
Hahn Chong - hc2361
Fred Clark Jr. - fc2413
Rotem David - rd2499
Robert Tolda - rmt2131
Jose Rodriguez - jgr2128 - Team Leader

Proposal - PB & J

(Parallel Boxes and Jam)

Table of Contents

1 Introduction
2 Types

2.1 Primitive types
2.2 Collection types
2.3 Special types

3 Lexical Structure
3.1 Comments
3.2 Operators

3.2.1 PB&J operator (@)
3.2.2 Assignment operator : identifier <- expr
3.2.3 Return operator : expr ->

3.3 Literal Types
3.3.1 Literal primitive types
3.3.2 Literal data types

3.4 Keywords
3.5 Arrays and Maps

4 Expressions
4.1 Operators

4.1.1 Multiplicative Operators
4.1.1.1 Multiplication Operator
4.1.1.2 Division Operator
4.1.1.3 Remainder Operator

4.1.2 Additive Operators
4.1.2.1 Addition Operator
4.1.2.2 Subtraction Operator

4.1.3 Comparison Operators
4.1.4 Inequality Operators
4.1.5 Logical Operators
4.1.6 String Concatenation

5 Blocks and Statements
5.1 Blocks
5.2 Spread Statement
5.3 Jam Statement
5.4 Conditional Statement
5.5 While Statement
5.4 For Statement
5.5 Print Statement

6 Declarations & Identifiers
6.1 Function Declarations

6.1.1 Master function
6.2 Variable and Constant Declarations

6.2.1 Variable and Constant Initialization
7 Scoping

7.1 Global Scope
7.2 Block Scope

8 Execution
8.1 Slave daemon
8.2 Master Execution

1 Introduction
Distributed computing is the use of multiple autonomous computers which work in concert to
achieve a desired output.

PB&J is designed for developers to distribute a job amongst multiple computers/processors in a
minimal amount of code needed while still being readable.

In PB&J, developers define a program which is run on both the master and slave servers.
While a portion of the program is only run on the master, the slave waits for messages from the
master as to what functions to run on what data sets.

It’s the responsibility of the master server to distribute the job to the slave servers. A developer
making a program in PB&J can use the spread & jam statements to perform these actions.

Refer to section 8 on how execution works for masters and slaves.

2 Types

2.1 Primitive types

PB&J supports the following primitive types:

long Basic numeric type.

double Floating point value and is declared by adding a decimal point to an
integer.

boolean True or false expression.

string Sequence of characters.

2.2 Collection types
PB&J also supports more complex data types, known as collection types, that follow the
syntactical structure of JSON.

Array A fixed position of sequential data types.

Map A key/value based data structure. Where keys can be any of the defined
data types.

2.3 Special types
PB&J contains the following special values:

null A special type that can be assigned to any variable type in place of it’s allowed
value range.

3 Lexical Structure

3.1 Comments
In PB&J there are only single line comments. Comments are generated one line at a time, by
placing three consecutive periods (...).

Example:
…This is a comment in PB&J.
… This is also a comment in PB&J.
.. . This is not a valid comment in PB&J

3.2 Operators

3.2.1 PB&J operator (@)
Spread: @ is used to identify an explicit argument that is a collection to spread amongst the
slave servers with
Jam: @ is used to identify the parameter in which to deliver the spread result.

Refer to section 5 for more details on spread and jam.

3.2.2 Assignment operator : identifier <- expr
The assignment operator consists of <- to represent you are injecting the left identifier to the
right expression.

3.2.3 Return operator : expr ->
The return operator (->) returns the value of the expression on the left of the operator.

3.3 Literal Types
3.3.1 Literal primitive types
The following are examples of literal primitive types:

long 0
10
1

double 0.0
10.0
1.1

boolean true, false

string “Hello World”

3.3.2 Literal data types
DCC also supports more complex data types following the syntactical structure of JSON.

array An example of an Array of longs:
[1, 2, 3, 4]

map An example of a map with keyed by longs
(similar to the list above):
{ 1 : 1, 2 : 2, 3 : 3, 4 : 4}

An example of a map keyed by strings:
{ “one” : 1, “two” : 2, “three” : 3, “four” : 4}

3.4 Keywords
The following keywords, formed from ASCII characters, are reserved and can not be used as
identifiers:
jam spread long double boolean string array map null if else while for

print global

3.5 Arrays and Maps
3.5.1 Arrays
Arrays a series of random access values that have a fixed length and are accessed by a
number from 0 to length - 1.
Where “valuen” is value in the array, “index” is a number which corresponds to an address in the
array, and “size” is the wanted size of the list as a long, and a is the identifier for the array.

