until dead

begin // start of the main loop
0 360 random // randomly pick a direction
direction store // save the randomly picked value
direction read move // move to the direction
begin // move to the wall stop before hitting
direction read look // Look forward.
begin
iswall not while // If object is not a wall,
drop // ignore direction
drop // and distance to it.
again
drop // ignore direction to the wall
20 > while // If distance to the wall is more
again // than 20, then repeat the loop.
stop // Stop moving once wall was reached.
again // Repeat the main loop forever

Drone War

2.2 Compiling and running Drones

In the Drone War, each Drone file contains a complete Al for exactly one drone. The files
with a text of the Al should have an extension .dt.

To add Drones to the game, player just passes files with Als to the game engine in the
command line.

It is almost meaningless to pass single drone to the game, since it would be the only one on
the arena and the battle finish immediately with a “winner by default”. Usually, the game starts
with passing several drone files to the game engine:

./DroneWar dronel.dt drone2.dt drone3.dt drone4.dt

Teams can be specified by adding -t key between drone files:

./DroneWar dronel.dt drone2.dt -t drone3.dt drone4.dt

Here, the first two drones will fight for themselves, but third and fourth will be a team
mates.

Beside the -t key, the game engine recognizes two other useful keys: -D and -q.

The -D enables the debug mode for all drones passed after it. For example:

./DroneWar dronel.dt drone2.dt -D drone3.dt drone4.dt

The first two drones will fight as usual, but for the last two, at the start of the battle, the
game engine will create a .dt.decompiled file which will contain the exact list of bytecodes
which would control the drone’s behavior. All labels will disappear and all jumps to labels will
be converted into absolute jumps to the operation.

After the battle started, each drone in debug mode will add a line to the .dt.debug file. In
this file the player will find which exact operation the drone was supposed to perform at some
tick and what was the contents of the stack before the operation.

This mode is useful for finding errors in the Al and detailed understanding what are the
high-level compound statements actually are.

The -q flag disables GUI completely. This can be used to considerably speed up a battle. For
example if player wants to gather statistics on how better or worse one drone actually is. The

individual battle cannot answer this question with a good degree of certainty because drones
appear at random position in the arena and some possible randomness in the drones’ behavior.

2.3 Variable types

Integer, Boolean, and Flags are fundamental types in the Drone language. Integer and
Boolean are the standard types which can be found in any other language. Flags, on the other

10

Drone War

hand, are specific to the DroneWar game and can be one of Foe, Ally or Wall. Flags have only
one purpose, they are used to indicate what the drone sees. The Drone language has several
functions which use flags as input and return a boolean type value to tell if top of the stack
contains a flag of the specified kind, it’s, say did look function detected a foe or an ally.

Below are some examples about the usage of fundamental types:

// some arithmetic operations and compound statements

begin // start of the loop
a read // read contents of variable a
9 < while // if it is less then 9, stay in the loop
b read // read contents of variable b
2 + // add 2 to it and leave result on stack
store b // save top of the stack to variable b
a read 1 + a store // increment contents of a
again // repeat the loop
// example of a flag operation
60 look // £ill the stack with tuples
isfoe // does the top of the stack contain FOE flag?
if // if yes
shoot // then shoot
else // if not
move // then move
endif // end of branching

2.4 Functions

Player can define functions by starting it with “sub” and ending with “endsub”. Between
“sub” and “endsub” is the function’s body. All the names of functions are global. So, never try
to define two functions using the same name. Also, one function cannot contain another.
Functions can be called by simply using their names.

Below is an example of definition and call of a function:

sub increment // define a function called “increment”
1+ // the function will put 1 on the stack
// and add it to whatever was on top of
endsub // the stack before the call
a read 1 + // direct use of the 1 + operators
a read increment // call to a function

2.5 Labels and Jumps

11

Drone War

Instead of (or in conjunction with) using high-level compound statements as in examples
above, the same algorithms can be created by using labels and jumps.

Labels are defined by adding colon to the word and a program can do unconditional and
conditional jumps to these labels.

The simple unconditional loop is a just a:

labelA: // define a point in the code
doSomething // call a function
labelA jump // and repeat it indefinetely
The conditional branching is a little more difficult:
a read 9 < // is contents of variable less than 9?
labelDone jumpif // if yes, then goto the label
doSomething // if not, do this
labelDone: // Jjust a label
doSomethingElse // this will be done either immediately

// if a is less than 9, or after the
// the doSomething if variable a is
// equal or more than 9

Conditional loops are done by combining this two technics:

labelStart: // the start of the loop

a read 9 < // is contents of variable less than 9?
labelDone jumpif // if yes, then jump out of the loop
doSomething // if not, do this

labelStart jump // and repeat

labelDone: // once variable become less than 9,

// we exit the loop here

12

Drone War

2.6 GUI Outputs

2.6.1 Text Status of Drones

The text part of the GUI shows total ticks each Drones runs as well as other information
such as “Team ID”, “Al Ticks”, “Moving”, “Gun cooldown” and etc.

2.6.2 Arena GUI

Each Drone in the arena is displayed as a triangle with a “gun” on it, the direction of the
“gun” shows in which direction the Drone is searching or shooting. And the direction of drone’s
triangle shows where is it moving (or moved last if it is standing still right now). Bullets are
displayed as black spots which moving faster than Drones. Once Bullet explodes, a “star” is
displayed to show the range of damage. What’s more, on the top of each Drone, its name and
health are displayed. Once Drones’ health becomes 0, there is a cross displayed over the Drone
to show its death.

N . rabbit2
rabbit movingshooter >4;Q

=

turret
A 100

N

movingshooter?

é‘ (Q0

13

Drone War

Chapter 3: Reference Manual

3.1. Language Syntax

3.1.1 Keywords

Keywords used by the language are case insensitive (i.e Dup is the same as DUP or dup). The
list of known keywords is:

dup drop dropAll swap over rot read store jump jumplf
sub endSub move stop shoot look wait getHealth random mod
isFoe isAlly isWall and or not if else endif

begin while again

3.1.2 Player defined names

Unlike keywords (which are case insensitive), names defined by the player are case sensitive.
Those names are used as names for variables, labels, and user defined functions.

3.1.3 Comments

Single line comments, start with a word // and continue to the end of the line. E.g. each of
the following lines contains a comment

// whole line can be a comment
2 2 + // or comment can start after some compilable words
// any word appeared after first // is still a comment

Multi line comments, start with a word /* and continue to the first */ word. The nested
comments are not supported.

/* Inside here is
a comment */

14

Drone War

3.1.4 Functions

3.1.4.1 Structure of Function

User functions are marked with a word "Sub" followed by a function name, any number of

commands and ends with "EndSub". It is not allowed to redefine any function or having a

function inside a function.

Sub foo // correctly defined function
these words a body of a function

EndSub

Sub foo // this is an error: function redefinition
another words

EndSub
Sub foo 1 2 /* correctly defined function,
words 1 and 2 are body of the function */
Sub bar // error: sub functions are not allowed
34
EndSub
EndSub

Sub myAdd + EndSub // correctly defined function

3.1.4.2 Call of Function

The call to the user defined function is just its name. E.g. assuming we defined the function

‘myAdd’ as in the previous chapter, then the next two lines will do exactly the same:

2 2 +
2 2 myAdd

15

Drone War

3.1.5 Label

3.1.5.1 Structure of Label

Labels start with a letter followed by any number of letters, numbers, and *_’ (underscore)
symbols. Labels ended with a colon:

this_is label:
this-is/not_a.label:
123456: // also not a label

Of course, the white-space character split sequences of characters into sequence of words
and the next line will be understood as four words and a label with the name 'label':

this is not a label:

3.1.5.2 Unconditional and conditional jumps to the label

Operation "unconditional jump to the label" is marked by adding, "jump" to the name. The
next line shows an unconditional jump to the labels defined in the previous example:

this_is label jump

Conditional jump (marked jumplf) checks the top of the stack first, if there was a true value,
then the jump happens, if there was a false value, then jump does not happen and the
execution is passed to the next operation after jumpif.

3.1.5.3 Local & Global Labels

Label visibility is restricted to the function. For example:

Sub foo
2
1bl1l: 2 +
1bll Jump // ok
1bl2 Jump // error
EndSub
1bl2: 1bll JumpIf // error

Here, label /b/1 is defined inside a function foo and jump to it is allowed. The label /b/2 is
defined in the main program and jump to it is allowed from anywhere from the main program,
but not from the inside of user defined function. Conversely, the conditional jump to /b/1 will
fail since the label is defined inside of the function, but the jump is attempted from the main
program.

16

Drone War

3.2. Fundamental Types

3.2.1 Integer

Integer is word which consists solely from characters 0-9.

123 // one integer
123 // three integers

These words put the specified integer directly on the stack.

3.2.2 Boolean

Booleans are two words "true" and "false" which represent the logical values and are
subject to logical operations and conditional jumps.

3.2.3 Flags

Flags are game specific type. They are produced by the function Look and explain what
drone sees. There are four such flags: Foe, Ally, and Wall.

3.3. Variables

Variables are words started with a letter and any number of letters, digits and underscore
symbols that directly followed by keywords "store" or "read". The first one takes the top of the
stack and stores it into the variable (creating the variable in the process if necessary). The
second one reads variable and puts its contents on the stack. E.g.

2 abc store

In this example, we assign 2 to a variable abc so that we can use it in the future.

abc read

Get the content of variable abc and push it into the stack. In this example, we push 2 to the
stack because we assigned 2 to abc in the previous example.
Variables can contain any of the three fundamental types: integer, boolean or flag.

17

Drone War

3.4. Operators

Operators are always taking some number of values from the stack and return some values

back on the stack:

In the next examples, the top of the stack is considered to be on the left and the $ word

symbolizes the end of stack

3.4.1 Arithmetic operators

+ bas$->(a+b) s

- bas$ ->(a-Db)Ss

* ba$->(a*b)s

/ bas$->(a/b)s

mod bas$ -> (amod b) §

~ bas$->(a” b) s
3.4.2 Logic operators

and bas$ -> (aand b) $

or bas$ ->(aorb)s$

not as$ -> (not a) §
3.4.3 Logic constants

true $ -> true $

false $ -> false §
3.4.4 Conditions

= bas$ ->(a=Db)s$

< bas$ ->(a<b)s

> bas$->(a>b)s$

3.4.5 Variable manipulation

name store

as ->$

Store value into variable "name", create the variable if necessary. Always read the first on

the stack and value it to “name”.

name read

$ ->a s

Read value from variable "name". Die if such variable does not exist.

18

Drone War

3.4.6 Stack manipulation

drop cba$->bas
dropall cbas$->3s

dup cba$->ccbas
swap cba$->bcas
over cba$->bcbas
rot cba$->achbs

3.5. Game specific functions

3.5.1 Move

move direction $ -> §$

Start moving in the specified direction

3.5.2 Stop

stop S => S

Stop moving

3.5.3 Shoot

shoot direction distance $ -> bool $

Shoot in the specified direction and distance. This function returns boolean value:
true -> shooting was successful and projectile is on its way
false -> cannon did not have enough time to cool-down

3.5.4 Look

look direction $ -> flagl dirl distl ... WALL dir dist $

Look for other drones and walls in the specified direction. The function returns one or more
triplets: type of the object, exact direction to it, and distance to the object. Type of the object is
a flag from the set: FOE, ALLY, or WALL.

The WALL triplet is always the last one, so it can be used to detect an end of the look’s
output.

19

Drone War

3.5.5 isFoe

isFoe flag $ -> bool $

Checks is the top of the stack contains a flag FOE and returns corresponding boolean value.

3.5.6 isAlly

isAlly flag $ -> bool $

Checks is the top of the stack contains a flag ALLY and returns corresponding boolean value.

3.5.7 iswall

iswall flag $ -> bool $

Checks is the top of the stack contains a flag WALL and returns corresponding boolean value.

3.5.8 wait

wait ticks $ -> §

Be idle (do nothing) for specified number of ticks

3.5.9 getHealth

getHealth S -> health $

Put current drone's health on the stack

3.5.10 random

random b a $ -> integer $

Make a random integer in the range [a,b] (inclusive) and return it.

20

Drone War

3.6. Pseudo-commands

All operators and game-specific commands described in sections 4 and 5 take exactly are
executed directly by the game engine and take one tick to perform. The next set of commands
added for convenience. They are compiled by the translator into several simple operators and
can take any number of additional ticks to complete.

3.6.1 Conditions

Conditional branching is done by the means IF/ELSE/ENDIF. The stack should contain a
Boolean value before the IF. If this value is true, then the set of command which follows the IF
would be executed. If the value is false, then control jumps to the set of commands after the
keyword ELSE, or to the command which follows ENDIF, if the ELSE keyword is omitted. Nested
IF branching is allowed. For example, shoot if the top of the stack contains the description of
the enemy drone

isFoe if shoot endif

This code will be transformed by compiler into:

isFoe not endif label jumpIf shoot endif label:

3.6.2 Loops

3.6.2.1 Endless loop
The endless loop is the most simple one, it is defined by keywords BEGIN and AGAIN:

begin 100 500 random 0 360 random shoot again

This will make the drone to shoot endlessly to a random distance in a random direction. This
code is converted into a simple:

Ll: 100 500 random 0 360 random shoot L1 jump

3.6.2.2 Conditional loop

Conditional loops are defined by the same BEGIN and AGAIN keywords. Addition of the
WHILE keyword allows to leave the endless loop if top of the stack is false when execution
reach the WHILE keyword. For example, the cleanup after the LOOK command can be like this:

begin isEnd while drop drop again

This is code will be compiled into

Ll: isend L2 jumpif drop drop L1 jump L2:

21

Drone War

The WHILE keyword can appear anywhere inside the BEGIN-AGAIN block, this allows to
create loops with post-conditions or even with conditions in the middle of the block:

begin dup isfoe shoot endif isend while drop drop again

Both types of loops can be nested.

22

Drone War

Chapter 4: Drone-Basic

The Drone-Basic language was designed as an afterthought for the Drone War project. The
language itself is based in a Visual Basic and tweaked to allow special, game-related operations
and concepts.

The Drone-Basic mostly follows the syntax of Visual Basic: One statement per line of source
code, several statements can be grouped inside one compound statement, the language is
completely case-insensitive, only single-line comments started with apostrophe, user
procedures and functions.

4.1 The conditional branching

There are three types of conditional compound statements:

IF condition THEN statement

IF conditions THEN
statements
END IF

IF conditions THEN

statements
ELSE

statements
END IF

4.2 The conditional loops

There are two ways to do a conditional loops, with pre-condition and post-condition. Both
variants can use the keyword WHILE (continue the loop, while the condition is true) and UNTIL
(continue the loop until the condition become true):

DO [WHILE | UNTIL] condition
statements
LOOP

DO
statements
LOOP [WHILE | UNTIL] condition

All types of the conditional loop accept the EXIT DO statement which ends the loop

immediately without checking the loop condition.

23

Drone War

4.3 The counted loop

Just a regular FOR loop:

FOR variable=a TO b [STEP c]
statements
NEXT

The FOR loop also can be ended with EXIT FOR statement.

4.4 User procedures and functions

The user-defined procedures are following the Visual Basic's syntax:

SUB name (parameters)
statements
END SUB

Calls to a procedures are done with a special keyword CALL:

CALL name(arguments)

Unlike Visual Basic, the keyword CALL and parenthesis after the procedure name are
necessary.

The user-defined functions are also following the Visual Basic's syntax:

FUNCTION name(parameters)
statements
name = result

END FUNCTION

The function have to have at least one assignment statement where the function name acts
as a variable.

Parameters of procedures and functions are local to the procedures they are defined in. But
since those variables are still has global bindings - only tail recursion in user procedures or
functions are allowed. The use of other types of recursion can result in unpredictable behavior.

4.5 Variables

Variables in Drone-Basic are integer only (with the exception for the records returned by
STARTSCAN and NEXTSCAN function, see below).

4.6 The game-related functions

24

Drone War

Most of Drone-Basic game-related features are following the syntax for calling user-defined
procedures and functions:
The Drone-Basic has next set of procedures (which require a CALL to be called):

CALL SLEEP(ticks)
CALL MOVE(direction)
CALL STOP()

The SHOOT(direction, distance) operation can act as both function and procedure. In case of
a function — it returns a boolean value and can be used inside any conditional expression (in the
IF or WHILE/UNTIL loops). The true returned by the SHOOT means that the bullet was shot
successfully, the false — gun is still reloading. If the SHOOT is called as procedure — we ignore
the result of the SHOOT.

The GETHEALTH() and RANDOM(min, max) are regular functions which can be used in any
arithmetic expression.

4.7 The search procedure

The search procedure in the Drone-Basic language is the farthest operation from the
classical Visual Basic. It consists of two functions:

The search procedure is started by the call to a function STARTSCAN(direction). This returns
an object of the scan-result type:

var = STARTSCAN(direction)

The var here is not a single variable, but a collection of variables which represent a closes
object the drone saw in the given direction. The next object the drone saw can be accessed by
calling a function:

var = NEXTSCAN()

The NEXTSCAN function can be called several times until the list of objects seen by the first
STARTSCAN operation is exhausted. The extra calls to NEXTSCAN can result in a drone coma
with “Nothing to store” explanation.

The object read by STARTSCAN and NEXTSCAN is actually a structure with several elements:

obj.DIRECTION Integer. The exact direction to the object

obj.DISTANCE Integer. The exact distance to the object.

obj.ISFOE Boolean. The object is a drone and belongs to one of the opposing teams

obj.ISALLY Boolean. The object is a drone and belongs to the same team as the drone itself.

obj.ISWALL Boolean. The object is a wall.

obj.ISEND Boolean. The last object in the list of objects. After receiving such object it is not
allowed to call NEXTSCAN.

