Trigonometry Manipulation Language
(TML)

COMS W 4115 GROUP PROJECT
2012 FALL

FENG XUECHEN (XF2120)
CHEN QISHU (QC2166)

WAN YU (YW2506)

QU LIANHAO (LQ2140)
ZHANG WANQING (WZ2241)

Motivation

Trigonometry induction problem can be as simple as naive submission and
subtraction, yet sometimes it could drive people crazy with its subtle logic and
hidden clues. We believe most science students share the painful process of solving
trigonometry induction problems in high math classes. The language is designed to
express trigonometry concept and apply it to real world scenarios in a simple and
effective manner. The language could be use for educational purpose for both
geometric class and entry level programming class. It could be used as a stand-alone
language for educational purpose. The language could also be wrapped and called
from OCaml if necessary.

Example Scenario
A typical example of the language is to define trigonometry rules, such as the
concept of equilateral triangle or regular polygons with three vertexes. There are
two definitions of equilateral triangle:
- If all three internal angles of a triangle have the same degree, it is an
equilateral triangle.
- If all three sides of a triangle have the same length, it is an equilateral
triangle.
Now we could apply the concept of equilateral triangle to some given triangles to
see whether they are equilateral triangles.

Those given triangles are defined in the initialize section. The concept of equilateral
triangle is expressed in the rule section. And the concept can be applied to the
triangles in the operation section.

Note that the same concept “equilateral triangle” has different explanation, namely
same inner angle or same side length. The language is able to accept different
explanation on the same concept and choose the viable explanation for the given
triangles. Also, User could define the concept equal triangles in the rules section and

apply it later in operation section to prove two triangles are the same in shape. And
induct if a triangle is equal shape of a regular triangle, it is also a regular triangle.

Concept and Syntax

The basic naming convention for triangle is as below

angleB

angleC

B sidea C

A compliable program file consists of three sections each section starts by
- initialize:

- rules:

- operation:

Keywords
The following identifiers are reserved for the use as keywords, and may not be used
otherwise:

Triangle true initialize false rule print operation
Else for result angle area if
Initialize

Initialize section create triangle objects. L.E.

triangle ABC v((1.0, 1.0), (2.0, 2.0), (5.0, 1.0)) ;

initialize triangle with vertex location

| triangle DEF1(3.0, 2.0, 3.0) ;

initialize triangle with line length

| triangle GHI v((0.0,0.0), _, (0.0,0.0)) 1(5.0, _, 5.0);

initialize triangle with vertex location and line length.

Note the initialization parameters for single definition is not necessarily complete.
However incomplete definition may potentially leads to an incomplete logic and
leads to a compilation error. In this case initialization of triangle GHI would yield a
compilation error since no triangle could be made to satisfy the parameter in 2-D
plane.

Rule

Rule section is the second section that can be defined by users. The rules are similar
to the definition of C functions, which will enable users to set rules’ names,
arguments and statements. Rule section starts with “Rule:”

The expressions of rules are as follows:

rule -> RuleName (arg){exp}{return_type}

arg -> arg, arg | nil

exp -> exp logicOpt exp | (exp)| variable opt variable [number
logicOpt-> AND|OR|NOT

opt-> +|[-[*]/]==

return_type -> nil | float

Example of rules associate with trigonometry concepts:
R1: specifies a triangle is a regular triangle if all three sides are equal.

regular_triangle (triangle_1)
{(triangle_1.sidea == triangle_1.sideb) AND
(triangle_1. sideb == triangle_1. sidec)};

R2: specifies a triangles is a regular triangle if all three angle are 60 degree

regular_triangle (triangle_1)

{(triangle_1l.angleA == 60) AND
(triangle_l.angleB == 60) AND
(triangle_1l.angleC == 60)};

Note different expressions of regular triangle’s concept are express separately yet
the language is capable to comprehend it. ALL calculation and logic induction
involve elements within a triangle such as inner angle can be defined in Rule section
in order to reuse or can be directly be implemented in operation section.

Operation
Operation section applies rules objects created in initialize section and provide
system output. L.E.

if (right_triangle(ABC)) {
foreach (Triangles temp){
similar_triangle (temp, ABC);
print (temp + “is regular triangle”);
}
telse{
print (ABC + “is not a regular triangle”);

}

traverse all initialized triangles on plane and check if a triangle is similar to ABC. If
positive then print the result to console

Comment

@ starts comment section till the end of the line. There is no nested comment. “@”
inside string count as normal character.

Note that during the scenario: @@, it takes the first @ as the start of the comment,
and the second as the comment’s content.

Sample Code:

@ keyword “initialize:” starts triangle initialization phase
initialize:

@ initialize triangle with 2-D vertex location
triangle ABC = v((1.1, 2.2), (3.3, 4.4), (5.5, 6.6));
@initialize triangle with line segment length
triangle DEF =1(4.2, 3.5,3.6);

@ keyword “rules:” starts rules construction phase

rule:

@ explain regular triangle’s meaning in terms of line length

identical_triangle (Tri_1, Tri_2) {
((Tri_.1.A==Tri_2.A) AND (Tri_1.B == Tri_2.B) AND (Tri_1.C == Tri_2.C)) OR
((Tri_1.A ==Tri_2.B) AND (Tri_1.B == Tri_2.C) AND (Tri_1.C == Tri_2.A)) OR
((Tri_1.A ==Tri_2.C) AND (Tri_1.B == Tri_2.A) AND (Tri_1.C == Tri_2.B))};

@ explain right triangle’s meaning in terms of angle

regular_triangle (A) {(A.sidea == A.sideb AND A.sideb == A.sidec};
regular_triangle (A) {(A.angleA == 60 AND A.angleB == 60};

@ explain what means of two triangles be equal

equal_triangle (A B) {A.sidea == B.sidea AND A.sideb == B.sibeb AND A.sidec ==
B.sidec};

@ explain angleC in terms of sides

angle_C (A) () {arcos(sqr(A.sidea) + sqr(A.sideb) - sqr(A.sidec) / 2 * A.sidea *
A.sideb)};

@ keyword “operation:” starts operation and calculation phase
operation:
if (identical_triangle (ABC, DEF))
print (ABC + “and ” + DEF + “are identical”);
if (regular_triangle(ABC))
print (ABC + “is regular triangle”);
foreach (Triangle TEMP)
if (TEMP.area > 3.0 AND X.sidea< 0.1) print (“weird shaped triangle”);

