
	  

	  

1	  

Jiang Wu  jw3026 
Ningning Xia  nx2120 
Sichang Li   sl3484 
Tingting Ai   ta2355 
Yiming Xu  yx2213 

Project Proposal 
Stint: A Language Breaks Barrier Between String and Integer 

1. MOTIVATION 
In real-life applications, we often encounter the situation in which a mixture of 
characters and numbers needs to be processed. In traditional programming languages, 
such as C and Java, reading or modifying a single word/number in a string has been 
made quite complicated. For example, Java requires an extension, i.e. the String class, 
to perform the parsing and extracting tasks, and when it comes to a mixture of 
character words and numbers, the problem will be even more complex. While some 
scripting languages, e.g. Python, pretend to make the task easier, the lengthened 
running time and weak error-checking mechanisms provided by the compiler 
overweigh the convenience. 
Motivated by these factors, this project tries to design a language that provides easy 
ways to process strings directly and conveniently by a bunch of built-in functions, 
specified by certain operators.  

2. INTRODUCTION 
The programming language Stint can process textual data more efficiently and 
effectively, aiming at providing solutions for the complex manipulations and 
conversions between the most common-used data types: string and int. 
There are several key features of Stint while programming: 
 Intelligently distinguish between string and int. 
 Provide a simple and direct way to do mathematic operations for numbers in string 

without extracting them and transferring data type. 
 Define more effective text-manipulation via operators. Meanwhile, maintain 

traditional string features and functions. 
 Make input and output functions more convenient. 

In practice, Stint can be applied to pre-process initial textual data and text file, and 
save formatted data to specified file for further use. 

3. PRELIMINARY DESIGN 

3.1 General Syntax 
  Naming 

The name of variable can only include 26 alphabets in both lower and upper case 
(a-z, A-Z), digits (1-9), and underline (‘ _ ’). In addition, the first character can 
only use 26 alphabets in lower case. 
 
 



	  

	  

2	  

  Data Type 
The only available data type is string. 
 Declaration 

User does not need to indicate data type when define a variable. Directly using 
“assignment” operator (‘ = ’, see 2.1 for detail) is fine. 

 Expression 
Quotation marks (‘ “ ” ’) are used to express string by adding them to both sides. 
Noted that when string contains only digits, quotation marks are no more 
necessary (e.g. 123 can be directly assigned to a variable). 

 Access 
The language provides three ways to access part of the string. First, user can 
access a single character or sub-string of any length at any position like other 
languages like C++ or Java. What’s more, they can access any indicated set 
(“set” is defined as a range of continuous characters or digits. E.g. in string 
“abc123de34”, “abc” and “de” are string sets, and “123” and “34” are number 
sets) of string or number. (See detail of access way in 3.2) 

 Index 
The index will start from 1 in both string and integer cases. 

  End-of-Sentence 
Semicolon (‘ ; ’) is used to indicate the end of one sentence. 

  Comments 
Double-slash (‘ // ’) is the only comment sign, and it only works for single line. 

  Keyword 
Keyword Description Expression 

return Terminate program  

std 
Indicate the program should 

input/output to/from standard 
stream 

<< std var 

open Open corresponding file open “doc_name.txt” 

close Close corresponding file close “doc_name.txt” 

while Define a loop while (condition) 
{statement} 

true Boolean  

false Boolean  

 

 

 

 

 



	  

	  

3	  

3.2 Operator 

Name Sign Expression Description Example 

Assignment = expr1 = expr2 Assign the value of expr2 
to expr1 s = “abc”; 

Position Indicator @ @ pos 
Indicate specific position 
for operation (use with 
other operators) 

See in other operators’ 
examples 

String 
Operator 

Insert + expr1 + expr2 

Default: append expr2 to 
the end expr1 
Use @: insert expr2 into 
expr1 at position indicated 
by @ 

“ab” + “c” -> “abc” 
“ab” + “c” @ 1 -> 

“acb” 

Delete - expr1 - expr2 

Default: delete the first 
expr2 from expr1 
Use @: delete the first 
expr2 starting from the 
position indicated by @ 
from expr1 

“cabc” – “c” -> “abc” 
“cabc” – “c” @ 2 -> 

“cab” 

Integer Operator .+ * expr1 .+ expr2 

Default: do calculation for 
the first set of integer 
Use @: do calculation for 
the nth set of integer 
indicated by @ 

“ab12c56” .+ “1” -> 
“ab13c56” 

“ab12c56” .+ “1” @ 2 -
> “ab12c57” 

Character Extractor [ ] 
[ , ] 

[ index ] 
[ start, length ] 

Get the nth character in 
bracket, or get the string 
starting from start with 
length 

s = “abcd”; 
s[1] -> “a” 

s[2,2] -> “bc” 