4.8 Comparison between the base Drone language and Drone-Basic

25

Drone War

Both languages allow the full control over drones. The text of the program in Drone-Basic is
a little easier to understand since it is a higher level language. But as a downside after
compilation to the IR it produces a less efficient code. Also while using the Drone-Basic,
programmer is unable to access some of convenient functions (like dropall) which result in a
necessity to write an extra code.

Here is an example of the same algorithm written in both languages:

drones/drone.dt

0 direction store
main_ loop:
dropall
direction read look
isFoe
shootIt jumpif
direction read 10 + direction store
main loop jump
shootIt:
dup direction store
shoot
10 wait
main loop jump

drones/drone.dbt

direction=0
start:
drone = startScan(direction)
if drone.isfoe then
direction = drone.direction
call shoot(drone.direction, drone.distance)
call sleep(1l0)
else
direction = direction + 10
end if
do until drone.isWall
drone = nextScan()
loop
goto start

26

Drone War

Chapter 5: Project Plan

5.1 Process

5.1.1 Planning

To make a decent design of the project, our team decided to start planning process earlier
right after we learnt what need to be included as parts of a language, which we believed was
the key to success. So as to make continuous progress and good communications within the
team, we first set up a short meeting after each lecture, and could share the latest updates of
the progress and discuss about what to do in the next few days. Besides, we set up Google Code
with SVN so as to keep all source code in good shape and up to date for everybody in the team.

For the topic of the project, our team first agreed on the designing rules, which were
“Interesting, Simple, and Efficient”.

5.1.2 Specification

An advantage of our team, was that we have an experienced leader who can always give
advice, indicate what to do. After discussing about several ideas, we agreed on that a
programming game would be attractive to most people and a stack-based language for it would
fit our design rules best. Since a stack based language is easy to use and any user who knows
nothing about programming would be able to make his or her own Al programs.

After handing in the proposal, we got help both from team leader and MICRO-C example of
how to create a language starting from building Scanner, Parser and Ast. Based on the basic
design of our language, we successfully agreed on and finished designing details for our game
part.

5.1.3 Development

Mentioned before, our team used SVN version control tool during the development process
to manage and keep every team member update up to date. So as to make sure each
component of the project works correctly, our team applied a waterfall approach, in which
each component was implemented and tested properly before we moved on to next step. First
of all, our leader gave us an overview description of the language outline by creating Scanner
and AST tree for us. Based on the language keywords and other basic information designed by
our team leader, we discussed about the future work and made sure nothing was missing.

27

Drone War

During when, Professor indicated that our language was somehow too hard to be

I “"

understood and might need more high level “meat” such as conditional execution, endless
loops as well as conditional loops.

After adding compound statements mentioned by professor into the language, our team
continued to work on the compiler part of our project, which includes processing of all
bytecodes, storing variables and subs. Some changes and corrections to the language design
was implemented as a result of a more close work on the actual compiler and attempts to
write a working drone Al. Tests also got implemented in this part.

After language part has been tested, our team then moved on to the game engine part of
our project. Built in functions such as move, look and shoot were created according to the game
description. Drone and Bullet were converted into object-oriented classes each containing local
variables inside. However, applying our language to a real game was the most challenging part
since multiple errors in different perspectives could happen.

When the game part was tested thoroughly, we created GUI part to make the game more
interesting and completed all functionalities.

At this time, together with the initial development of GUI, the compiler from Drone-Basic
was added. It was intended as a template for adding other languages of different styles and
paradigms into the Drone War game. Unfortunately we did not have enough time to complete
them to any degree of testing.

5.1.4 Testing

Since our team implemented a waterfall approach in the development process, every
component was tested thoroughly before we moved on to next part. We developed and tested
the project in order of Scanner, Parser, Ast, Engine, Arena and GUI. After unit testings, we
implemented integration testing on the whole project by creating testing Drones, and which
contained all possible syntax of our language. Based on the behaviours of Drones, our language
could be tested in a large scale. However, multiple bugs and errors did happen during both unit
testing and integration testing. Everyone in the team took part in the testing part and fixing the
bugs.

5.2 Programming Style Guide

5.2.1 General Programming Principles

During the early meetings, our team made agreements on the designing and programming

N

on the whole project, which were “Interesting”, “Simple” and “Efficient”. Later, after we learnt

28

Drone War

that stack-base language would be the best choice for us, we then decided to use a waterfall
approach to make development of this project. So as to keep everyone in the team concentrate
on the main ideas of, we made some extra programming principles to help us continuously
make progress, which included “keep testing everything”, “keep communication”, “using
version control tool”, “mutual code review”, and “code documentation”. Based on these rules,
our team could better understand work as well as communicate with each other in a smooth
way.

5.2.2 Keep Testing Everything

To development process in a waterfall approach, our team needed to make sure every
functionality and every single method had been tested correctly before we move on to next
step. Thus, our team designed and created several methods for unit testing for each
component. After the game was finished, a number of testing Drones were created so as to
implement integration testing. We all believed that testing everything from some time to time
can always lead to better products in the future.

5.2.3 Keep Communications

Decided in the first meeting, our team scheduled a short meeting after each lecture, which
could not only share ideas from the lecture, but also discuss about progress in the project. As
usual, our team leader separated works into pieces and assigned to every team member
according to our timeline, and this was also good timing to solve difficulties met during the
development.

Beside meeting, our team kept emailing everyone about the latest progress had been made
as well as TO-DO works for other. One could always send new ideas or possible improvements
about the project.

5.2.4 Using Version Control Tool

Recommended by Professor Edwards, version control tool was always the best choice for a
team work in programming. However, we strongly agreed with him since SVN made great help
in our project. Each team member’s code could be merged and pushed to server any time and
no one needed to worry about losing or ruining latest code.

29

Drone War

5.2.5 Mutual Code Review

Another great principle of our team, once new progress was made, team leader as well as

other team members would always do code review. Also, this was another way to reduce error

and make improvement of the project.

5.2.6 Code Documentation & Comments

Because of the complexity of the functional language like OCaml it was always a problem to

make other team member understand the code. And the fact that all team members were

beginners to OCaml also hindered us a lot. As a solution mentioned by Professor Edwards, we

always kept comments in the code up to date and wrote documentation for each new feature

of the component. What’s more, multiple warning symbols were designed to let others know

the information such as “something need to be improved”, “error might exists”, “TO-DO”, “not

working” and etc.

5.3 Project Timeline

Major milestone and progress of the project is indicated as follow.

® — ~Sep 12 Oct 12 Nov 12 Dec 12
02 09 16 23 30 07 14 21 28 04 11 18 25 02 09 16 23
1 ¢ Talk About Idea "
2 @] ¢/ Definition Language
3 @ ¢/ | Write Proposal
4 [@ o Fundational Framework
s [@ ¢ Scanner/Parser
6 B ¢ LRM
7 [@ o Drone/Bullet/Arena
8 @ o Engine
9 B ¢ Gu
10 O Testing
11 B7 Final Report
Date Milestone/Progress
9/10/12 Talk About Idea
Brainstorming
9/26/12 Language Definition

30

Drone War

Syntax Definition
Game Definition

9/29/12

Language Proposal

10/17/12

Foundational Framework

11/7/12

Language Syntax & Semantic Analysis
Scanner

Parser

Abstract Syntax Tree

11/15/12

Engine Part Done
Drone
Arena
Bullet

12/05/12

GUI Part Started

5.4 Project Log

The project log of our team is attached as follow, and please refer to SVN log for more detail

information.

Date Milestone/Progress

9/10/12 Talk About Idea
Brainstorming

9/12/12 Decided on project topic
Of The Drone War

9/16/12 Agreed on a
Stack-based language

9/24/12 Started Game design
& Rules design

9/26/12 Language Definition

31

Drone War

Syntax Definition
Game Definition

9/29/12 Language Proposal
10/03/12 First draft of Scanner, Parser
Created by team leader
10/15/12 AST tree generated
10/17/12 Foundational Framework
10/22/12 Studied MICRO-C compiler
New features to be considered
Based on it
10/24/12 Scanner, Parser and AST are finished
Start to work on Engine part
10/29/12 First draft of the Engine part byte code operations are finished;
Variables & Subs’ stacks and hash tables are created
11/5/12 Second draft of Engine is modified by team leader and multiple
changes are implemented
11/7/12 Language Syntax & Semantic Analysis
Scanner
Parser
Abstract Syntax Tree tested and finished
11/12/12 Start to work on game helper functions and other classes such
Bullet and Utils are created
11/19/12 Game helper functions are generated and first draft of the game
is done
11/21/12 Several testing Drones are created and first integration testing
implemented
11/26/12 Second draft of engine part is done
12/5/12 Engine Part done

32

Drone War

Drone
Arena
Bullet
12/10/12 GUI Part Started
12/14/12 First draft of GUl-enabled game is done
12/16/12 GUI part is done and more testing drones are created to
implement integration testing
12/17/12 Start to work on final report and final testing for the whole

project

5.5 Team Responsibility

As we have an experienced team leader, the project was separated into different

components and each team member made contribution to it. After the project was finished,

everyone implemented reports about his component in the representation slides as well as the

final report. Here comes the assigned responsibilities of each team member:

George

Team Leader

Created Scanner, Parser, AST

Engine parts’ features and improvement in every class

Code review and giving advice in every process of the project
Testing and modification in all perspectives

Unit testing & Integration testing

Basic-like translator (Individual)

Xiaotong

Parser: compound loops, conditional loops

Engine part: bytecode operations, variables & subs’ stack and hash table
Drones: objects variables, Drones operation functions

Arena: objects variables, Arena operation functions

Game: Bullet and Utils classes and other helper functions

Testing Drones created

33

Drone War

Unit testing & Integration testing

Xiang

Parser: compound loops, conditional loops

Engine part: bytecode operations, variables & subs’ stack and hash table
Drones: objects variables, Drones operation functions

Arena: objects variables, Arena operation funcitons

Game: Bullet and Utils classes and other helper functions

Testing Drones created

Unit testing & Integration testing

Shuo

Parser: compound loops

Engine part: bytecode operations, debug

Drones: objects variables, Drones operation functions
Arena: objects variables, Arena operation funcitons
GUI: objects variables, Arena operation funcitons
Testing Drones created

Integration testing

5.6 Development Environment

Operating systems: Mac OX, Windows XP, Windows 7, Linux Debian

Language: Objective Caml (OCaml)

Compiler: OCaml

Editors: Eclipse with OCaml Plugins, other various text editors
GUI: Ocaml Graphics Standard Library
Version Control: SVN, Google Code

Other tools: Google Docs, Emails,

34

Drone War

Chapter 6: Architecture Design

6.1 Design Overview

In our design, the Drone War project is composed of several components, which includes
Syntax Analysis, Semantic Analysis, Compiler, Game Engine, GUI and other helper functions.
When a qualified input file such as .dt or .dbt comes in, Compiler first links all needed files and
sends it to Syntax Analysis part which contains the Scanner to get tokens. Secondly, tokens are
passed to Semantics Analysis which contains Parser, so as to filter illegal tokens and store all
necessary information like variables and subs. After that, arrays of bytecode are generated
based on Abstract Syntax Tree and corresponding operations are to be implemented and stored
in each Drone object’s stack. Thus, the Drone Language has successfully finished its work.

Followed by the language part, our Game Engine is going to take charge of all Drones in the
arena. As controlled by arena object, all Drones will do exactly one tick in a single round, and all
corresponding operations popped from the stack such as “look”, “move”, “shoot” will be
implemented. After all Drones make a single tick, all updated information is to be stored. In this
part all the operations are controlled by the arena and Game Engine functions from Drone.ml,
Arena.ml, Bullet.ml and Utils.ml are called from time to time.

Once all updates to Arena’s objects (Drones or Bullets) are done, the Arena will call GUI part
to visualize it on the graphic screen.

The last step in the main Arena’s loop is to check are there more than one Drone left alive?
If not, then Arena considers that last Drone to be a winner and game ends. Another reason for
exit from the main Arena’s loop is if total count of loops exceeds predefined constant. In that
case, Arena presumes that the remaining live drones will not attack each other and the normal
one-winner scenario is unachievable.

If Arena decided that the battle should continue, it again start requesting from the drones
to execute one step of their Als.

35

Drone War

Drone War
Source Code
(.dt file)

Source Code

(Drone War|Compiler

tokens Parser

(parser.mly)

Scanner
(scanner.mll)

info about bullets info about drones

Drone
(drone.ml)

Bullet
(bullet.ml)

Arena
(arena.ml)

response acti

Helper
Funcs
(utils.ml)

Display Drgne War Game

v

Drone War
Game

(Figure 5.1)

36

Drone War

6.2 Interfaces Between the Components

6.2.1 Scanner (scanner.mll -Author: George)

The role of the scanner is to define what tokens are acceptable in our language. The scanner
will go through the .dt file, which is our input source code, and recognize the stream of input
file as tokens in our language or not. This component will convert all the input source code to
tokens defined by us, so that it can reject the code that is not in the syntax of our language.

6.2.2 Parser (parser.mly -Author: George, Xiaotong, Xiang)

The role of the parser is to catch the tokens generated by the scanner. Although, we are
sure these tokens are defined in our language, we still need to make sure these tokens together
are meaningful, that is they can construct the AST defined by us. If these tokens don’t satisfy
our grammar, parser will reject them,

6.2.3 AST (ast.ml -Author: George)

The role of AST is to define the structure of a program in our language. As stated above,
during the execution of parser, it will check AST to see if the input tokens are valid or not. That
is, the AST will be built during the parser. Also, from this component, we can get a list of
bytecode defined in our language.

6.2.4 Arena (arena.ml -Author: George, Xiaotong, Xiang, Shuo)

Arena is the synchronizing piece of the game engine. It keeps track of all game objects
(drones and bullets) and prompts them to do their assigned roles. The Drone object can request
a creation of a Bullet object (shooting) and request the relative position of other drones
(looking). These requests (as well as destruction of Bullets) are satisfied by the Arena.

Also Arena calls the GUI to show current state of the battle.

6.2.5 Drone (drone.ml -Author: George, Xiaotong, Xiang, Shuo)

As said in Arena, each drone is an “object”. It has many attributes like position, health, team
and so on. The most important part of drone is that it contains two hash tables: vars to store
the variables and subs to store the functions including the “main” (arrays of bytecode). This

37

Drone War

component is one of the most important parts of the engine. It includes many basic actions as
well as the actual “drone’s CPU” which process the bytecodes.

6.2.6 Bullet (bullet.ml -Author: Xiaotong, Xiang)

Bullet is also a part of engine to represent the object of bullet. Compared with drone.ml,
bullet.ml is very simple, it contains only the most basic information such as the position and the
direction of a bullet.

6.2.7 GUI (gui.ml -Author: Shuo, George)

The role of GUI is to display the state of the game. This component is implemented by using
the Graphics module in OCaml.

6.2.8 Helper Funcs (utils.ml -Author: Xiaotong, Xiang)

Utils.ml is a helper file for common functions. It contains several functions that can be
called by arena and drone, such as the one help calculate the distance between two point,
represented by (X,Y), common constants and such.

6.2.9 Drone-Basic (scanner_dbt.mll and parser_dbt.mly —Author:
George)

Implementation of the Drone-Basic language.

38

Drone War

Chapter 7: Test Plan

7.1 Unit Testing

Mentioned above as a testing functionality, while compiling the Drone language, we provide
a debug mode, in which two extra debugging files are created. <filename>.dt.decompiled is the
file shows what bytecode is generated based on input file, while <filename>.dt.debug shows
everything in the stack for each step. The unit testing cases for each component goes as
followed:

7.1.1 Integer

test case:
123456

generated byte code:

0: Int(1)

1: Int(2)

2: Int(3)

3:Int(4)

4: Int(5)

5: Int(6)
stack:

1 [0] Int(1) | EOS

2 [1] Int(2) | 1 EOS

3 [2] Int(3) | 21 EOS

4 [3] Int(4) | 321EOS

5 [4] Int(5) | 432 1EQS

6 [5] Int(6) | 54321EOS

result: successfully recognized the input integer.

39

Drone War

7.1.2 Comment

test case:
6 // This is a comment 7
8
/* this is also
9 acomment */
10

generated byte code:
0: Int(6)
1: Int(8)
2: Int(10)

stack:
1 [0] Int(6) | EOS
2 [1] Int(8) | 6 EOS
3 [2] Int(10) | 8 6 EOS

result: the comment parts have been ignored by the compiler.

7.1.3 Variables

test case:
36 varl store
3 varl read

generated byte code:
0: Int(36)
1: Store(varl)
2: Int(3)
3: Read(varl)

stack:
1 [0] Int(36) | EOS
2 [1] Store(varl) | 36 EOS
3 [2] Int(3) | EOS
4 [3] Read(varl) | 3 EOS

result: successfully set and get the value of a variable.

40

Drone War

7.1.4 Arithmetic operators

test case:
12+1-1*2/2mod4 A

generated byte code:
0: Int(1)

1 Int(2)

: Plus

1 Int(1)

: Minus

tInt(1)

: Times

1 Int(2)

: Divide

1 Int(2)

10: Mod

11: Int(4)

12: Power

O 00 N O U A WIN -

stack:
1

O 00 N O U b W N

N =
N = O

13

result: successfully calculate the result of arithmetic expression.