Create an empty array array a <- []

Create with values array a <- [value1, value2, valuen]

Get the value for a given index a[index]

Add or replace a value a[index] <- value

Get length of the array |a|

3.5.2 Maps
Where “keyn” is a wanted key in the form of a string or long and “valuen” is the wanted value for
that key and m is the identifier for a wanted map.

Create an empty map map m <- {}

Create with values map m <- { key1 : value1, key2 : value2, keyn : valuen}

Get the value for a given key m{key}

Add or replace the value for a key m{key} <- value

Remove a key and it’s value m{key} <- null

Get all the keys as an array m*

Get all the values as an array m{*}

Get length of map |m|

4 Expressions

4.1 Operators
All Mathematical Operators follow traditional order of precedence with remainder ordered on the
same level as division and multiplication.

4.1.1 Multiplicative Operators
Operators * and / are known as multiplicative operators. Multiplicative operators are allowed on
numeric primitive data types and show described as follows:

4.1.1.1 Multiplication Operator
The * operator is used for multiplication of all numerical primitive data types. The following is a
typical format for a multiplication operator:

expr * expr2

Multiplication Examples:

Expression Result

1 * 2 2

1.0 * 2.5 2.5

4.1.1.2 Division Operator
The / operator is used for division of all numerical primitive data types. The following is a typical
format for a division expression:

expr / expr2

Division Examples:
Division of longs rounds towards 0.

Expression Result

1 / 2 0

3 / 2 1

3.0 / 2.0 1.5

4.1.1.3 Remainder Operator
The % operator is used for finding the remainder of all numerical primitive types. The following
is a typical format for a remainder expression:

expr % expr2

Remainder Examples:
Division of integers rounds towards 0.

Expression Result

4 % 2 0

4 % 3 1

2.5 % 2.0 0.5

4.1.2 Additive Operators
The + and - are known as additive operators.

4.1.2.1 Addition Operator
The + operator is used for addition of two expressions:

expr + expr2

Addiction Examples:

Expression Result

1 + 2 3

1.0 + 0.5 1.5

4.1.2.2 Subtraction Operator

The - operator is used for addition of two expressions:

expr - expr2

Subtraction Examples:

Expression Result

1 - 2 -1

1.0 - 0.5 0.5

4.1.3 Comparison Operators
We are dropping the == operator as to not create confusion.

= Structural comparison

=== Physical comparison

4.1.4 Inequality Operators
Inequality operators can be used on the numeric types: long and double.

PB&J supports the following inequality operators:

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

4.1.5 Logical Operators
Since our language does not contain bitwise operators, we can simplify our logical operators to
one character. Operators are still short-circuit operators.

&& And operator

|| Or operator

4.1.6 String Concatenation
The ~ (tilde) is used to concatenate data types into a string.

Examples:

Expression Evaluation

4 ~ 2 “42”

“Hello “ ~ 0.0 “Hello 0.0”

5 Blocks and Statements

5.1 Blocks
The start of a block is defined by open brace ({) where { is not following the identifier for a map.
The end of a block is defined by close brace (}) where } is not preceded by an unclosed hash’s
{. In the case of nested blocks } closes the last opened block.
Blocks for functions and statements are defined using braces { }

5.2 Spread Statement
spread: func
The spread statement is used to distribute a collection type amongst registered slave machines.
The function acts as a callback returning each time a slaving reports results, but only blocks the
call for the first result. func is a reference to the function that runs on the spread collection.

Example usage of spread for prime factorization:
master(map slaves, array args){ ... Runtime argument.

long bigPrime <- args[0];
array searchStarts;

... get the place for each slave to start
long iterations <- bigPrime / 3 / |slaves|;
for(long m <- 0; m < |slaves|; m <- m + 1) {

searchStarts[i] <- iterations * m;
}

... spread the starting points to the slaves
long result <- spread: factor(@searchStarts, bigPrime, iterations);
print("Result: " ~ result);

}

long factor(array mylist, long prime, long iterations) {

long start <- mylist[0];
for(long i <- start; i < iterations + start; i <- i + 1) {

if(prime % i = 0) { ...it is not prime
i ->

}
}
null -> ...no evidence that it is not prime

}

5.3 Jam Statement
jam: func
The jam statement is used to block on a spread statement until each slave reports a result. It
will then return the results of the spread or the result of the given function. func is an optional
reference to a function, which is run on the resulting collection set.
Note that jam: always precedes a spread statement with only an optional function reference in
between.

Example usage of jam for addition of a list :
master(map slaves, array args) {

array myList <- [1, 2, 3, 4, 5, 6];
long result <- jam: add(@) spread: add(@myList);
print("Result " ~ result ~ "\n");

}

long add(array myList) {

long result <- 0;
for(long i = 0; i < |myList|; i <- i + 1) {

result <- result + myList[i];
}
result ->

}

5.4 Conditional Statement
The conditional statement has two forms:
if(expr) statement1
if(expr) statement1 else statement2
In both cases expr is a boolean expression that is evaluated first and statement1 will be
executed if expr evaluates true. In the second case, statement2 is executed if expr evaluates
false.