Set 
Extractor 

(string) < > < index > Get the nth set of string 
(number ignored) 

s = “abc12ed34”; 
s <2> -> “ed” 

(integer) .< > .< index > Get the nth set of number 
(string ignored) 

s = “abc12ed34”; 
s .<2> -> “34” 

I/O 
Output << << destin var Output the string in var to 

the destin (file or std) 
<< “test.txt” s 

<< std s 

Input >> >> source var Get a line from source and 
store into var 

>> “test.txt” s 
>> std s 

* Integer Operator actually include add (‘ .+ ’), minus (‘ .- ’), multiply (‘ .* ’), divide (‘ ./ ’), and comparison 
(‘ .== ’, ‘ .< ’, ‘ .> ’). Here only use add as example in the table. 

4. Application Case & Sample Code 
One typical scenario for using our language is when we need to process text mixed 
with numbers, for example, an inventory table. Suppose we have a .txt file, in it each 
line records the information of a certain kind of good. There might be the name of the 
good, the price and the number remains. See the Table blow: 

Model:	  11’	  Macbook	  Air	  	  999$	  	  Remain:	  104	  
Model:	  13’	  Macbook	  Air	  	  1199$	  	  Remain:	  82	  
Model:	  13’	  Macbook	  Pro	  	  1199$	  	  Remain:	  196	  
Model:	  15’	  Macbook	  Pro	  	  1499$	  	  Remain:	  54	  



	  

	  

4	  

In this Table the domain and property follow a certain kind of format, specifically 
A:B. But there is no guarantee. Because in reality the file might from someone’s 
causal hand input. So the pattern matcher in Java or C++ sometimes doesn’t work 
when you try to modify something. We designed a more efficient way to implement 
the modifying demand. 
Each line is a mixture of characters and numbers. We often need to modify the 
number of items as the number is constantly changing. Using our language we can 
modify the number of items in a string directly, using command like “s = s .+ 1 @ 3”. 
Or we can modify the price using command “s = s .+ 50 @ 2” 
Our language is strong enough to deal with more complicated question, since we can 
operate all characters and numbers directly regardless of their position in a string. For 
example, we need to add some extra information because there’s a sale, say, back to 
school sale. We can do it like this: 

s	  =	  s	  .-‐	  100	  @	  2;	  
s	  <2>	  =	  s	  <2>	  +	  “Back	  to	  School	  Sale!”;	  

With the simple two commands, the string s now:  
Model:	  13’	  Macbook	  Pro	  Back	  to	  School	  Sale!	  	  1099$	  	  Remain:	  196	  

As we only have one variable type, the whole process of modifying a string becomes 
much simpler than using C++ or Java. No declaration, no stream buffer, no reader or 
anything to that nature.  
Below is the whole demonstration of how we read an inventory file and output a 
modified version to another file by the language Stint. 
Assume we got a file mentioned above, and now it comes to back-to-school days and 
we want to lower the price of each item by 100 dollars and add some text to it. We 
can simply write the following program. 

open	  “data.txt”;	   	   	   //open	  a	  file	  to	  read	  
open	  “data2.txt”;	   	   	   //open	  a	  file	  to	  write	  
while	  (	  >>	  “data.txt”	  line	  )	  {	   	   //read	  one	  line	  by	  each	  time	  
	  
	  	   //subtract	  100	  from	  the	  second	  integer	  in	  the	  string	  

line	  .<2>	  =	  line	  .<2>	  -‐	  100;	  
//append	  to	  the	  second	  string	  token	  

	  	   line	  <2>	  =	  line	  <2>	  +	  “Back	  to	  School	  Sale!”;	  
	  
	  	   <<	  “data2.txt”	  line;	   	   //write	  to	  a	  file	  
	   <<	  std	  line;	   	   	   //write	  to	  standard	  output	  
}	  
close	  “data.txt”;	   	   	   //close	  a	  file	  
close	  “data2.txt”;	  
return;	   	   	   	   //terminate	  the	  program	  

After executing this program, we will get the following lines from both data2.txt and 
standard output (monitor). 

Model:	  11’	  Macbook	  Air	  Back	  to	  School	  Sale!	  899$	  	  Remain:	  104	  
Model:	  13’	  Macbook	  Air	  Back	  to	  School	  Sale!	  1099$	  	  Remain:	  82	  
Model:	  13’	  Macbook	  Pro	  Back	  to	  School	  Sale!	  1099$	  	  Remain:	  196	  
Model:	  15’	  Macbook	  Pro	  Back	  to	  School	  Sale!	  1399$	  	  Remain:	  54	  

It contains only 11 lines of code and it’s very neat. If written in java or C++, it 
contains a lot more than that.  