41

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

Int(1) | EOS
Int(2) | 1 EOS
Plus | 21EOS
Int(1) | 3 EOS
Minus | 1 3 EOS
Int(1) | 2 EOS
Times | 12 EOS
Int(2) | 2 EOS
Divide | 2 2 EOS
Int(2) | 1EOS
Mod |2 1EOS
Int(4) | 1EOS
Power | 41EQOS

Drone War

7.1.5 Logic constants

test case:
true
drop
false
drop

generated byte code:
0: Bool(true)

1: Drop

2: Bool(false)

3: Drop

stack:

1 [0] Bool(true) | EOS
2 [1] Drop | true EOS
3 [2] Bool(false) | EOS
4 [3] Drop | false EOS

result: successfully store or drop a bollean.

7.1.6 Logic operators

test case:
true true and
drop

true false and
drop

false false and
drop

true true or
drop

true false or
drop

false false or
drop

true not
drop

42

Drone War

false not

dro

generated byte code:

p

0: Bool(true)
1: Bool(true)
2: And

3: Drop
4: Bool(true)
5: Bool(false)
6: And

7: Drop

8: Bool(false)
9: Bool(false)
10: And
11: Drop
12: Bool(true)
13: Bool(true)
14: Or
15: Drop
16: Bool(true)
17: Bool(false)
18: Or
19: Drop
20: Bool(false)
21: Bool(false)
22:0r
23: Drop
24: Bool(true)
25: Not
26: Drop
27: Bool(false)
28: Not
29: Drop
stack:

1

2

43

[0]
[1]

Bool(true) | EOS
Bool(true) | true EOS

Drone War

30

result: successfully calculate the result of logic expression.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

And | true true EOS
Drop | true EOS
Bool(true) | EOS
Bool(false) | true EOS

And | false true EQOS
Drop | false EOS
Bool(false) | EOS
Bool(false) | false EOS

And | false false EOS
Drop | false EOS
Bool(true) | EOS
Bool(true) | true EOS

Or | true true EOS
Drop | true EOS
Bool(true) | EOS
Bool(false) | true EOS

Or | false true EOS
Drop | true EOS
Bool(false) | EOS
Bool(false) | false EOS

Or | false false EOS
Drop | false EOQS
Bool(true) | EOS

Not | true EOS
Drop | false EOS
Bool(false) | EOS

Not | false EOS
Drop | true EOS

7.1.7 Stack manipulation

test case:

1 drop

12 3 dropall
1dup
dropall

12 swap

44

Drone War

dropall
123 over
dropall
123rot
dropall

generated byte code:

0:

N NN R R R R R RRRR @R
N P O O 00O N O U D W N L O

Int(1)

: Drop
tInt(1)

1 Int(2)
:Int(3)

: Dropall
tInt(1)

: Dup

: Dropall
tInt(1)

: Int(2)

: Swap

: Dropall
: Int(1)

: Int(2)

: Int(3)

: Over

: Dropall
: Int(1)

: Int(2)

: Int(3)

: Rot

: Dropall

stack:

1

o U W N

45

[0]
[1]
[2]
[3]
[4]
[5]

Int(1) | EOS
Drop | 1EOS
Int(1) | EOS
Int(2) | 1EOS

Int(3) | 21EOS
Dropall | 32 1EOS

Drone War

7 [6]
8 [7]
9 [8]
10 [9]
11 [10]
12 [11]
13 [12]
14 [13]
15 [14]
16 [15]
17 [16]
18 [17]
19 [18]
20 [19]
21 [20]
22 [21]
23 [22]

result: successfully manipulate the stack by variable operators.

7.1.8 Function

test case:
2 2 foo
sub foo

2

2

+

endsub

generated byte code:

0: Int(2)

1: Int(2)

2: Call(foo)
sub foo

0: Int(2)

1: Int(2)

2: Plus
esub

46

Int(1) | EOS

Dup | 1 EOS
Dropall | 11 EOS
Int(1) | EOS
Int(2) | 1EOS

Swap |21EOS
Dropall | 12 EOS
Int(1) | EOS

Int(2) | 1EOS
Int(3) |21EOS
Over |321EOS
Dropall | 322 1EOS

Int(1) | EOS
Int(2) | 1EOS
Int(3) | 21EOS
Rot |321EOS

Dropall | 2322 1EQS

Drone War

stack:
1 [0] Int(2) | EOS
2 [1] Int(2) | 2 EOS
3 [2] Call(foo) | 2 2 EOS
4 foo[0] Int(2) |22EOS
5 foo[1] Int(2) | 222EOS
6 foo[2] Plus | 2222EQOS

result: successfully call the function.

7.1.9 Label

test case:

label:

main:
this_is_a_label:

generated byte code:
-- nothing

stack:
-- nothing

7.1.10 Move

test case:
45 move

generated byte code:

0: Int(45)

1: Move

stack:

1 [0] Int(45) | EOS

2 [1] Move | 45 EOQOS

result: successfully move to direction 45.

47

Drone War

7.1.11 Stop

test case:
45 move
stop

generated byte code:

0: Int(45)
1: Move
2: Stop

stack:

1 [O]

2 [1]

3 [2]
result: stop moving.

7.1.12 Shoot

test case:
45 100 shoot

generated byte code:

0: Int(45)
1: Int(100)
2: Shoot

stack:

1 [0]
2 [1]
3 [2]

7.1.13 Look

test case:
180 look

48

Int(45) | EOS
Move | 45 EOQOS
Stop | EOS
Int(45) | EOS

Int(100) | 45 EOS

Shoot | 100 45 EOS
result: shoot to the direction of 45 and distance of 100.

Drone War

generated byte code:

0: Int(180)

1: Look

stack:

1 [0] Int(180) | EOS

2 [1] Look | 180 EOS

result: successfully return a list of Flags.

7.1.14 isFoe

test case:
100 look
isFoe

generated byte code:
0: Int(100)

1: Look

2: IsFoe

stack:

1 [0] Int(100) | EOS

2 [1] Look | 100 EOS

3 [2] IsFoe | Foe 71 252 Foe 121 426 Wall 100 416 EOS
result: successfully identify the FOE.

7.1.15 isAlly

test case:
100 look
isAlly

generated byte code:
0: Int(2100)

1: Look

2: IsAlly

49

Drone War

stack:

1 [0] Int(100) | EOS

2 [1] Look | 100 EOS

3 [2] IsAlly | Foe 71 252 Foe 121 426 Wall 100 416 EOS

result: successfully identify the Ally.

7.1.16 isWall

test case:
100 look
iswall

generated byte code:
0: Int(2100)

1: Look

2: Iswall

stack:

1 [0] Int(100) | EOS

2 [1] Look | 100 EOS

3 [2] IsWall | Wall 100 108 EOS
result: successfully identify the Wall.

7.1.17 Wait

test case:
10 wait

generated byte code:

0: Int(10)

1: Wait

stack:

1 [0] Int(10) | EOS

2 [1] Wait | 10 EOS

3 waiting for 10 ticks
4 waiting for 9 ticks

50

Drone War

waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks

O 00 N O U

waiting for 4 ticks

10 waiting for 3 ticks

11 waiting for 2 ticks

12 waiting for 1 ticks

result: this drone will be hang up.

7.1.18 GetHealth

test case:
100 health store
health read getHealth =

generated byte code:
0: Int(2100)

1: Store(health)

2: Read(health)

3: GetHealth

4: Equal

stack:

1 [0] Int(100) | EOS

2 [1] Store(health) | 100 EQOS
3 [2] Read(health) | EOS

4 [3] GetHealth | 100 EOS

5 [4] Equal | 100 100 EOS

result: successfully get the health of the drone.

7.1.19 Random

test case:

1100 random

generated byte code:
0: Int(1)

51

Drone War

1: Int(100)
2: Random
stack:
1 [0] Int(1) | EOS
2 [1] Int(100) | 1 EOS
3 [2] Random | 100 1 EOS

result: successfully generate a number between 1 and 100.

7.1.20 Endless Loop

test case:
begin

100 100 shoot
again

generated byte code:
0: Int(100)
1: Int(100)
2: Shoot
3: AbsJump(0)

stack:
1 [0] Int(100) | EOS
2 [1] Int(100) | 100 EOS
3 [2] Shoot | 100 100 EOS
4 [3] AbsJump(0) | true EOS
5 [0] Int(100) | true EOS
6 [1] Int(100) | 100 true EOS
7 [2] Shoot | 100 100 true EOS
8 [3] AbsJump(0) | false true EOS
9 [0] Int(100) | false true EQOS
10 [1] Int(100) | 100 false true EQS
11 [2] Shoot | 100 100 false true EOS
12 [3] AbsJump(0) | false false true EOS
13 [0] Int(100) | false false true EOS
14 [1] Int(100) | 100 false false true EOS
15 [2] Shoot | 100 100 false false true EOS

(9]
N

Drone War

16 [3] AbsJump(0) | true false false true EOS

17 [0] Int(100) | true false false true EQOS

18 [1] Int(100) | 100 true false false true EOS

19 [2] Shoot | 100 100 true false false true EOS

20 [3] AbsJump(0) | false true false false true EQS

21 [0] Int(100) | false true false false true EOS

22 [1] Int(100) | 100 false true false false true EOS

23 [2] Shoot | 100 100 false true false false true EOS

24 [3] AbsJump(0) | false false true false false true EOS

25 [0] Int(100) | false false true false false true EOS

26 [1] Int(100) | 100 false false true false false true EOS

27 [2] Shoot | 100 100 false false true false false true EOQS

28 [3] AbsJump(0) | true false false true false false true EOS

29 [0] Int(100) | true false false true false false true EOS

30 [1] Int(100) | 100 true false false true false false true EOS

31 [2] Shoot | 100 100 true false false true false false true EOS
32 [3] AbsJump(0) | false true false false true false false true EOS
33 [0] Int(100) | false true false false true false false true EQS

34 [1] Int(100) | 100 false true false false true false false true EOQS
35 [2] Shoot | 100 100 false true false false true false false true EOS
36 [3] AbsJump(0) | false false true false false true false false true EQS
37 [0] Int(100) | false false true false false true false false true EOS

result: convert endless loop to jump and work correctly.

7.1.21 Conditional Loop

test case:
0 a store
begin
aread 1+ a store
aread 10<
while
100 100 shoot
again

generated byte code:
0: Int(0)

53

Drone War

: Store(a)

: Read(a)
tInt(1)

: Plus

: Store(a)

: Read(a)

: Int(10)

: Less

: Not

10: AbsJumplf(15)
11: Int(100)

12: Int(100)

13: Shoot

14: AbsJump(2)

O 00 N O Ll A W N B

stack:

1 [0]
2 [1]
3 [2]
4 [3]
5 [4]
6 [5]
7 [6]
8 [7]
9 [8]
10 [9]
11 [10]
12 [11]
13 [12]
14 [13]
15 [14]
16 [2]
17 [3]
18 [4]
19 [5]
20 [6]
21 [7]
22 [8]

54

Int(0) | EOS
Store(a) | 0 EOS
Read(a) | EOS
Int(1) | O EOS
Plus | 10EOS
Store(a) | 1 EOS
Read(a) | EOS
Int(10) | 1 EOS
Less | 10 1 EOS
Not | true EOS
AbsJumplf(15) | false EOS
Int(100) | EOS
Int(100) | 100 EOS
Shoot | 100 100 EOS
AbsJump(2) | true EOS
Read(a) | true EOS
Int(1) | 1 true EOS
Plus | 11 true EOS
Store(a) | 2 true EOS
Read(a) | true EOS
Int(10) | 2 true EOS
Less | 10 2 true EOS

Drone War

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

55

[9]
[10]
[11]
[12]
[13]
[14]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[2]
[3]
[4]
[5]
[6]
[7]

Not | true true EOS
AbsJumplf(15) | false true EOS
Int(100) | true EOS
Int(100) | 100 true EOS
Shoot | 100 100 true EOS
AbsJump(2) | true true EOS
Read(a) | true true EOS
Int(1) | 2 true true EOS
Plus | 12 true true EOS
Store(a) | 3 true true EOS
Read(a) | true true EOS
Int(10) | 3 true true EOS
Less | 10 3 true true EOS
Not | true true true EOS
AbsJumplf(15) | false true true EOS
Int(100) | true true EOS
Int(100) | 100 true true EOS
Shoot | 100 100 true true EOS
AbsJump(2) | true true true EOS
Read(a) | true true true EOS
Int(1) | 3 true true true EOS
Plus | 13 true true true EOS
Store(a) | 4 true true true EQOS
Read(a) | true true true EOS
Int(10) | 4 true true true EOS
Less | 10 4 true true true EOS
Not | true true true true EOS
AbsJumplf(15) | false true true true EOS
Int(100) | true true true EOS
Int(100) | 100 true true true EQOS
Shoot | 100 100 true true true EOS
AbsJump(2) | true true true true EOS
Read(a) | true true true true EOS
Int(1) | 4 true true true true EOS
Plus | 14 true true true true EOS
Store(a) | 5 true true true true EOS
Read(a) | true true true true EOS
Int(10) | 5 true true true true EOS

Drone War

61 [8] Less | 105 true true true true EOS

62 [9] Not | true true true true true EOS

63 [10] AbsJumplf(15) | false true true true true EOS
64 [11] Int(100) | true true true true EOS

65 [12] Int(100) | 100 true true true true EOS

66 [13] Shoot | 100 100 true true true true EOS
67 [14] AbsJump(2) | true true true true true EOS
68 [2] Read(a) | true true true true true EOS

69 [3] Int(1) | 5 true true true true true EOS

70 [4] Plus | 15 true true true true true EOS
71 [5] Store(a) | 6 true true true true true EOS
72 [6] Read(a) | true true true true true EOS

73 [7] Int(10) | 6 true true true true true EOS
74 [8] Less | 10 6 true true true true true EOS
75 [9] Not | true true true true true true EOS

result: convert conditional loop to jumpif and work correctly.

7.1.22 if

test case:
12<

if

1

endif

generated byte code:
0: Int(1)
1: Int(2)
2: Less
3: Not
4: AbsJumplf(6)
5:Int(1)

stack:
1 [0] Int(1) | EOS
2 [1] Int(2) | 1 EOS
3 [2] Less | 21 EQS

56

Drone War

4 [3] Not | true EOS
5 [4] AbsJumplf(6) | false EOS
6 [5] Int(1) | EOS

result: the if statement has been successfully convert to jumpif statement.

7.1.23 if-else

test case:
12<

if

1

else

2

endif

generated byte code:

0: Int(1)
1: Int(2)
2: Less
3: Not
4: AbsJumplf(7)
5: Int(1)
6: AbsJump(8)
7: Int(2)
stack:
1 [0] Int(1) | EOS
2 [1] Int(2) | 1 EOS
3 [2] Less | 21 EOS
4 [3] Not | true EOS
5 [4] AbsJumplf(7) | false EOS
6 [5] Int(1) | EOS
7 [6] AbsJump(8) | 1 EOS

result: the if-else statement has been successfully convert to jumpif statement.

57

Drone War

7.2 Integration Test: An Example Programs

To test the whole project thoroughly, we created a number of simple-minded Drones which
can serve as examples for real players in creation of a really complicated Als. In the example
below, we show several drones written in the drone war language.

7.2.1 Drone Berserk

drones/berserk.dt

// This drone is very aggressive. It looks for any other drone,
// regardless of is it friend or foe, runs toward it and shoot.
0 direction store
main_loop:

direction read look

// if drones sees a wall, that means it does not see

// any drone

isWall not sees_a drone jumpif

stop // do not move if drone does not have a target
drop2 // if we sees a wall, then drop the distance

// to it (stack should be empty now)
0 360 random // get a random direction value
direction store // and the drone will look for the next

// target in this random direction
main loop jump

sees_a drone:
dup direction store // store the direction to the drone

dup move // start moving toward the target
shoot // and shoot in the same direction
drop // ignore the result of shooting

// after charged to the nearest drone, we still
// have to cleanup data for other objects seen by look.
look cleanup:

swap drop // drop direction and

swap drop // distance to the next target
isWall main loop jumpif // if the last target was a wall
look cleanup jump // else repeat clean up process

// user function
// drop two values from the stack
sub drop2 drop drop endsub

58

Drone War

This file will be complied into:

0:

O 00 N O L1l A WIDN B

N NN NNNNRRRRRRR R R @B
o U1 A W NP O OO NO OUVLPED WNBERLR O

Int(0)

: Store(direction)
: Read(direction)
: Look

s IsWall

: Not

: AbsJumplf(14)

: Stop

: Call(drop2)

: Int(0)

: Int(360)

: Random

: Store(direction)
: AbsJump(2)

: Dup

: Store(direction)
: Dup

: Move

: Shoot

: Drop

: Swap

: Drop

: Swap

: Drop

: IsWall

: AbsJumplf(2)
: AbsJump(20)

sub drop2

0:
1:

Drop
Drop

esub

The running state of a game:

1. when it get started:

59

Drone War

! Arena o (B (23
pies W
i

fa
Brain Deas szalse
Gun cooldoun; 0

uovm?shooter2

.

meg

ain Dmmfa
A_insswshootor gﬁ%ﬁ:ﬁg

IWID?B ater

Healths }(l)

nastysM!«?
00

{"}]4)

The stack:
1 [0] Int(0) | EOS

60

Drone War

e :
Total Ticks: 10

s 100
?a}se
Bram Dead false
&n cool down 1

NTa !h 100
1cks 100
Hoving: t!

&r.:m DTad False
cooldoin? 0
'r;‘;.’ 5

RI Tlcks 100

Bram ﬁead false
&ncoo douns 0

ggstyshooter o
’ Tom ID. 4
Hea, 0

pabbit o100
] ¢ fean 1: 3

Health: 0
RI Ticks: ?
se

ta
Bral:gﬁead false
€00 oun.

