
Funk Programming Language Proposal

Naser AlDuaij, Senyao Du, Noura Farra, Yuan Kang, Andrea Lottarini
{nya2102, sd2693, naf2116, yjk2106, al3125} @columbia.edu

26 September, 2012

Motivation

Modernprogramming languages supportmultiple programmingparadigms. Theymix imperative, object oriented
and functional programming styles into a single programming language. Notable examples include Python, Ruby,
Go, Scala and C# 4.0. Some of these languages also provide an easier way to achieve parallel programming using
high level constructs like tasks and channels, compared to manually managed threads and memory like in C.

In particular, compared to imperative code, functional code is more straightforward to parallelize, for each exe-
cution unit has clearer boundaries and more defined scope, suggesting a strong connection between the two.

For this project, wewant to create amodern programming language that has an imperative structure, with parallel
execution support and higher order functions. We will focus on creating a translator from this language to C code.

Language Description

The programming language is inspired byGo, which has very clean syntax and logical constructs. Funk is a generic
programming language designed to support generalmathematical and logical (boolean) operations. Our language
has native support for higher order functions and parallel programming. Furthermore, in order to implement
higher order functions, we need to implement closures.

Our language has specific constructs to define parallel computation. Similar to Go, it is possible to simply de-
fine blocks of code that run on separate threads. Compared to the threading libraries for C, our language allows
expressing parallelism in an easier way.

Syntax Examples

Except for the additional features, the syntax of Funk is a subset of the syntax of Go.

1 func main() {
2 /*
3 * An imperative sequence of statements, including
4 * declarations, assignments, conditional statements
5 * and function calls.
6 * Multi-line comments are allowed.
7 */
8 // So are single-line comments
9 // a is 0, so is b

10 var a, b int := 0, 0;

1



11 // a_eq_b is TRUE
12 var a_eq_b bool := a == b;
13 for i := 0; i < 32; i++ {
14 a += i
15 }
16 if a_eq_b && a == 0 {
17 println(”a is 0, so is b”);
18 } else {
19 println(”at least one of a b is not zero”)
20 }
21 }

Listing 1: Go-like syntax

Functions

The func keyword indicates that the block that follows is a routine. They are first class citizens in Funk so they
can be assigned to variables and passed/returned as arguments. Since functions can be passed around, closures
become necessary to bind free variables of a function to a specific variable.

1 // func ID (PARAMS) RETURN_TYPE
2 func outside_adder() func(int) int {
3 // Closure
4 var sum int := 10
5 // Anonymous functions supported, without the ID
6 return func(x int) int {
7 sum += x
8 return sum
9 }

10 }
11 func main() {
12 var adder func := outside_adder() //Using closure propery
13 var another_adder func
14

15 println(adder(5)) // 15
16

17 //First class variable
18 another_adder := adder
19 println(another_adder(60)) // 75
20

21 var yet_another_adder func := outside_adder() // A different closure
22

23 println(yet_another_adder(60)) // 70
24 println(adder(60)) // 135
25 }

Listing 2: Example of high order functions and closures

Parallel programming in Funk

Blocks that execute asynchronously are prefixed by the async keyword. We can wrap a generic piece of code
inside an async block. Race conditions along with other common mistakes of parallel programming are avoided

2



by performing a closure of the code inside the async block. In other words, the async block has no side effects.
Only a single assignment to a variable in the outside scope is allowed (using the keyword return).

1 // Asynchronous Fibonacci sequence
2

3 func fib(n int) int {
4 var a, b int
5

6 // We don’t wait for fib(n - 1)...
7 a = async {
8 return fib(n - 1)
9 }

10 // ...because we can do fib(n - 2) in parallel
11 b = async {
12 return fib(n - 2)
13 }
14

15 // but the program will wait here, since a and b are used
16 return a + b
17 }

Listing 3: Parallel Fibonacci function in Funk.

Appendix

Example of code in Funk, demonstrating the conversion of Go-like 1 syntax into C.

1 // fib returns a function that returns
2 // successive Fibonacci numbers.
3 func fib() func() int {
4 var a, b int := 0, 1
5 return func() int {
6 a, b := b, a+b
7 return a
8 }
9 }

10

11 func main() {
12 f := fib()
13 // Function calls are evaluated left-to-right.
14 println(f()) //1
15 println(f()) //1
16 println(f()) //2
17 println(f()) //3
18 println(f()) //5
19 }

Listing 4: Fibonacci implemented with closures

Compiled C Code for the Fibonacci closure

1 #include <stdio.h>

1http://golang.org/

3



2 #include <stdlib.h>
3

4 struct env {
5 int a, b;
6 };
7

8 struct closure {
9 int (*call)(struct env *);

10 struct env * env;
11 };
12

13 int block(struct env * env) {
14 int sum = env->a + env->b;
15 env->a = env->b;
16 env->b = sum;
17 return env->a;
18 }
19

20 struct closure fib() {
21 struct env * env = (struct env *) malloc(sizeof(struct env));
22 env->a = 0;
23 env->b = 1;
24

25 struct closure closure;
26 closure.env = env;
27 closure.call = block;
28 return closure;
29 }
30

31 int main() {
32 struct closure c = fib();
33 int i = 0;
34 for (i = 0; i < 5; i++) {
35 printf(”%d ”, c.call(c.env));
36 }
37 printf(”\n”);
38 return 0;
39 }

Listing 5: Code of Listing 4 translated in C.

4


	Motivation
	Language Description
	Syntax Examples
	Functions
	Parallel programming in Funk

	Appendix