5.5 While Statement
while(expr) statement
The while statement repeatedly executes statement until expr evaluates false. expr is a boolean
expression that is evaluated before the statement is executed.

5.4 For Statement
for(expr1; expr2; expr3) statement
The for statement first evaluates expr1 once. expr2 is a boolean expression that is evaluated
before each iteration. statement is executed whenever expr2 evaluates true and expr3 is
evaluated after each time statement is executed. If expr2 evaluates false, the for statement
is terminated. Any or all of the expressions may be left empty. If expr2 is left empty, it will be
evaluated as true.

5.5 Print Statement
print(string)
The print statement will print string. Other types will be converted to a string and printed.

6 Declarations & Identifiers
Both function declaration and variable declarations require a valid identifier. A valid identifier
must start with an alphabetic unicode character followed by any sequence of alphanumeric
unicode characters. An identifier may not be one of the reserved keywords. Two identifiers are
the same, if and only if, they have identical unicode characters for each letter of digit.

Examples of identifiers
long a … a is a valid identifier
long b123 … b123 is a valid identifier
long 1ba … 1ba is NOT a valid identifier as it does not start with an alphabetic character

6.1 Function Declarations
A function is a body of executable code which is passed a specific number of parameters. To
declare a function into a program specify a unique identifier. The identifier is used to refer to the
function for the duration of the program. Function declarations must follow the following format:

[type] identifier(type param [,...]) {

… body of function

}

When defining a function, it is optional to provide a type before the identifier to define the return
type of the function. It is also acceptable to leave out the return type if the function has no
return.

6.1.1 Master function
For each program to run on a master node, a function with the identifier “master” is required.
A “master” function must take two parameters. The first parameter must have a map type. The
map corresponds to a map of server objects. The second parameter being an array of strings
contains any additional command line arguments when ran. A “master” function must follow
the following format:

master(map servers, array params) {

… body of master function
}

Where the identifiers, servers and params, are interchangeable.

6.2 Variable and Constant Declarations
Variables and constants are declared by a unique identifier with the scope (in the case of
constants) and data type, respectfully, specified before the identifier. The scope determines
where the variable or constant is accepted by the compiler. Declare a variable without the global
keyword the context of a block to specify a local variable. Use the specifier global before the
type declaration to declare a global constant which cannot be changed and is accessible by the
master and all servers. The global specifier can only be used outside of the block scopes.

Note that this means the only way how to declare something as constant defines it as global
and visa versa.

[specifier] type identifier

6.2.1 Variable and Constant Initialization
Variables and constants in PB&J can be initialized with a given literal value or another already
declared variable or constant that can be seen within the scope of the initializing variable. Any
variable or constant that is not provided a value with the declaration is initialized one of the
following default values:

Data Type Default Value

long, double 0, 0.0

boolean false

string “” (empty string)

array [] (empty array)

map {} (empty map)

7 Scoping

7.1 Global Scope
The global constants are part of the global scope and can be accessed in all of the functions in
the file. defined by the keyword “global” followed by the type and name of the constant.

Global Scope Usage:
global double newresult <- 10.0;

master(double d) { ... d is a local variable.
print("Result: " ~ newresult); ... newresult can be accessed in
... the function because it’s a global variable

}

7.2 Block Scope
Each block defines it’s own local scope. Blocks have access to their parent block’s local
variables that have already been defined, as well as global variables.

Block Scope Usage:
foo(double a) { ... a is a local variable.

double b <- a; ...b is a local variable
if(true) {

double d <- a; ... Legal, the if block has access
... to it’s parent block’s variables.

}
b <- d; ... Illegal - d is not in the scope of this block.

}

master(double c){ ... c is a local variable.

c <- b + 3.0; ... ILLEGAL - b is a local variable
... in the foo function and thus cannot be
... accessed in the master function

}

8 Execution
Master and slave nodes of PB&J both execute the same version of compiled code to run.
Execution of a PB&J compiled application happens in two phases. The first phase is to initialize
the program as a slave daemon on all available slaves. The second is to initialize the master
program with the desired slaves as an argument.

8.1 Slave daemon
To initialized the slave daemon, you simply run the compiled version of your program with the -
slave argument with an optional port number. When initialized without a port number the slave
defaults to TCP port 35000.

slave$ programName -slave [port_number]

8.2 Master Execution
When a program is executed without the -slave argument then by default it’ll run the “master”
function of the program with a list of acceptable slaves

master$ programName ip[:PORT];ip2[:PORT];...