Gun cooldoun; 0

Teaa ID 2

HT *wks 100

true
Igrnaln DYad Fa&se

o cooldoun;

. ‘ Toan 1D: 1

nastyshooter? Health: 100

L1 RI Tlcks 100
Brmn ﬁead false
&nooo down; 0

rret

s 100
Al Ticks; }00
Hoving; false
Braln ﬁead false
Gun cooldouns 1

The stack:

1

0 N o L A WN

9
direction
10
11
12

61

[O]
[1]
[2]
[3]
[4]
[5]
[6]

[14]
[15] Store(direction) | 23 23 300 Foe 14 477 Foe 16 540 ... //store

[16]
[17]
[18]

Int(0) | EOS
Store(direction) | 0 EOS
Read(direction) | EOS //set and get the original direction 0
Look | 0 EOS //use look function to see the objects in direction
IsWall | Foe 23 300 Foe 14 477 Foe 16 540 ... //look result
Not | false 23 300 Foe 14 477 Foe 16 540 ... //find a drone
AbsJumplf(14) | true 23 300 Foe 14 477 Foe 16 540 ... //jump
Dup | 23300 Foe 14 477 Foe 16 540 Wall ... //duplicate

Dup | 23 300 Foe 14 477 Foe 16 540 Wall ... //duplicate
Move | 23 23 300 Foe 14 477 Foe 16 540 ...//move in direction
Shoot | 23 300 Foe 14 477 Foe 16 540 Wall ...//shoot in directio

Drone War

13
result
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
direction
41
42
43
44
45
46
47
48

62

[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[2]
[3]
[4]
[5]
[6]
[14]

Drop | true Foe 14 477 Foe 16 540 Wall 0 ...//not care shoot

Swap | Foe 14 477 Foe 16 540 Wall 0 758 EOS
Drop | 14 Foe 477 Foe 16 540 Wall 0 758 EOS
Swap | Foe 477 Foe 16 540 Wall 0 758 EOS
Drop | 477 Foe Foe 16 540 Wall 0 758 EOS
IsWall | Foe Foe 16 540 Wall 0 758 EOS
AbsJumplf(2) | false Foe 16 540 Wall 0 758 EOS
AbsJump(20) | Foe 16 540 Wall 0 758 EOS
Swap | Foe 16 540 Wall 0 758 EOS
Drop | 16 Foe 540 Wall 0 758 EOS
Swap | Foe 540 Wall 0 758 EOS
Drop | 540 Foe Wall 0 758 EOS
IsWall | Foe Wall 0 758 EOS
AbsJumplf(2) | false Wall 0 758 EOS
AbsJump(20) | Wall 0 758 EOS
Swap | Wall 0 758 EOS
Drop | 0 Wall 758 EQOS
Swap | Wall 758 EOS
Drop | 758 Wall EOS
IsWall | Wall EOS
AbsJumplf(2) | true EOS //check if we have drop all the look result

Read(direction) | EOS //get the stored direction

Look | 23 EOS //look at this direction
IsWall | Foe 26 297 Foe 12 431 Foe 13 524 ...//find a drone
Not | false 26 297 Foe 12 431 Foe 13524 ...
AbsJumplf(14) | true 26 297 Foe 12 431 Foe 13 524 ...
Dup | 26 297 Foe 12 431 Foe 13 524 Wall ...

[15]Store(direction) | 26 26 297 Foe 12 431 Foe 13 524 ...//store the new

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

Dup | 26 297 Foe 12 431 Foe 13 524 Wall ...
Move | 26 26 297 Foe 12 431 Foe 13524 ...
Shoot | 26 297 Foe 12 431 Foe 13 524 Wall ...
Drop | true Foe 12 431 Foe 13 524 Wall 23 ...
Swap | Foe 12 431 Foe 13 524 Wall 23 799 EOS
Drop | 12 Foe 431 Foe 13 524 Wall 23 799 EOS
Swap | Foe 431 Foe 13 524 Wall 23 799 EOS
Drop | 431 Foe Foe 13 524 Wall 23 799 EOS

Drone War

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

63

[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[2]
[3]
[4]
[5]
[6]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]

IsWall | Foe Foe 13 524 Wall 23 799 EOS
AbsJumplf(2) | false Foe 13 524 Wall 23 799 EOS
AbsJump(20) | Foe 13 524 Wall 23 799 EOS

Swap | Foe 13 524 Wall 23 799 EOS
Drop | 13 Foe 524 Wall 23 799 EOS
Swap | Foe 524 Wall 23 799 EOS
Drop | 524 Foe Wall 23 799 EOS
IsWall | Foe Wall 23 799 EOS
AbsJumplf(2) | false Wall 23 799 EOS
AbsJump(20) | Wall 23 799 EOS
Swap | Wall 23 799 EOS
Drop | 23 Wall 799 EOS
Swap | Wall 799 EOS
Drop | 799 Wall EOS
IsWall | Wall EOS

AbsJumplf(2) | true EOS //check if we have drop all the look result

Read(direction) | EOS//get the stored direction

Look | 26 EOS //use look to see objects in direction
IsWall | Foe 29 293 Foe 9 373 Foe 9 506 ...//look result

Not | false 29 293 Foe 9 373 Foe 9 506 ...//find a drone

AbsJumplf(14) | true 29 293 Foe 9 373 Foe 9 506 ...//jump
Dup | 29 293 Foe 9 373 Foe 9 506 Wall ...//duplicate

Store(direction) | 29 29 293 Foe 9 373 Foe 9 506 ...//store direction

Dup | 29 293 Foe 9 373 Foe 9 506 Wall ...//duplicate

Move | 29 29 293 Foe 9 373 Foe 9 506 ...//move in direction
Shoot | 29 293 Foe 9 373 Foe 9 506 Wall ...//shoot in directio

Drop | true Foe 9 373 Foe 9 506 Wall 26 ...

Swap | Foe 9 373 Foe 9 506 Wall 26 787 EQS
Drop | 9 Foe 373 Foe 9 506 Wall 26 787 EOS

Swap | Foe 373 Foe 9 506 Wall 26 787 EOS
Drop | 373 Foe Foe 9 506 Wall 26 787 EOS
IsWall | Foe Foe 9 506 Wall 26 787 EOS

AbsJumplf(2) | false Foe 9 506 Wall 26 787 EOS
AbsJump(20) | Foe 9 506 Wall 26 787 EOS

Swap | Foe 9 506 Wall 26 787 EOS

Drop | 9 Foe 506 Wall 26 787 EOS

Swap | Foe 506 Wall 26 787 EOS

Drop | 506 Foe Wall 26 787 EQS

Drone War

87 [24] IsWall | Foe Wall 26 787 EOS
88 [25] AbsJumplf(2) | false Wall 26 787 EQOS
89 [26] AbsJump(20) | Wall 26 787 EOS
90 [20] Swap | Wall 26 787 EOS
91 [21] Drop | 26 Wall 787 EOS
92 [22] Swap | Wall 787 EQS
93 [23] Drop | 787 Wall EOS
94 [24] IsWall | Wall EOS
95 [25] AbsJumplf(2) | true EOS//check if we have drop all the look result
96 [2] Read(direction) | EOS//get the stored direction
97 [3] Look | 29 EOS
98 [4] IsWall | Foe 32 290 Foe 5 317 Foe 58 388 ...
99 [5] Not | false 32 290 Foe 5 317 Foe 58 388 ...
100 [6] AbsJumplf(14) | true 32 290 Foe 5317 Foe 58 388 ...
O iens SER
Total Ticks: 0
fem 10 1
Health: 100
Al Tlc%s‘ 00
B
"T" §'3Lsmgoo
&nalgigiagmfalse
B
RI Tlcks 300
&rnam ﬁead fa(l)se
il
nastyshooter AT Tickss 300
! — Bra::gﬁe}aagefalse
rabbit A¢0 e &nmldown
I S
Braln flead False
. Gmcooldown:()
Tean II] 2
! N”lckst 165
! Fih
Eﬂfgsl%goo
Braln ﬁead false
Gun cooldown; 10
nastyshooter? Iean 1!] 0
N0 RI Tlcbs 92
Bram f]ead False
Gun cooldount 0
101 [14] Dup | 32290 Foe 5317 Foe 58 388 Foe ...
102 [15] Store(direction) | 3232290 Foe 5317 Foe 58 388 ...
103 [16] Dup | 32290 Foe 5317 Foe 58 388 Foe ...

64

Drone War

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

65

[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[2]
[3]
[4]
[5]
[6]
[14]
[15]
[16]

Move | 3232290 Foe 5317 Foe 58 388 ...
Shoot | 32 290 Foe 5 317 Foe 58 388 Foe ...
Drop | true Foe 5317 Foe 58 388 Foe 5 ...
Swap | Foe 5317 Foe 58 388 Foe 5492 ...
Drop | 5 Foe 317 Foe 58 388 Foe 5 492 ...
Swap | Foe 317 Foe 58 388 Foe 5 492 Wall ...
Drop | 317 Foe Foe 58 388 Foe 5492 Wall ...
IsWall | Foe Foe 58 388 Foe 5 492 Wall 29 ...
AbsJumplf(2) | false Foe 58 388 Foe 5 492 Wall 29 ...
AbsJump(20) | Foe 58 388 Foe 5 492 Wall 29 778 EOS
Swap | Foe 58 388 Foe 5 492 Wall 29 778 EQS
Drop | 58 Foe 388 Foe 5 492 Wall 29 778 EOS
Swap | Foe 388 Foe 5 492 Wall 29 778 EOS
Drop | 388 Foe Foe 5492 Wall 29 778 EQS
IsWall | Foe Foe 5492 Wall 29 778 EOS
AbsJumplf(2) | false Foe 5492 Wall 29 778 EOS
AbsJump(20) | Foe 5492 Wall 29 778 EOS
Swap | Foe 5492 Wall 29 778 EOS
Drop | 5 Foe 492 Wall 29 778 EOS
Swap | Foe 492 Wall 29 778 EOS
Drop | 492 Foe Wall 29 778 EOS
IsWall | Foe Wall 29 778 EOS
AbsJumplf(2) | false Wall 29 778 EOS
AbsJump(20) | Wall 29 778 EOS
Swap | Wall 29 778 EOS
Drop | 29 Wall 778 EOS
Swap | Wall 778 EOS
Drop | 778 Wall EOS
IsWall | Wall EOS
AbsJumplf(2) | true EOS
Read(direction) | EOS
Look | 32 EOS
IsWall | Foe 35 287 Foe 60 354 Wall 32 764 EOS
Not | false 35 287 Foe 60 354 Wall 32 764 EOS
AbsJumplf(14) | true 35 287 Foe 60 354 Wall 32 764 EOS
Dup | 35 287 Foe 60 354 Wall 32 764 EOS
Store(direction) | 35 35 287 Foe 60 354 Wall 32 764 EQS
Dup | 35 287 Foe 60 354 Wall 32 764 EOS

Drone War

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

66

[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[2]
[3]
[4]
[5]
[6]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]

Move | 3535 287 Foe 60 354 Wall 32 764 EOS
Shoot | 35 287 Foe 60 354 Wall 32 764 EOS
Drop | true Foe 60 354 Wall 32 764 EOS
Swap | Foe 60 354 Wall 32 764 EOS
Drop | 60 Foe 354 Wall 32 764 EOS
Swap | Foe 354 Wall 32 764 EOS
Drop | 354 Foe Wall 32 764 EOS
IsWall | Foe Wall 32 764 EOS
AbsJumplf(2) | false Wall 32 764 EOS
AbsJump(20) | Wall 32 764 EOS
Swap | Wall 32 764 EOS
Drop | 32 Wall 764 EOS
Swap | Wall 764 EOS
Drop | 764 Wall EOS
IsWall | Wall EOS
AbsJumplf(2) | true EOS
Read(direction) | EOS
Look | 35 EQOS
IsWall | Foe 37 286 Foe 62 333 Wall 35 767 EOS
Not | false 37 286 Foe 62 333 Wall 35 767 EOS

AbsJumplf(14) | true 37 286 Foe 62 333 Wall 35 767 EOS

Dup | 37 286 Foe 62 333 Wall 35 767 EOS

Store(direction) | 37 37 286 Foe 62 333 Wall 35 767 EOS

Dup | 37 286 Foe 62 333 Wall 35 767 EOS
Move | 37 37 286 Foe 62 333 Wall 35 767 EOS
Shoot | 37 286 Foe 62 333 Wall 35 767 EOS
Drop | true Foe 62 333 Wall 35 767 EOS
Swap | Foe 62 333 Wall 35 767 EOS
Drop | 62 Foe 333 Wall 35 767 EOS
Swap | Foe 333 Wall 35 767 EOS
Drop | 333 Foe Wall 35 767 EOS
IsWall | Foe Wall 35 767 EOS
AbsJumplf(2) | false Wall 35 767 EOS
AbsJump(20) | Wall 35 767 EOS
Swap | Wall 35 767 EOS
Drop | 35 Wall 767 EOS
Swap | Wall 767 EOS
Drop | 767 Wall EOS

Drone War

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

67

[24]
[25]
[2]

[3]

[4]

[5]

[6]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[20]
[21]
[22]
[23]
[24]
[25]
[2]

[3]

[4]

[5]

[6]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

IsWall | Wall EOS
AbsJumplf(2) | true EOS
Read(direction) | EOS
Look | 37 EOS
IsWall | Foe 39 285 Foe 64 312 Wall 37 762 EOS
Not | false 39 285 Foe 64 312 Wall 37 762 EOS
AbsJumplf(14) | true 39 285 Foe 64 312 Wall 37 762 EOS
Dup | 39 285 Foe 64 312 Wall 37 762 EOS
Store(direction) | 39 39 285 Foe 64 312 Wall 37 762 EQS
Dup | 39 285 Foe 64 312 Wall 37 762 EOS
Move | 39 39 285 Foe 64 312 Wall 37 762 EOS
Shoot | 39 285 Foe 64 312 Wall 37 762 EOS
Drop | true Foe 64 312 Wall 37 762 EOS
Swap | Foe 64 312 Wall 37 762 EOS
Drop | 64 Foe 312 Wall 37 762 EOS
Swap | Foe 312 Wall 37 762 EOS
Drop | 312 Foe Wall 37 762 EOS
IsWall | Foe Wall 37 762 EOS
AbsJumplf(2) | false Wall 37 762 EOS
AbsJump(20) | Wall 37 762 EOS
Swap | Wall 37 762 EOS
Drop | 37 Wall 762 EOS
Swap | Wall 762 EOS
Drop | 762 Wall EOS
IsWall | Wall EOS
AbsJumplf(2) | true EOS
Read(direction) | EOS
Look | 39 EOS
IsWall | Foe 40 284 Wall 39 759 EOS
Not | false 40 284 Wall 39 759 EOS
AbsJumplf(14) | true 40 284 Wall 39 759 EOS
Dup | 40 284 Wall 39 759 EOS
Store(direction) | 40 40 284 Wall 39 759 EOS
Dup | 40 284 Wall 39 759 EOS
Move | 40 40 284 Wall 39 759 EOS
Shoot | 40 284 Wall 39 759 EOS
Drop | true Wall 39 759 EOS
Swap | Wall 39 759 EOS

Drone War

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

68

[21]
[22]
[23]
[24]
[25]
[2]
[3]
[4]
[5]
[6]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[2]
[3]
[4]
[5]
[6]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

Drop | 39 Wall 759 EOS
Swap | Wall 759 EOS
Drop | 759 Wall EOS
IsWall | Wall EOS
AbsJumplf(2) | true EOS
Read(direction) | EOS
Look | 40 EOS
IsWall | Foe 41 283 Wall 40 753 EOS
Not | false 41 283 Wall 40 753 EOS
AbsJumplf(14) | true 41 283 Wall 40 753 EOS
Dup | 41 283 Wall 40 753 EOS
Store(direction) | 41 41 283 Wall 40 753 EOS
Dup | 41283 Wall 40 753 EOS
Move | 4141 283 Wall 40 753 EOS
Shoot | 41 283 Wall 40 753 EQS
Drop | true Wall 40 753 EOS
Swap | Wall 40 753 EOS
Drop | 40 Wall 753 EOS
Swap | Wall 753 EOS
Drop | 753 Wall EOS
IsWall | Wall EOS
AbsJumplf(2) | true EOS
Read(direction) | EOS
Look | 41 EOS
IsWall | Foe 42 283 Wall 41 747 EOS
Not | false 42 283 Wall 41 747 EOS
AbsJumplf(14) | true 42 283 Wall 41 747 EOS
Dup | 42 283 Wall 41 747 EOS
Store(direction) | 42 42 283 Wall 41 747 EOS
Dup | 42 283 Wall 41 747 EOS
Move | 42 42 283 Wall 41 747 EOS
Shoot | 42 283 Wall 41 747 EQS
Drop | true Wall 41 747 EOS
Swap | Wall 41 747 EOS
Drop | 41 Wall 747 EOS
Swap | Wall 747 EOS
Drop | 747 Wall EOS
IsWall | Wall EOS

Drone War

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

69

[25]
[2]
[3]
[4]
[5]
[6]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[2]
[3]
[4]
[5]
[6]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[2]
[3]
[4]

AbsJumplf(2) | true EOS

Read(direction) | EOS

Look | 42 EOS

IsWall | Foe 43 282 Wall 42 742 EOS

Not | false 43 282 Wall 42 742 EOS
AbsJumplf(14) | true 43 282 Wall 42 742 EOS
Dup | 43 282 Wall 42 742 EOS
Store(direction) | 43 43 282 Wall 42 742 EQS
Dup | 43 282 Wall 42 742 EOS
Move | 43 43 282 Wall 42 742 EOS

Shoot | 43 282 Wall 42 742 EQS
Drop | true Wall 42 742 EOS

Swap | Wall 42 742 EOS
Drop | 42 Wall 742 EOS

Swap | Wall 742 EOS
Drop | 742 Wall EOS

IsWall | Wall EOS

AbsJumplf(2) | true EOS

Read(direction) | EOS

Look | 43 EOS

IsWall | Foe 44 282 Wall 43 737 EOS

Not | false 44 282 Wall 43 737 EQS

AbsJumplf(14) | true 44 282 Wall 43 737 EOS

Dup | 44 282 Wall 43 737 EOS
Store(direction) | 44 44 282 Wall 43 737 EOS
Dup | 44 282 Wall 43 737 EOS
Move | 44 44 282 Wall 43 737 EOS
Shoot | 44 282 Wall 43 737 EQS
Drop | true Wall 43 737 EOS

Swap | Wall 43 737 EOS

Drop | 43 Wall 737 EOS

Swap | Wall 737 EOS

Drop | 737 Wall EOS

IsWall | Wall EOS

AbsJumplf(2) | true EOS
Read(direction) | EOS

Look | 44 EOS

IsWall | Foe 44 282 Wall 44 732 EOS

Drone War

294
295
296
297
298
299
300

70

[5]
[6]
[14]
[15]
[16]
[17]
[18]

Not | false 44 282 Wall 44 732 EQS
AbsJumplf(14) | true 44 282 Wall 44 732 EOS
Dup | 44 282 Wall 44 732 EOS
Store(direction) | 44 44 282 Wall 44 732 EOS
Dup | 44 282 Wall 44 732 EOS

Move | 44 44 282 Wall 44 732 EOS

Shoot | 44 282 Wall 44 732 EQS

Drone War

7.2.2 Drone Rabbit

drones/berserk.dt

//
//
//
//
//

The extremly harmless drone.

It sits on one place and checks its health

If damage detected - run somewhere for 0.1 seconds in hope to
leave the the zone of danger. Then stop and wait until

it again recieve some damage.

100 health store // set initial health to 100

main_ loop:

10 wait // wait for 10 ticks

health read getHealth =

// repeat indefinetely if no one harmed the drone

main loop jumpif

// what to do if drone recieved some damage

0 359 random // get a random value in the range 1-360

move // move in the random direction

10 wait // wait for 10 ticks

stop // stop

main loop Jjump // and go back to the beginning

This file will be compiled into:

O 00 N O L A W NN L O

: Int(100)

: Store(health)
: Int(10)

: Wait

: Read(health)
: GetHealth

: Equal

: AbsJumplf(2)
: Int(0)

: Int(359)

10: Random
11: Move

12: Int(10)

13: Wait

14: Stop

15: AbsJump(2)

71

Drone War

The state of the game:

1 [O]
1 [0]
2 [1]
3 [2]
4 [3]

5 waiting for 10 ticks
6 waiting for 9 ticks

Int(100) | EOS
Int(100) | EOS
Store(health) | 100 EOS // store 100 in variable health
Int(10) | EOS
Wait | 10 EOS //wait ten ticks

AGEGE

=/E]x)

Total T)cks 100

Ieau ID 7
Health: 100
Al Tlcks }00
Hoving

Brain Dead false
Gun cooldown 1

ngtgshooter

,,,,,

Ieaa ID B

HY }mks 96
fals
mln D?ad False
€00. doun 0
Tean ID 5
Health
al Txcks 100

Bram ﬁead false
Gun cooldoun: 0

povir Murway
Tean 1D: 4
Health: 100
QI Ticks; 100
Hoving; true
Brain Dead: false
Gm

ID 3
(Health 100
RI hcks
\ Hov

; b
g:]mngﬁ aEl:Jefaése
cooldoun:

Ieaa ID
Health: 8:
Al Tltks 100

Bram Dead false
Gun cooldoun: 0

Tean 1D: 0
Health: 100
Al Tlcks 00

Hoving
Brain Dead false
Gun cooldoun: 4

<. rl'Mm
T

7 waiting for 8 ticks
8 waiting for 7 ticks
9 waiting for 6 ticks
10 waiting for 5 ticks

11 waiting for 4 ticks

12
13
14
15
16
17

72

waiting for 3 ticks
waiting for 2 ticks
waiting for 1 ticks

[4]

[5]

[6]

Read(health) | EOS //get the stored health
GetHealth | 100 EOS //get current health
Equal | 100 100 EOS //check if it is damaged

Drone War

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

73

[7]
[2]
[3]

waiting for 10 ticks

waiting for 9 ticks
waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks
waiting for 2 ticks
waiting for 1 ticks

[4]

[5]

[6]

[7]

[2]

[3]

waiting for 10 ticks

waiting for 9 ticks
waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks
waiting for 2 ticks
waiting for 1 ticks

[4]

[5]

[6]

[7]

[2]

[3]

waiting for 10 ticks

waiting for 9 ticks
waiting for 8 ticks

AbsJumplf(2) | true EOS //no damaged
Int(10) | EOS
Wait | 10 EOS //wait ten ticks

Read(health) | EOS//get the stored health
GetHealth | 100 EOS//get current health
Equal | 100 100 EOS//check if it is damaged
AbsJumplf(2) | true EOS//no damaged
Int(10) | EOS//wait ten ticks
Wait | 10 EOS

Read(health) | EOS//get the stored health
GetHealth | 100 EOS//get current health
Equal | 100 100 EOS//check if it is damaged
AbsJumplf(2) | true EOS//no damaged
Int(10) | EOS
Wait | 10 EOS//wait ten ticks

Drone War

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

74

waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks
waiting for 2 ticks
waiting for 1 ticks

[4]

[5]

[6]

[7]

[2]

[3]

waiting for 10 ticks

waiting for 9 ticks
waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks
waiting for 2 ticks
waiting for 1 ticks

[4]

[5]

[6]

[7]

[2]

[3]

waiting for 10 ticks

waiting for 9 ticks
waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks
waiting for 2 ticks

Read(health) | EOS

GetHealth | 100 EOS
Equal | 100 100 EOS

AbsJumplf(2) | true EOS

Int(10) | EOS
Wait | 10 EOS

Read(health) | EOS

GetHealth | 100 EOS
Equal | 100 100 EOS

AbsJumplf(2) | true EOS

Int(10) | EOS
Wait | 10 EOS

Drone War

94 waiting for 1 ticks

95 [4] Read(health) | EOS
96 [5] GetHealth | 100 EOS
97 [6] Equal | 100 100 EOS
98 [7] AbsJumplf(2) | true EOS
99 [2] Int(10) | EOS
100 [3] Wait | 10 EOS
Arena
rllggtgshooter
na 'H ooter?
"Vl
6@85“‘ hooter?
¢ [;bbn

101 waiting for 10 ticks

102
103
104
105
106
107
108
109
110
111

75

waiting for 9 ticks
waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks
waiting for 2 ticks
waiting for 1 ticks

[4]

Read(health) | EOS

Total Tickss 170

stands Pttm

Health: ‘100
Al Tu:ksF }

ing; false
Brangﬂead False
Gun cooldount

ot “f shooter?2

u”lcks 3%

Hoving} talse

&ln ad: fa&se
cooldouns

nastys hcoterZ

ean

Health: 100

Al Ticks; 170

true

E‘Im d: fa&se
do

oy "f hogter
Health: 100
Al hcks 170

Braxn ﬁead false
Gun cooldoun;

Gun cooldouns 0
nas tw Pcctcr
thy 100
“T’Le&s 10
Hoving} true

i

berserk
Tean [0
Health!
al Tlcks 170

Hoving

mln d false
cooldouns 0

turret

Tean 10: 0

Healths 100

Bt A

als
B‘ralnngﬁead salse
Gun cooldoun; 0

BER

Drone War

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

76

[5] GetHealth | 100 EOS

[6] Equal | 100 100 EOS
[7] AbsJumplf(2) | true EOS
[2] Int(10) | EOS

[3] Wait | 10 EOS

waiting for 10 ticks
waiting for 9 ticks
waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks
waiting for 2 ticks
waiting for 1 ticks

[4] Read(health) | EOS

[5] GetHealth | 100 EOS

[6] Equal | 100 100 EOS
[7] AbsJumplf(2) | true EOS
[2] Int(10) | EOS

[3] Wait | 10 EOS

waiting for 10 ticks
waiting for 9 ticks
waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks

waiting for 2 ticks

waiting for 1 ticks
[4] Read(health) | EOS
[5] GetHealth | 100 EOS
[6] Equal | 100 100 EOS
[7] AbsJumplf(2) | true EOS
[2] Int(10) | EOS
[3] Wait | 10 EOS

waiting for 10 ticks

Drone War

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

77

waiting for 9 ticks
waiting for 8 ticks
waiting for 7 ticks
waiting for 6 ticks
waiting for 5 ticks
waiting for 4 ticks
waiting for 3 ticks
waiting for 2 ticks
waiting for 1 ticks

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Read(health) | EOS//get the stored health
GetHealth | 100 EOS//get current health
Equal | 51 100 EOS//check if it is damaged
AbsJumplf(2) | false EOS//is damaged
Int(0) | EOS
Int(359) | 0 EOS
Random | 359 0 EOS//get a random direction
Move | 223 EOS//move towards this direction
Int(10) | EOS
Wait | 10 EOS//wait ten ticks

Drone War

‘D Arena BE|®
Total Ticks: 201 G0 1}
o ip?i});'
fhs
?gvam?stmoteﬂ
?Sgwshooter mm:!:?sga?ge
migw :nfaése
i
i
EihiE e
ikl
Al Ticks; 201
m%nmul'mfalse
Gun cooldown: 0
rabbit
[} Teaulll.]:ol
ki
. Tf."-‘f"‘f'm erd g,.a vlmh?ﬁnfaése
‘P ?gztgsh?o%er
Eihe
Al 'iggsér 521
i e
i igshotr? few
o N Al Ticks o
' m%:gﬁeaﬁ:s?alse
Gun cooldoun; 8
169 waiting for 10 ticks
170 waiting for 9 ticks
171 waiting for 8 ticks
172 waiting for 7 ticks
173 waiting for 6 ticks
174 waiting for 5 ticks
175 waiting for 4 ticks
176 waiting for 3 ticks
177 waiting for 2 ticks
178 waiting for 1 ticks
179 [14] Stop | EOS
180 [15] AbsJump(2) | EOS
181 [2] Int(10) | EOS
182 [3] Wait | 10 EOS
183 waiting for 10 ticks

184

78

waiting for 9 ticks

Drone War

185 waiting for 8 ticks
186 waiting for 7 ticks
187 waiting for 6 ticks
188 waiting for 5 ticks
189 waiting for 4 ticks
190 waiting for 3 ticks
191 waiting for 2 ticks
192 waiting for 1 ticks

193 [4] Read(health) | EOS//get the stored health

194 [5] GetHealth | 100 EOS//get current health

195 [6] Equal | 15 100 EOS//check if it is damaged

196 [7] AbsJumplf(2) | false EOS//is damaged

197 [8] Int(0) | EOS

198 [9] Int(359) | 0 EOS

199 [10] Random | 359 0 EOS//get a random direction
200 [11] Move | 288 EOS//move towards this direction
201 [12] Int(10) | EOS

At last, | tested the game for 25 times and get the following table:
Champion Runner—up Third FPlace Last One Score

berserk 9 3 : 50
gsLampard 11 3
nastyshooter 0 4
rabbit 3 1
movingshooter 0 5
movingshooter2 0 3
turret 2 ,
standshooter 2 2

The score is 5*Champion+3*Runner-up+1*Third Place-2*Last One.

) W L) O N N
=
—
-3

) DN
—
W)

[) [o) B ' B o B ok) B)

So if you can develop a good Al for your drone, you can make a difference and beat other
drones!

79

Drone War

Chapter 8: Lessons Learned

8.1 George Brink

My previous understanding of programming languages was pure practical one. | knew how
to write program, how to choose correct feature of the language depending on the task, how to
choose the language for the task. The lectures taught me the correct names for many of those
features and more theoretical understanding of the language translation process.

The OCaml requirement of the class proved to me that | have more imperative style of
thinking than functional. For example, the procedures like recursion and list reversion are fairly
complex and heavy processes in most imperative languages, and as a result it pained me to use
them during writing the code in OCaml.

Another problem | encountered while working with OCaml is a too liberal use of currying.
The OCaml does not actually check did it encounter a function or not a function which result in
a very strange style of code. For example, if we need a function which should do something
with two integer values we can write such function in a very simple manner:

let add x y = x+y;;

But the call to such function will be “add 1 2;;” which by the currying rule should be a
“add(1(2))”. | doubt that any sane human being can realize that “1(2)” actually means “1 and 2”.

As a result, | am sure that after this class | will not use OCaml anymore.

8.2 Shuo Qiu

Stay in contact with your team throughout the semester, to make sure you are always up to
speed.

Make sure you thoroughly understand the OCaml examples from class and try to search for
other OCaml code for better understanding. Learning the basic OCaml language is hard, but
class and object is much easier to use, just like Java or C.

Using OCaml in Linux is much easier in Window. Do not need complicated configuration
compared with windows, Linux just needs you type in a command and everything is done.

Better understanding of lexing, scanner, parser and ast. | learned how a compiler works by
participating in building them for our own language.

SVN really helps. Although | have troubles in submitting the files, | can always get the latest
version of the project and find what has been changed.

80

Drone War

8.3 Xiang Yao

In this class, | learnt the definition of a language as well as how to create and design a
language on my own. During the development of the project, | learnt how a compiler was
generated from beginning. First in the language part, | learnt what syntax analysis and semantic
analysis were, and building Scanner, Parser as well as AST provided me more opportunities to
widen my view from the inside of a compiler. After the language part, the Game Engine part
gave me chance to apply a new designed language to real life, and it was in this way that |
learnt how important the design was since using a language was sometimes even harder than
creating one.

Besides the topic about Drone War, this class also helped me to learn and get familiar a new
language of Ocaml, which was really complicated and hard to understand at beginning,
however, we finally understood how powerful it was when applied to developing compilers. As
a functional language, Ocaml helped to reduce a number of useless work when compared to
other high level languages such as Java and C++.

Finally, | also learnt a lot from team leader as well as other team members during
cooperations and brainstorming. | learnt that good management of time and human resource
always resulted in better progress in any kind of project.

8.4 Xiaotong Chen

Firstly, because of this course, | can touch ocaml as the development language, which |
never know before. The new language | learnt can be one of the most important parts in this
class. As a functional language, its strictly requirement of “type” is the most impressed feature.
To my surprise, all the statements have to “return” the same type. In additional, the “return”
strategy is also a kind of strange: all the operation will return some type of value. For a simple
example, after print, it will return -unit(), which basically indicates nothing to return. So we
must take care of the return type when coding. By doing this, | gained my patience.

Secondly, it’s also about this language. At the very beginning, we have no idea about how to
execute multiple lines of codes just like in Java or C. After carefully study the document of
Ocaml, we finally know how to execute multiple lines of code: use begin and end. By doing this
we can build a block of code that can be seen as an entire action.

What’s more, we design a game oriented language at the very beginning. We think like a
designer instead of a programmer. This is the first time | have that kind of feel, that’s amazing.
We design the game rules and operations of the drones. Then we construct the related scanner
to analyze the source code. By doing this, we convert the source code to tokens. Next step is to
analyze the tokens to check if these tokens are satisfied our grammar. Both parser and ast

81

Drone War

together can help us finish this step. With the definition of the “program” ast and parser can
construct an AST after the grammar analysis. When finish these steps, which are general
compiling processes, we convert source code to byte code. Then we implement the engine part
that response the byte code. Finishing above steps will generate a game.

82

Drone War

Appendix

Source Code Listing

1. Scanner.mll
{

open Parser;;
open Lexing;;

let debug=1;;

let incr_lineno lexbuf =
let pos = lexbuf.lex curr_p in
lexbuf.lex curr_p <- { pos with
pos_lnum = pos.pos_lnum + 1;
pos_bol = pos.pos_cnum;

}

rrs

exception Unknown_token of string * int * int;;

let create_hashtable size init =
let tbl = Hashtbl.create size in
List.iter (fun (key, data) -> Hashtbl.add tbl key data)
tbl

let keyword_table =

create_hashtable 8 |
"dup", DUP);
"drop", DROP);
"dropall", DROPALL);
"swap", SWAP);
"over", OVER);
"rot", ROT);
"read", READ);
"store", STORE);
"jump", JUMP);
"jumpif", JUMPIF);

"sub", SUB);
"endsub", END_SUB);

"else", ELSE);
"endif", END_IF);
"begin", BEGIN);
"while", WHILE);
"again", AGAIN);
"move", MOVE);
"stop", STOP);
"shoot", SHOOT);
"look", LOOK);
"wait", WAIT);

(
(
(
(
(
(
(
(
(
(
(
(
("if", IF);
(
(
(
(
(
(
(
(
(
(
("gethealth", GETHEALTH);

83

init;

Drone War

"isfoe", ISFOE);

~ o~~~ o~~~ o~

"random", RANDOM) ;

"isally", ISALLY);
"iswall", ISWALL);

incr_lineno lexbuf; token lexbuf }
INTEGER (int of string str) }

{ PLUS }

MINUS }

TIMES }

DIVIDE }

POWER }

BOOL (bool of string str) }
EQUAL }

LESS }

"mod", MOD);
"and", AND);
"or", OR);
"not", NOT);
1:7
}
let digit ['0'="9"]
let space = 1" " "\t']
let whitespace = [' ' '"\t' '\r']
let notspace = [~ " "\t
let name =['a'-'z" 'A'
rule token = parse
'\n' {
digit+ as str {
Ly
- {
-y {
'/ {
Y {
"true"|"false" as str {
‘= {
ret {
s {

GREATER }

['a'-'z'" 'A'-'Z']+ as str {try

(String.lowercase str) in

|
1))}

|
|
|
|
|

name ':' as str
name as str

whitespace

II//II

II/*II

notspace * as str

lexbuf.lex curr_p.pos_lnum,

{
{
{
{

let token = Hashtbl.find keyword table

token
with Not_found -> NAME (str) }
LABEL (String.sub str 0 ((String.length str)-

NAME (str) }

token lexbuf }
sinlge line comment lexbuf }
multi_line comment lexbuf }
raise (Unknown_token (str,

lexbuf.lex start_ p.pos_cnum-

lexbuf.lex start p.pos_bol +1)) }
| eof { EOF }
and sinlge_line_comment = parse
"\n' { Lexing.new line lexbuf; token lexbuf }

and multi_line_ comment = parse

84

{ sinlge line comment lexbuf }

Tk { token lexbuf }
"\n' { Lexing.new_line lexbuf; multi line_ comment lexbuf }

{ multi_line_comment lexbuf }

Drone War

2. Parser.ply
{

[

open Ast;;

open Printf;;
open Lexing;;
open Utils;;

let auto_label counter = ref 0;;

let make_ label() =
incr auto_label_ counter;
("-" " string of int(!auto_label counter))

.
4

[

}

$token SUB END_SUB

$token IF ELSE END_IF

%2token BEGIN WHILE AGAIN

%2token READ STORE

%token COLON

%token JUMP JUMPIF

$token <string> LABEL

$token <string> NAME

%token <int> INTEGER

%token PLUS MINUS TIMES DIVIDE MOD POWER
%2token AND OR NOT

%token <bool> BOOL

%2token EQUAL LESS GREATER

%token DROP DROPALL DUP SWAP OVER ROT
%2token MOVE STOP SHOOT LOOK ISFOE ISALLY ISWALL WAIT GETHEALTH RANDOM
%token EOF

$start drone
$type <Ast.sub list> drone

[
oe

drone:
program { let main sub = { name="--"; body = List.rev (fst $1); } in
main sub :: snd $1 }

program:

{011, [1 } /* two lists for main
body of the program and for functions defined by users */

| program operation { ($2 :: fst $1), snd $1 } /* add operations to the
body of the main program */

| program sub { fst $1, ($2 :: snd $1) } /* add user function to

the list of subs */
| program compaund statment { ($2 @ fst $1), snd $1 }

sub:

SUB NAME operations END_SUB { { name = $2; body = List.rev $3; } }
/* store the function name and function operations between "sub" and "esub"
*/

85

Drone War

operations:
{11}
| operations operation { if $2=Nop then $1 else $2 :: $1 }
| operations compaund statment { $2 @ s1 }
| operations error { let pos = Parsing.rhs start pos 2 in

raise (Parse_failure ("Unrecognized tokens
starting from line %d position %d\n", pos.pos_lnum, (pos.pos_cnum -
pos.pos_bol +1)));
}

compaund_statment:

IF operations END_IF { let 1bl = make_label() in
(Label(1lbl):: $2) @ [JumpIf(lbl) ;
Not |
}
| IF operations ELSE operations END_IF { let 1bll = make_ label() and
1bl2= make_ label() in
(Label(lbl2):: s$4) @
(Label(lbll)::(Jump(lbl2):: $2)) @ [JumpIf(lbll) ; Not]

}
| BEGIN operations AGAIN { let lbl=make label() in
(Jump (1lbl)::$2) @ [Label(lbl)]
}
| BEGIN operations WHILE operations AGAIN {let 1bll =make label() and
1bl2 = make_label() in
[Label(1bll); Jump(lbl2)] @ s$4 @

[JumpIf(lbll) ; Not] @ $2 @ [Label(lbl2)]
}
operation:

INTEGER { Int($1) }

PLUS { Plus }

MINUS { Minus }

TIMES { Times }

DIVIDE { Divide }

MOD { Mod }

POWER { Power }

AND { And }

OR { or }

NOT { Not }

BOOL { Bool(S1l) }

EQUAL { Equal }

LESS { Less }

GREATER { Greater }

NAME READ { Read($1) }

NAME STORE { Store(s$1l) }

DROP { Drop }

DROPALL { Dropall }

DUP { Dup }

SWAP { Swap }

OVER { Over }

ROT { Rot }

LABEL { Label(s$1) }

NAME JUMP { Jump(S$1) }

NAME JUMPIF { JumpIf($1) }

NAME { call(sl) }

86

Drone War

87

MOVE

STOP
SHOOT
LOOK
ISFOE
ISALLY
ISWALL
WAIT
GETHEALTH
RANDOM

N e e e T s T e Y NPE S

Move }

Stop }
Shoot }
Look }
IsFoe }
IsAlly }
IsWall }
Wait }
GetHealth }
Random }

Drone War

3. AST.ml

module StringMap = Map.Make(String);;

type bytecode =

Nop

Int of int
Plus

Minus

Times

Divide

Mod

Power

And

Or

Not

Bool of bool
Equal

Less

Greater

Colon

Store of string
Read of string
Label of string
Drop

Dropall

Dup

Swap

Over

Rot

Jump of string
JumpIf of string
AbsJump of int
AbsJumpIf of int
Call of string
Move

Stop

Shoot

Look

IsFoe

IsAlly

IsWall

Wait

GetHealth
Random

o e
rrs

let string_of bytecode code =
match code with

Nop ->
(* *)
| Int(x) -> "Int(" "~ (string of int x) ©~ ")" (* 5,
integer*)
| Plus -> "Plus"
(* 1 2 +, addition of integers *)
| Minus -> "Minus"

(* 1 2 -, subtraction of integers *)

88

Drone War

-> "Times"

* 1 2 *, mutip of integers *)

* 1 2 /, division of integers

-> "Divide"

-> "Mod"

*)

*# 1 2 mod, take mod of 1 by 2 *#*)

-> "Power"

* 1 2 ~, take the power of 1 by 2

And

bool2 and, return booll && bool2 *)

| or

-> "And"

-> "or"

bool2 or, return booll || bool2 *)

| Not

-> "Not"

not, return negation of booll *)

| Bool(b)

-> "Bool(" *

boolean type true or false *#*)

| Equal
equal *)

| Less
smaller *#*)

| Greater
greater *)

| Colon
colon *)

| store(var)

-> "Equal"
-> "Less"
-> "Greater"
-> "Colon"

-> "Store("

store , store the value of 2 *#)

| Read(var)

> "Read(" "

read , read the value of 2 *)

| Label (name)

| Drop

-> a b, drop the first element in the stack *)

| Dropall
->

| Dup -> "Dup"
-> a b ¢ ¢, duplicate first element in the stack *)
| swap -> "Swap"
-> a ¢ b, swap the elements in the stack *)
| over -> "Over"
-> a b c b *)
| Rot -> "Rot"
-> b c a %)
| Jump (name) -> "Jump(" *

-> "Label("
—> "Drop"

-> "Dropall"

A

A

(string of bool b)

var

var

name
labell: , take the label of name labell *)

, drop all elements in the stack *)

name

jump, jump the label names labell *)

| JumpIf (name)

-> "JumpIf("

jumpif, condition jump*)

AbsJump (addr)
AbsJumpIf (addr)
Call (name)

-> "AbsJump (

A

name

A

-> "AbsJumpIf(" *

> "call(" *

call the function by the name *)

Move
Stop
Shoot
Look
IsFoe
IsAlly
IsWall
Wait

89

-> "Move"
-> "Stop"
-> "Shoot"
-> "Look"
-> "IsFoe"
-> "IsAlly"
-> "IsWall"
-> "Wait"

name

A

*)

"y

Ay

(string of int addr)
(string of int addr)

oy

wyn

(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-
(-

booll
booll

booll

abc
abc
labell

labell

(*

Drone War

| GetHealth -> "GetHealth"
| Random -> "Random"

o e
rrs

type look flags =
Foe
(* enemy type *)
| ally
type*)
| wall
boundary of arena *)

type operands =
Undefined
| Integer of int
| Boolean of bool
| Flag of look flags

let string of operand op =
match op with
Undefined -> "undef"

| Integer(x) -> string of int x

| Boolean(b) -> string of bool b

| Flag(f) -> match f with

Foe -> "Foe"

| Ally -> "Ally"
| wall -> "Wall"

type sub = {
function defined by user *)
name : string;
function name *)
body : bytecode list;
function body *)
}

type program = bytecode list * sub list

but not-linked program defintion returned from the

90

parser

(* friend

(*

(*
(*
(*

(* compiled,

*)

Drone War

4. Drone.ml|

open Ast;;

open Parser;;
open Parser_dbt;;
open Printf;;
open Utils;;

exception Error_in_AI of string * string * int;;

type drone action =
No_Action
| Do_Shoot of int * int
| Do_Look of int

class drone =
object (self)

(* init the containers*)

val mutable subs = Hashtbl.create 16

val mutable vars : (string, Ast.operands) Hashtbl.t = Hashtbl.create
16

val mutable current sub = "--"

val mutable instruction pointer = 0

val mutable call stack: (string * int) Stack.t = Stack.create ()

val mutable stack : (Ast.operands) Stack.t = Stack.create ()

(* variables to enable debug functionality *)

val mutable debug mode = false

val mutable debug out file = stderr (#* channel for debug output *)

val mutable tick _counter = 0 (* life-time ticks counter, used
in debug output function *)

(* various members *)
val mutable drone_name = "" (#* name of the drone for GUI *)
val mutable team id 0 (* id of the team this drone belongs to

*)

(* variuables to describe current drone state *)

val mutable health = 100

val mutable direction of the body = 0 (#* used by GUI to draw where
the drone is moving if drone's image is not a circle *)

val mutable direction of the gun = 0 (#* used by GUI to draw where
the drone's gun is pointing (direction of the last SHOOT command *)

val mutable ticks to wait = 0 (* if non-zero, the AI will
skip a step *)

val mutable moving = false (* does the drone moving or
not? *)

val mutable brain dead = false (* will become true if at some
step the drone caught an exception *)

val mutable reason_ for coma = "" (* explanation why AI died *)

val mutable x position = 0. (* used by other drones to determine
the position in the arena can set maximum in Arena as Radius of the circle%*)

val mutable y position = 0. (* used by other drones to determine

the position in the arena 0-360%)

91

Drone War

gun _cooldown returns to zero *)

92

(* maxmium bullet load is 5 can be displayed in the GUI *)
val mutable bullet capacity = 5
val mutable has_bullet = true

(* set to 10 each time drone shoots. drone cannot shoot until

val mutable gun_cooldown = 0

method get moving direction = direction of the_ body

method set moving direction dire = direction of the body <- dire

method get_x position
method set_x position
method get_y position

method set_y position

= X_position

X = X_position <- x

y_position

y = y_position <- y

method get_ current_sub = current_sub;
method get_direction of_ the gun = direction_of_ the_gun;
method get_drone name = drone_name
method is_brain dead = brain_ dead
method is_alive = (health > 0)
method get_ai_ticks = tick_counter
method get_health = health
method belongs_to_team id = team_id <- id
method get team id = team id
method get moving status = moving
method set_health h =
health <- max h 0;
moving <- moving && health>0
method get_reason_for_coma = reason_for_coma
method get_gun_cooldown = gun_cooldown
(* this method is called, by the engine's LOOK procedure *)
method found_ target dist dire flag=
Stack.push (Integer (dist)) stack;

Stack.push (Integer (dire)) stack;
Stack.push (Flag (flag)) stack

method move speed =
if moving then
begin

Drone War

y_position <- y position +. (float of int(speed) *. (sin
(float_of int(direction_of the body) *. pi /. 180.)));

x_position <- x position +. (float of int(speed) *. (cos
(float_of int(direction_of the body) *. pi /. 180.)));

(* check did we hit a wall? *#*)

if x position > 1000. || x_position < 0. || y_position >
1000. || y_position < 0. then
begin

self#set_health (health - 10);

if x position > 1000. then x position <- 1000.;

if x position < 0. then x position <- 0.;

if y position > 1000. then y position <- 1000.;

if y position < 0. then y position <- 0.;

(* this is still debated, what to do after hiting the
wall, stop or bounce from it? *)

(* direction of the body <- ((direction of the body +
180) mod 360; (* bouncing adds more chaos to the battle *) *)

moving <- false; (* stopping is more easy to predict
and explain *)

if health=0 then moving <- false (#* if drone died
after hitting the wall, it definetely will not move anymore *)

end
end

method set_debug output out_ file =
debug_out_file <- out file;
debug mode <- true

(* print out all operations in the container %)
method dump code body as_array out file =
let command_counter = ref 0 in
Array.iter (fun x ->
fprintf out_file "%3d: %s\n" !command_counter
(string of bytecode x);
command_counter := !command counter +1
) body as_array

(* decompile the program into compilable text *)
method decompile out file =
let body = (Hashtbl.find subs "--") in self#dump code body
out file;
Hashtbl.iter (fun name body ->
if not (name="--") then begin
fprintf out_file "\nsub %s\n" name;
self#dump code body out_ file;
fprintf out_file "esub\n"
end
) subs

(* takes a raw list of operators including a Label(name) operator,
Remove all label, put them into temporary hash table
Using this hash table satisfy all jump(name) and convert them to
jump(address) *)
method link jumps body as list =
let 1lbls = Hashtbl.create 16 in
let no_label = List.fold left (fun acc x ->

93

Drone War

match x with
Label (name) ->
if Hashtbl.mem lbls name then
defined twice"))
else Hashtbl.add 1lbls name

raise (Failure ("Label "“name”'
(List.length acc);
acc
| -> x::acc
) [] body_as_list in
let abs_jumps = List.map(fun x -> match x with
Jump (name) ->
if not (Hashtbl.mem lbls name)
then raise (Failure ("Label ""name”" is not defined"));
AbsJump(Hashtbl.find 1lbls name)
| JumpIf(name) ->
if not (Hashtbl.mem lbls name)
is not defined"));
AbsJumpIf(Hashtbl.find 1lbls

then raise (Failure ("Label "“name”'

name)
| -> x) no_label in

Array.of list (List.rev abs_jumps)

(* check existance of a called sub, complain if it is not defined *)
method check sub_existance body =

Array.iter (fun x -> match x with
Call(name) -> if not (Hashtbl.mem subs name) then
~" is not defined"))
| _=> 0
) body

raise (Failure ("Sub "“name

(* Read the drone *%*)
method load file name =
drone_name <- Filename.chop_extension (Filename.basename
file name);
let chan_in = Pervasives.open_in file name in
let lexbuf = Lexing.from channel chan_in in
let program =

(if (Filename.check_suffix file name ".dt") then
Parser.drone Scanner.token lexbuf

else if (Filename.check_suffix file name ".dbt") then
Parser_dbt.drone Scanner_dbt.drone basic lexbuf

else ([1])

) in

(* First convert all jumps to the label into absolute jumps *)

List.iter (fun sub -> Hashtbl.add subs sub.name
(self#link jumps sub.body)) program;

(* Next step, check the existance of all called user funcitons
*)

Hashtbl.iter (fun name body -> (self#check sub_ existance body))
subs;

(* Last step, set starting position for the drone *)

self#set x position (Random.float 1000.);

self#set_y position (Random.float 1000.);

self#set moving direction (Random.int 360)

(* self#print current pos; *)

94

Drone War

(* helping pop function which converts operand to integer *)
method pop int=
if Stack.is_empty stack then self#freeze "Empty stack";
match (Stack.pop stack) with
Integer op-> op

| -> self#freeze "Type mismatch"; 0

(* helping pop function which converts operand to bool *)
method pop bool=
if Stack.is_empty stack then self#freeze "Empty stack";
match (Stack.pop stack) with
Boolean op -> op
| -> self#freeze "Type mismatch"; false

(* helping pop function which converts operand to look flag *)
method pop flag=
if Stack.is_empty stack then self#freeze "Empty stack";
match (Stack.pop stack) with
Flag op -> op
| -> self#freeze "Type mismatch"; Wall

method step =
tick_counter <- tick_counter+l;
if gun_cooldown>0 then gun_cooldown <- gun_cooldown-1;
if ticks_to_wait > 0 then begin
if debug mode then begin
fprintf debug out file "%4d waiting for %d ticks\n"
tick_counter ticks_to_wait;
end;
ticks_to_wait <- ticks_to_wait-1;
No_Action
end else begin
let body = (Hashtbl.find subs current sub) in
if (Array.length body) = instruction pointer then begin
if stack.is_empty call stack then self#freeze "Main
program terminated";
let return_address = (Stack.pop call stack) in begin
current_sub <- fst return_address;
instruction_ pointer <- snd return_ address;
end;
No_Action
end else begin
if debug_mode then self#print_current_state;
let action = match Array.get body instruction pointer with
(* primitive types *)
Int (x) -> Stack.push (Integer x) stack;
No_Action
| Bool(x) -> Stack.push (Boolean x) stack;
No_Action

(* simple arithmetics *)

| Plus -> let op2=self#pop int and
opl=self#pop_int in Stack.push (Integer (opl + op2)) stack; No_Action

| Minus -> let op2=self#pop_int and
opl=self#pop_int in Stack.push (Integer (opl - op2)) stack; No_Action

95

Drone War

| Times
in Stack.push (Integer (opl * op2)) stac
| Divide ->

opl=self#pop_int in Stack.push (Integer
| Mod ->

opl=self#pop_int in Stack.push (Integer
| Power ->

opl=self#pop_int in Stack.push (Integer
(float_of int(op2))))) stack; No_Action

-> let op2=self#pop_int and opl=self#pop_ int

k; No_Action

let op2=self#pop int and

(opl / op2)) stack; No_Action
let op2=self#pop int and

(opl mod op2)) stack; No_Action
let op2=self#pop int and

(int_of float((float_of int(opl))

**

(* boolean arithmetics *)

| And -> let
opl=self#pop bool in Stack.push (Boolean

| or -> let
opl=self#pop bool in Stack.push (Boolean

| Not -> let
(Boolean (not op)) stack; No_Action

(* conditions *)

| Less ->

opl=self#pop_int in Stack.push (Boolean
| Greater ->

opl=self#pop_int in Stack.push (Boolean
| Equal ->

opl=self#pop_int in Stack.push (Boolean

(* call anot
| call(name)

(instruction pointer+1)) call stack;

(* variables *)
| store(varN
self#freeze "Nothing to store";

in Hashtbl.replace vars varName op;

| Read(varName)

op2=self#pop bool and
(opl && op2)) stack; No_Action
op2=self#pop bool and
(opl || op2)) stack; No_Action
op=self#pop bool in Stack.push

let op2=self#pop int and
(opl < op2)) stack; No_Action
let op2=self#pop int and
(opl > op2)) stack; No_Action

let op2=self#pop int and
(opl = op2)) stack; No_Action
he sub*)

-> begin

Stack.push (current_sub,

current_sub <- name;
instruction_pointer <- -1
end;

No_Action

ame) -> if Stack.is_empty stack then

let op Stack.pop stack
No_Action

-> if not (Hashtbl.mem vars

varName) then self#freeze "Variable not defined";

varName in

(* stack man

| Drop ->
| propall ->
| Dup -> let
stack; No_Action
| swap ->

let op Hashtbl.find vars
Stack.push op stack;
No_Action

ipulation *)

ignore(Stack.pop stack); No_Action
Stack.clear stack; No_Action
op=Stack.top stack in Stack.push op

let op2=Stack.pop stack and

opl=Stack.pop stack in begin Stack.push op2 stack; Stack.push opl stack end;

No_Action

96

Drone War

| over -> let op2=Stack.pop stack and
opl=Stack.top stack in begin Stack.push opl stack; Stack.push op2 stack end;
No_Action

| Rot -> let op3=Stack.pop stack and
op2=Stack.top stack and opl=Stack.top stack in begin Stack.push op2 stack;
Stack.push op3 stack; Stack.push opl stack end; No_Action

(* game specific operations *)

| Move -> let direction=self#pop_int in
direction_ of the body <- direction; moving <- true; No_Action

| stop -> moving <- false; No_Action

| sShoot -> let direction=self#pop int and

distance=self#pop int in
direction_of_ the_gun <-
direction;
Stack.push (Boolean
(gun_cooldown=0)) stack;
if gun_cooldown>0
then No_Action
else (gun_cooldown<-10;

Do_Shoot (direction, distance))

| Look -> let direction=self#pop_ int in
direction_of_ the_gun <-
direction mod 360;
if direction_of_the_gun > 180
then direction_of_ the gun <- direction_of_ the_gun-360;
Do_Look(direction_of the_gun)

| IsFoe -> let flag=self#pop flag in
Stack.push (Boolean (flag=Foe)) stack; No_Action

| IsAlly -> let flag=self#pop flag in
Stack.push (Boolean (flag=Ally)) stack; No_Action

| Iswall -> let flag=self#pop flag in

Stack.push (Boolean (flag=Wall)) stack; No_Action
| GetHealth -> Stack.push (Integer(health)) stack;
No_Action
| wait -> ticks_to_wait <- self#pop_int;
No_Action

(* TO DO! get random int between min and max *)

| Random -> let max=self#pop_int and
min=self#pop int in Stack.push (Integer(Random.int (max - min + 1) + min))
stack; No_Action

(* jumps *)
| AbsJump (x) -> instruction pointer <- x-1;
No_Action
| AbsJumpIf (x) -> if self#pop bool then
instruction_pointer <- x-1; No_Action
| _ -> No_Action
in
instruction_pointer <- instruction_pointer+1;
action
end
end

method print_current pos =
begin

97

Drone War

print_endline drone name;
print_ float x position;
print_endline "";
print float y position;
print_endline "";
print_endline "Direction: ";
print_int direction of the body;
print_endline "";
print_endline "Gun Direction: ";
print_int direction_of_ the gun;
print_endline "";
print_endline "Health: ";
print_int health;
print_endline "";
print_endline "team id: ";
print_int team_id;
print_endline "";
print_endline "";

end

method freeze explanation =

brain_dead <- true;
reason_for coma <- explanation;
raise (Error_in_AI (explanation, current_sub,

instruction_pointer));

in

method print current_state =

let sub_name = (if current_sub="--" then "" else current_sub)
let body = (Hashtbl.find subs current sub) in

let bc = Array.get body instruction pointer in

fprintf debug out_file "%4d %20s[%3d] %20s |" tick_counter

sub_name instruction pointer (string of bytecode bc);

stack *)

98

let stack_copy = Stack.copy stack in

let cnt = ref 1 in

while (!cnt < 10) && (not (Stack.is_empty stack copy)) do
let op = Stack.pop stack_copy in
fprintf debug out file " %s" (string of operand op);
cnt := !cnt +1

done;

if (Stack.is_empty stack copy) then
fprintf debug out file " EOS\n"

else

fprintf debug_out_file «..\n";

flush debug _out_file

(* for each shoot update bullet capacity and push boolean on the

method update bullet load =

begin
(* shoot *)
if bullet capacity > 0
then
begin

Drone War

bullet capacity <- bullet capacity - 1;
has_bullet <- true;

end
(* no bullet *#)

else
has_bullet <- false;

end;
has_bullet

end; ;

99

Drone War

5. Arena.ml

open Drone;;
open Printf;
open Bullet;
open Ast;;
open Utils;;
open Gui;;

~e Ne

class arena =

object (self)
val mutable drones : drone list = []
val mutable bullets : bullet 1list = []
val mutable arena gui = new gui
val mutable gui_enabled = true
val mutable debug_mode false

val mutable look range = 30 (* +30 and -30 on the given degree
*)

val mutable bullet speed = 5

val mutable drone_speed = 1

val mutable area map_x = 1000
val mutable area map_y = 1000

val mutable team counter = 0
val mutable gathering team = false

method disable gui = gui_enabled<-false

method set_debug_mode mode = debug_mode <- mode

method load file name =
let d = new drone in begin
d#load file name;
d#belongs_to_ team team_counter;
if not gathering team then team_ counter <- team counter+l;
if debug mode then begin
let decompiled file = open out (file name

A

".decompiled")
in
d#decompile decompiled file;
close_out decompiled file;
d#set_debug output (open out (file name "~ ".debug"))
end;
drones <- d :: drones
end

method get_drone_count = List.length drones;
method add_bullet dist dire shoot_d =
let b = new bullet in

b#init shoot_d#get x_position shoot_d#get_y position dire dist;
bullets <- b :: bullets

method run =
if gui_enabled then arena_ gui#drawArena;

100

Drone War

let steps = ref 1 in
while (self#step > 1) && (!steps < 2000) do
incr steps
done;
printf "Results:\n";
List.iter (fun 4 ->
printf "%s: %s\n" d#get_drone_name
(if d#is_brain_dead then
("brain dead after " © (string of int d#get_ai ticks)
~ " ticks with explanation: " " d#get reason for coma)
else if not d#is_alive then
("died after " © (string of int d#get_ai ticks)

ticks")

else
("still alive with " © (string of int d#get_health)

A

"% of health ")

) drones

(* get a distance to the wall in the exact direction of the drone's look

*)
method look_wall dire d_look=
let x=d_look#get x_position and y=d_look#get_ y_ position in
let md = dire mod 360 in
let rd = radian_of_ degree md in

let dh = max (int_of float ((0. -. x) /. (cos rd))) (int of float
((1000. -. x) /. (cos rd))) in

let dv = max (int_of float ((0. -. y) /. (sin rd))) (int _of float
((1000. -. y) /. (sin rd))) in

let dist = if md=0 || md=180 then dh

else if md=90 || md=270 then dv
else min dh dv in
d_look#found target dist dire Wall

method explosion b d =
let d_x=d#get_x position and d_y=d#get_ y position and
exp_x=b#get pos x and exp y=b#get pos_y in
let dist = distance (d_x, d y, exp x, exp y) in
if dist < 50 then d#set_health (d#get_health - 50 + dist)

method step =
let live drones = ref 0 in (* to check how many drones are
still alive and kicking *)
List.iter (fun active drone ->
if (active_drone#is_alive) && (not active drone#is brain dead)
then begin
incr live drones;
try (
let action = active_drone#step in
match action with
No_Action -> ()

101

Drone War

| Do_Shoot(direction, distance) -> self#add bullet
distance direction active_ drone
| Do_Look(direction) -> begin

self#look wall direction active_drone; (#* the wall is always visible, and
it is always the farthest object from the active drone *)

let
found_drones = List.filter (fun d ->
if
d==active_drone then false (* the drone cannot see itself *)
else
if not d#is_alive then false (* ignore dead drones *)
else
begin (* check if the drone is in the look range *)
let angle to drone = degree of radian (atan2 (d#get_y position -.
active_drone#get_y position) (d#get_x position -.
active drone#get x position)) in
abs (direction - angle to drone) < look_range
end

) drones in

(* sort all
drones in the look range by the distance from the active drone *)

let
sorted found drones = List.rev(self#sort by dist active_drone found drones)
in

(* add all
found drones into the active drone's stack *)

List.iter
(fun d -> active_drone#found target (distance(active_drone#get x position,
active drone#get_y position, d#get x position, d#get y position))

(degree_of radian (atan2
(d#get_y position -. active drone#get y position) (d#get x position -.
active_drone#get x position)))

(if
active_drone#get_team id=d#get_team id then Ally else Foe)

) sorted_found_drones
end
)
with Error_in_ AI (reason, sub, position) -> printf
"Drone %s died at %s:%d with explanation: %s\n" active_ drone#get drone_ name
sub position reason
end
) drones;
(* update position for all drones and bullets *)
List.iter (fun d -> d#move drone speed) drones;
List.iter (fun b -> b#move bullet speed; if b#is_exploded then
List.iter(fun d -> self#explosion b d) drones) bullets;

(* List.iter (fun d -> d#print current pos) drones; *)
if gui_enabled then begin
arena_gui#clear;
List.iter (fun d -> arena gui#drawDroneDetail (int_ of float
d#get_x position) (int_of float d#get_y position) (radian of degree

102

Drone War

d#get_moving_direction) (radian_of_ degree d#get_direction_of_ the_gun)
d#get_drone_name d#get_health d#get_team id d#get_ai_ticks
d#get _moving status d#get reason_ for coma d#get gun cooldown) drones;
List.iter (fun b -> if(b#is_exploded) then
arena_gui#drawExplode (int of float b#get pos_x) (int_of float b#get pos_y)
else arena gui#drawBullet (int of float b#get pos_x) (int_of float
b#get_pos_y)) bullets;
arena_gui#wait;
end;
(* remove all exploded bullets from the arena *)
bullets <- List.filter (fun b -> not b#is_exploded) bullets;
!live drones

method ins d drone d_list =
let rec insert d e elements =
match elements with
[1 -> [e]

| head :: tail -> if distance (d#get_x position,

d#get_y position, e#get x position, e#get_ y position) <=
distance (head#get_x_position,

head#get_y position, d#get x position, d#get y position)

then e :: elements
else head :: insert d e tail
in
insert d drone d_list
method sort_by dist d d_list=
let rec sort d elements =
match elements with
[T -> 11
| head :: tail -> self#ins d head (sort d tail)

in
sort d d_list

method start_a team =
team_counter <- team_counter+l;
gathering team <- true

end; ;

103

Drone War

6. main.ml

open Arena;;
open Printf;;
open Utils;;

let main =
print_string "The Drone War\nThe class project for COMS W4115 Programming Languages and
Translators\nColumbia University, Fall 2012\n\
Professor:\tStephen A. Edwards\n\
Students:\tGeorge Brink (gb2280)\n\
\t\tXiang Yao (xy2191)\n\
\t\tXiaotong Chen (xc2230)\n\
\t\tShuo Qiu (sq2144)\n\n\

",
’

Random.self_init();
let cage = new arena in
Array.iter (fun parameter ->

if parameter.[0]="-' then

begin

match parameter.[1] with

'D' -> cagettset_debug_mode true

| 't'-> cage#tstart_a_team

| 'g' -> cagettdisable_gui

| _ ->print_endline ("Unknown option " “parameter);
end
else
if (Filename.check_suffix parameter ".dt") | | (Filename.check_suffix parameter ".dbt")

then

begin

print_string "Loading ";

print_string parameter;

try

cage#tload parameter;
printf " - ok\n"
with
Failure t -> printf " - failed\n%s\n" t
| Parse_failure(t,l,c) -> printf " - failed\n%s at %d:%d\n" t | c

| Sys_errort -> printf " - file error\n%s\n" t

end
) Sys.argyv;

Random.self_init();
print_string ("Loaded " (string_of_int cagetiget_drone_count) * " drones\n");

caget#trun;
exit 0;;

104

Drone War

7. gui.ml

open Unix;;

class gui =

object (self)
val mutable info_x=0
val mutable info_y =0
val mutable size x=0
val mutable size_y =0
val mutable max_x=0
val mutable max_y =0
val mutable temp_x=0
val mutable temp_y =0
val mutable counter =0

method drawArena=
Graphics.open_graph "";
Graphics.set_window_title "Arena";
Graphics.display_mode false;
Graphics.remember_mode true;
self#clear

method translate x y=
temp_x <- (20 + x * size_x / 1000);
temp_y <- (20 +y * size_y / 1000);

method drawDrone x y z=
Graphics.set_color (Graphics.blue);
self#ttranslate x y;
Graphics.draw_circle temp_x temp_y 6;
Graphics.moveto temp_x temp_y;
Graphics.lineto (int_of_float(cos (z)*.12.) +size_x) (int_of_float(sin (z)*.12.)+temp_y);

method drawCircleDroneDetail x y z name health=
Graphics.set_color (Graphics.blue);
self#translate x y;
Graphics.draw_circle temp_x temp_y 6;
Graphics.moveto temp_x temp_y;
Graphics.lineto (int_of_float(cos (z)*.12.) +temp_x) (int_of_float(sin (z)*.12.)+temp_y);
if (x+String.length(name))>1000 then if (y+30)>1000 then self#translate (x-50) (y-13) else self#translate (x-50)
(y+13)
else if (y+30)>1000 then self#translate (x+13) (y-13) else self#translate (x+13) (y+13);
Graphics.moveto temp_x temp_y;
Graphics.draw_string name;

105

Drone War

(*self#tdrawDroneHealth name health; *)
if health=0 then (selfidrawDroneDead x y);

method drawDroneDetail x y body_direc gun_direc name health team_id ai_ticks moving_status
reason_for_coma gun_cooldown=
self#tdrawDroneColor team_id;
self#ftranslate x y;
self#tdrawDroneBody x y body_direc; (*draw the body of the drone *)
Graphics.moveto temp_x temp_y;
Graphics.lineto (int_of_float(cos (gun_direc)*.15.) +temp_x) (int_of_float(sin (gun_direc)*.15.)+temp_y);
(*draw the gun of the drone *)
if (x+7*String.length(name))>1000 then if (y+30)>1000 then self#translate (x-7*String.length(name)) (y-23)
else selffitranslate (x-7*String.length(name)) (y+16)
else if (y+30)>1000 then self#translate (x+13) (y-23) else self#translate (x+13) (y+16);
Graphics.moveto temp_x temp_y;

Graphics.draw_string name; (*draw the name of the drone *)
Graphics.moveto temp_x (temp_y-10);
Graphics.draw_string (string_of_int health); (*draw the name of the drone *)

self#tdrawDronelnfo name health team_id ai_ticks moving_status reason_for_coma gun_cooldown; (*draw
the information of the drone *)
if health=0 then (self#{drawDroneDead x y); (*draw the deadbody of the drone *)

method drawDroneBody x y body_direc=
self#ftranslate x y;
let pi=4. * atan 1. in
let x1=int_of float(cos (body_direc)*.10.) +temp_x in
let yl=int_of_float(sin (body_direc)*.10.) +temp_y in
let x2=int_of _float(cos (body_direc +. (140.*. pi /.180.))*.10.) +temp_x in
(*.10.) +temp_y in
()*.10.) +temp_xin
*.10.) +temp_y in

let y2=int_of_float(sin (body_direc +. (140.*. pi /.180.)
let x3=int_of_float(cos (body_direc +. (220.*. pi /.180.
let y3=int_of_float(sin (body_direc +. (220.*. pi /.180.)
Graphics.draw_poly [|(x1,y1);(x2,y2);(x3,y3)|];

= = = =

method drawDronelnfo name health team_id ai_ticks moving_status reason_for_coma gun_cooldown=
Graphics.set_color (10494192);
info_y <- (info_y-15);
Graphics.moveto info_x info_y;
Graphics.draw_string name;
Graphics.set_color (Graphics.black);
info_y <- (info_y-10);
Graphics.moveto info_x info_y;
Graphics.draw_string "Team ID: ";
Graphics.draw_string (string_of_int team_id);
info_y <- (info_y-10);
Graphics.moveto info_x info_y;
Graphics.draw_string "Health: ";
Graphics.draw_string (string_of_int health);
info_y <- (info_y-10);
Graphics.moveto info_x info_y;
Graphics.draw_string "Al Ticks: ";
Graphics.draw_string (string_of_int ai_ticks);
info_y <- (info_y-10);
Graphics.moveto info_x info_y;

106

Drone War

Graphics.draw_string "Moving: ";

Graphics.draw_string (string_of_bool moving_status);

info_y <- (info_y-10);

Graphics.moveto info_x info_y;

Graphics.draw_string "Reason for coma: ";

if reason_for_coma="" then Graphics.draw_string "Not coma yet" else Graphics.draw_string
reason_for_coma;

info_y <- (info_y-10);

Graphics.moveto info_x info_y;

Graphics.draw_string "Gun cooldown: ";

Graphics.draw_string (string_of_int gun_cooldown);

method drawDroneDead x y=
Graphics.set_color (Graphics.red);
self#ftranslate x y;
Graphics.moveto (temp_x-7
Graphics.lineto (temp_x+7)
Graphics.moveto (temp_x-7
Graphics.lineto (temp_x+7)

~

(temp_y+7);
temp_y-7);

(temp_y-7);
temp_y+7);

—_—

method drawDroneColor x=
match x with
0 -> Graphics.set_color (Graphics.red)
| 1->Graphics.set_color (Graphics.green)
| 2 ->Graphics.set_color (Graphics.blue)
| 3 ->Graphics.set_color (10506797)
| 4 -> Graphics.set_color (Graphics.cyan)
| 5->Graphics.set_color (Graphics.magenta)
| 6->Graphics.set_color (16744228)
| 7 -> Graphics.set_color (16759055)
| 8-> Graphics.set_color (13487360)
| 9 ->Graphics.set_color (13445520)
| 10 -> Graphics.set_color (12092939)
| 11 -> Graphics.set_color (9005261)
| 12 -> Graphics.set_color (9132544)
| 13 -> Graphics.set_color (5577355)
| 14 -> Graphics.set_color (128)
| _-> Graphics.set_color (Graphics.black)

method drawBullet x y=
Graphics.set_color (Graphics.black);
self#ftranslate x y;
Graphics.fill_circle temp_xtemp_y 4;

method drawExplode x y=
self#ftranslate x y;
Graphics.set_color (14423100);
Graphics.draw_circle temp_x temp_y 10;
Graphics.set_color (15597568);
Graphics.draw_circle temp_x temp_y 20;
Graphics.set_color (15608876);
Graphics.draw_circle temp_x temp_y 30;
Graphics.set_color (15613952);

107

Drone War

Graphics.draw_circle temp_x temp_y 40;
Graphics.set_color (15627776);
Graphics.draw_circle temp_x temp_y 50;

method clear=
Graphics.clear_graph ();
Graphics.set_color (Graphics.black);
max_x <- Graphics.size_x();
max_y <- Graphics.size_y();
info_x <-(max_x-190);
info_y <-(max_y-25);
size_x <-(max_x-220);
size_y <-(max_y-40);
counter <- (counter+1);
Graphics.draw_rect 20 20 size_x size_y;
Graphics.moveto info_x (max_y-30);
Graphics.draw_string "Total Ticks: ";
Graphics.draw_string (string_of _int counter);

method wait=
Graphics.synchronize();
(*let s = Graphics.wait_next_event [Graphics.Button_down;Graphics.Key_pressed] in if s.Graphics.button
then Graphics.set_color (Graphics.red); *)
let tt = Unix.gettimeofday() in
while Unix.gettimeofday() < tt +. 0.05 do () done

8. bullet.ml

open Utils;;

class bullet =
object (self)

val mutable direction =0

val mutable x_position = 0.

val mutable y_position = 0.

val mutable distance_to_fly =0
val mutable distance_traveled = 0
val mutable start_x_position = 0.
val mutable start_y_position = 0.
val mutable exploded = false
method get_pos_x = x_position

method get_pos_y =y_position

method get_direction = direction

108

Drone War

method is_exploded = exploded

method init x y dir dist =
start_x_position <- x;
X_position <- x;
start_y_position <-y;
y_position <-y;
direction <- dir;
distance_to_fly <- min dist 1000

method move speed =

y_position <-y_position +. (float_of_int(speed) *. (sin (float_of _int(direction) *. pi /. 180.)));
X_position <- x_position +. (float_of_int(speed) *. (cos (float_of_int(direction) *. pi /. 180.)));
distance_traveled <- distance(x_position, y_position, start_x_position, start_y_position);
exploded <- (x_position > 1000.) | | (x_position < 0.) || (y_position > 1000.) | | (y_position < 0.);
if exploded

then selffupdate_position_if_flew_out_of arena

else exploded <- distance_traveled >= distance_to_fly

method update_position_if_flew_out_of _arena =

begin
if x_position > 1000. then x_position <- 1000.;
if x_position < 0. then x_position <- 0.;
if y_position > 1000. then y_position <- 1000.;
if y_position < 0. then y_position <- 0;

end

end;;

109

Drone War

9. utils.ml

exception Parse_failure of string * int * int;;
letpi=4.* atan 1.;;

let distance(x1, y1, x2, y2) =

int_of float(sqrt((x1 -. x2)*.(x1 -. x2) +. (y1-.y2)*.(yl-.y2)));;

let radian_of_degree angle =
float_of _int(angle) *. pi /. 180.;;

let degree_of_radian angle =
int_of_float(angle *. 180. /. pi);;

10. scanner_dbt.mll (George Brink’s individual contribution)

open Parser_dbt;;
open String;;
open Lexing;;

let create_hashtable size init =
let tbl = Hashtbl.create size in

List.iter (fun (key, data) -> Hashtbl.add tbl key data) init;

tbl

let keyword_table =
create_hashtable 8 [

("if", IF);

("then", THEN);
("else", ELSE);

("do", DO);

("loop", LOOP);
("while", WHILE);
("until", UNTIL);
("exit", EXIT);
("sub", SUB);
("function", FUNCTION);
("call", CALL);
("end", END);
("for", FOR);

("to", TO);

("step", STEP);
("next NEXT);
("goto GOTO);
("true" BOOL(true));

110

Drone War

("false", BOOL(false));
("and", AND);

(‘or', OR);

("not", NOT);

("sleep", SLEEP);
("move", MOVE);
("stop", STOP);
("shoot", SHOOT);
(

(

"rnd", RANDOM);
"health”, HEALTH);

("startscan", STARTSCAN);
("nextscan", NEXTSCAN);
("iswall", ISWALL);

(".isfoe", ISFOE);
(
(
(

"isally", ISALLY);

.distance", DISTANCE);
".direction", DIRECTION);

exception Unknown_token of string * int * int;;

let incr_lineno lex

buf =

let pos = lexbuf.lex_curr_p in
lexbuf.lex_curr_p <- { pos with

let digit = ['0' - '9']

Iet |d - [Ial_lzl lAl_lzl][lal_lzl |A|_|Z| |O|_|9|]* | l'l [vav_vzl |A|_|Z|]+

let space =["""\t'
let not_space = [

pos_Inum = pos.pos_Inum + 1;

pos_bol = pos.pos_cnum;

]
)

rule drone_basic = parse

| digit+ as inum {let num =int_of_string inum in INT num }

| id as word {try

let token = Hashtbl.find keyword_table (String.lowercase word) in

token

with Not_found -> ID (String.lowercase word)

}
(" {LPAREN
)" {RPAREN
' {COLON}

}
}

""" {COMMA }

I

I

I

|,

| '+ {PLUS}
|- {MINUS}
| ' {TIMES }
|'/' {DIVIDE}
| =

I

111

" {EQUAL}
<>" {NOT_EQUAL }

Drone War

‘<" {LESS}

'<=" {LESS_EQUAL }

">" { GREATER}

">="" { GREATER_EQUAL }

| \" [*"\n']* (*eat up one-line comments *)
| space (* eat up whitespace *)
{ drone_basic lexbuf }

| "\n' {iincr_lineno lexbuf; CR }

(* | not_space * as str { raise (Unknown_token (str, lexbuf.lex_curr_p.pos_Inum, lexbuf.lex_start_p.pos_cnum-
lexbuf.lex_start_p.pos_bol +1))} *)

| eof {EOF}

112

Drone War

11. parser_dbt.mly (George Brink’s individual contribution)

%{

open Ast;;
open Printf;;
open Lexing;;
open Utils;;

let auto_label_counter = ref 0;;

let make_label() =
incr auto_label_counter;
("-" ~ string_of_int(!auto_label_counter))

’”

let report_error error_starts_at message =
raise (Parse_failure (message, error_starts_at.pos_Inum, (error_starts_at.pos_cnum-
error_starts_at.pos_bol+1)))

%}

%token CR

%token IF THEN ELSE

%token DO LOOP WHILE UNTIL EXIT

%token SUB FUNCTION CALL

%token END

%token FOR TO STEP NEXT

%token GOTO

%token <bool> BOOL

%token <string> ID

%token <int> INT

%token LPAREN RPAREN COLON COMMA

%token PLUS MINUS TIMES DIVIDE

%token EQUAL NOT_EQUAL

%token LESS GREATER LESS_EQUAL GREATER_EQUAL
%token AND OR NOT

%token SLEEP MOVE STOP SHOOT RANDOM HEALTH
%token STARTSCAN NEXTSCAN

%token ISWALL ISFOE ISALLY DISTANCE DIRECTION
%token EOF

%left AND OR NOT

%left EQUAL NOT_EQUAL

%left LESS GREATER LESS_EQUAL GREATER_EQUAL
%left PLUS MINUS

%left TIMES DIVIDE

113

Drone War

%start drone
%type <Ast.sub list> drone

%%
drone:

program { let main_sub = { name="--"; body = List.rev (fst S1); } in
main_sub ::snd S1}

program: {[],[]} /* at the begining we have nothing */

| program CR {s1}
| program statement {(S2 @ fst S1),snd S1}
| program compaund_statement { (52 @ fst S1),snd S1}
| program sub {fstS1,(S2 ::snd 51) } /* add user function to the list of subs */
statements:
/* nothing */ {0
| statements CR {S1}
| statements statement {S2@S1}

| statements compaund_statement {S2 @ S1}

statement:
ID EQUAL math_expr CR { Store(S1):: 53}
| EXIT DO CR {[Jump("--ExitDo")] }
| EXIT FOR CR {[Jump("--ExitFor")] }
| GOTO ID CR {[Jump(S2)]}
| ID COLON {[Label(S1) 1}
| CALL ID LPAREN parameters RPAREN CR {call(S2)::54}
| CALL SLEEP LPAREN math_expr RPAREN CR {Wait:: 54}
| CALL MOVE LPAREN math_expr RPAREN CR {Move :: 54 }
| CALL STOP LPAREN RPAREN CR {[Stop]}

| CALL SHOOT LPAREN math_expr COMMA math_expr RPAREN CR { Drop :: Shoot :: ($4 @ $6) }
| ID EQUAL STARTSCAN LPAREN math_expr RPAREN CR { [Store(S17".distance"); Store(S17".direction");
Store(S17".flag"); Look] @ S5}

| ID EQUAL NEXTSCAN LPAREN RPAREN CR { [Store(S17".distance"); Store(S17".direction");
Store(S17".flag");] }
| error CR { report_error (Parsing.rhs_start_pos 1) "Syntax error" }

compaund_statement:
IF condition THEN statement
{let Ibl = make_label() in
Label(lbl) :: (S4 @ ([Jumplf(lbl) ; Not] @ S2))
}
| IF condition THEN CR statements END IF
{let Ibl = make_label() in
Label(lbl) :: (S5 @ ([Jumplf(lbl) ; Not] @ S2))
}
| IF condition THEN CR statements ELSE CR statements END IF
{let IbITrue = make_label() in

114

Drone War

let IbIEndIf = make_label() in
Label(IblEndIf) :: (S5 @ (Label(lblTrue) :: Jump(IbIEndIf) :: (S8 @ (Jumplf(lblTrue) :: $2))))
}
| DO WHILE condition CR statements LOOP
{ let IblStart = make_label() and IblICheckCondition = make_label() and IbIDone = make_label() in
let block = List.map (fun x -> match x with Jump("--ExitDo") -> Jump(IblDone) | _->x) S5 in
Label(IblDone) :: Jumplf(lbIStart) :: (53 @ (Label(lblICheckCondition) :: (block @ [Label(IblStart);
Jump(lblCheckCondition)])))
}
| DO statements LOOP WHILE condition
{ let IblStart = make_label() and IbIDone = make_label() in
let block = List.map (fun x -> match x with Jump("--ExitDo") -> Jump(IlblDone) | _->x) S2 in
Label(IblDone) :: Jumplf(IblStart) :: (S5 @ (block @ [Label(IblStart)]))
}
| DO UNTIL condition CR statements LOOP
{ let IbICheckCondition = make_label() and IbIDone = make_label() in
let block = List.map (fun x -> match x with Jump("--ExitDo") -> Jump(IlblDone) | _->x) S5 in
Label(IblDone) :: Jump(IblCheckCondition) :: (block @ (Jumplf(IblDone) :: (S3 @
[Label(lIblCheckCondition)])))
}
| DO statements LOOP UNTIL condition
{ let IblStart = make_label() and IbIDone = make_label() in
let block = List.map (fun x -> match x with Jump("--ExitDo") -> Jump(IlblDone) | _->x) S2 in
Label(IblDone) :: Jumplf(IblStart) :: Not :: (S5 @ (block @ [Label(IblStart)]))
}
| FOR ID EQUAL math_expr TO math_expr CR statements NEXT
{let IblAgain = make_label() and IbIDone = make_label() in
let block = List.map (fun x -> match x with Jump("--ExitFor") -> Jump(lblDone) | _->x) S8 in
[Label(IblDone); Jumplf(lblAgain); Less] @ S6 @ [Store(S2); Dup; Plus; Int(1); Read(S2)] @
block @ [Label(lblAgain); Store(S2)] @ S4
}
| FOR ID EQUAL math_expr TO math_expr STEP math_expr CR statements NEXT
{let IblAgain = make_label() and IbIDone = make_label() in
let block = List.map (fun x -> match x with Jump("--ExitFor") -> Jump(lblDone) | _->x) $10 in
[Label(IblDone); Jumplf(lblAgain); Less] @ S6 @ [Store(S2); Dup; Plus] @ S8 @ [Read(S2)] @
block @ [Label(lblAgain); Store(S2)] @ S4
}

sub:
SUB ID LPAREN args RPAREN CR statements END SUB CR
{let read_arguments = List.map (fun arg -> Store(arg)) S4 in
let sub_body = List.map(fun x -> match x with
Read(name) -> if List.exists (fun arg -> arg=name) $4 then Read(52""-""name)
else Read(name)
| Store(name) -> if List.exists (fun arg -> arg=name) $4 then Store(S27"-""name)
else Store(name)
| ->x)(S7 @ read_arguments) in
{name = $2; body = List.rev sub_body; }
}
| FUNCTION ID LPAREN args RPAREN CR statements END FUNCTION CR
{let read_arguments = List.map (fun arg -> Store(arg)) 54 in
let sub_body = List.map(fun x -> match x with
Read(name) -> if List.exists (fun arg -> arg=name) $4 then Read(52""-""name)

115

Drone War

else Read(name)

Store(name) -> if List.exists (fun arg -> arg=name) $4 then Store(S27"-""name)
I g->arg

else if name=52 then Store(527"-") else Store(name)
| ->x)(S7 @ read_arguments) in
{name = $2; body = List.rev (Read(S527"-") :: sub_body); }
}

args: {[]}
| ID {[s1]}
| args COMMAID { S3 :: 51}

parameters: { [] }
| math_expr{S1}
| parameters COMMA math_expr {S3 @ $1}

condition:
logic_expr {s1}
| logic_expr AND logic_expr {And :: (53 @ S1) }
| logic_expr OR logic_expr {Or:: (S3 @ S1)}

| NOT logic_expr {Not:: 52}

| error { report_error (Parsing.rhs_start_pos 1) "Malformed logical expression" }
logic_expr:

BOOL {[Bool(51)]}

| LPAREN logic_expr RPAREN {s2}

| math_expr math_relation math_expr {S2@(S3 @51)}

| SHOOT LPAREN math_expr COMMA math_expr RPAREN { Shoot :: (53 @ S5) }

| ID ISFOE { [IsFoe; Read (317" flag") | }

| ID ISALLY { [1sAlly; Read($17" flag")] }

| ID ISWALL { [1sWall; Read($17" flag")] }

math_relation:
EQUAL {[Equal] }
| NOT_EQUAL {[Equal; Not]}
| LESS {[Less]}
| GREATER {[Greater]}
| LESS_EQUAL {[Greater; Not]}
| GREATER_EQUAL { [Less ; Not] }

math_expr:
INT {[Int(S1)]}
| ID LPAREN parameters RPAREN { Call(S1)::S3}
| ID {[Read(51)] }

| math_expr PLUS math_expr {Plus:: ($3 @ $1)}

| math_expr MINUS math_expr {Minus :: ($3 @ S1) }

| math_expr TIMES math_expr {Times:: (53 @ S1) }

| math_expr DIVIDE math_expr { Divide :: (S3 @ $1) }

| LPAREN math_expr RPAREN {52}

| RANDOM LPAREN math_expr COMMA math_expr RPAREN { Random :: (S5 @ $3) }

116

Drone War

| HEALTH LPAREN RPAREN {[GetHealth | }

| ID DISTANCE { [Read($17".distance")] }
| ID DIRECTION { [Read($1".direction")] }
| error { report_error (Parsing.rhs_start_pos 1) "Malformed math expression" }

117

