
1

MASL Language Reference Manual

COMSW4115 Programming Languages & Translators

Jiatian Li Wei Wang Chong Zhang Dale Zhao

jl3930 ww2315 cz2276 dz2242

Contents
1 Overview .. 3

1.1 Conventions .. 3

2 Lexical Conventions .. 4

2.1 Tokens and Whitespaces .. 4

2.2 Identifiers ... 4

2.3 Keywords .. 4

2.4 Comments ... 5

3 Types and Values .. 5

3.1 Data Types and Literals ... 5

3.1.1 Basic Data Types ... 5

3.1.2 Lists ... 6

3.1.3 Functions and Objects ... 7

3.2 Variables ... 7

3.3 Type System ... 7

4 Expressions .. 7

4.1 Primary Expressions .. 7

4.1.1 Identifier .. 8

4.1.2 Literal .. 8

4.1.3 Parenthesized Expression ... 8

4.2 Postfix Expressions .. 8

4.2.1 List Reference .. 8

4.2.2 Function Calls ... 8

4.2.3 Member References ... 8

4.3 Unary Operators... 8

2

4.3.1 Prefix Incrementation Operators .. 9

4.3.2 Unary Plus Operator ... 9

4.3.3 Unary Minus Operator .. 9

4.3.4 Logical Negation Operator .. 9

4.4 Algorithmic Operators .. 9

4.4.1 Multiplicative operators .. 9

4.4.2 Additive Operators ...10

4.5 Relational Operators ...10

4.6 Equality Operators ..10

4.7 Logical Operators ..10

4.7.1 Logical AND Operator ..10

4.7.2 Logical OR Operator...10

4.8 Assignment Expression ...11

4.9 List Operations ..11

4.10 Miscellaneous Operators ...12

4.11 Precedence and Associativity ..12

5 Functions ..13

5.1 Defining a Function ...13

5.2 Invoking a Function ..14

5.2.1 By-value vs. By-Reference ..14

5.3 Functions as First Class Objects ...14

6 Objects ..15

6.1 Object Definition ...15

6.2 Member Variables ...15

6.3 Member Functions ...15

6.4 States ...16

6.5 Duplication ..17

6.6 Access Control ...18

6.7 List Functions ..18

6.8 Duck Typing ..18

7 Statements ..18

7.1 Types of Statements ..18

3

7.1.1 Declaration Statement ...19

7.1.2 Expression Statement ..19

7.1.3 Compound Statement ...19

7.1.4 Control Flow Statements ...20

7.1.5 Jump Statement ...20

7.2 Structure of a MASL Source File ..21

7.3 Scope ..21

7.3.1 Lexical Scoping ...21

7.3.2 Object Member Accessibility ..21

7.3.3 Global Object ..21

8 Grammar ..22

1 Overview
This document serves as a formal description of the Multi-Agent Simulation Language, or

MASL. The lexicon, grammar and semantics of the core language are elaborated in this

reference. However, this document will not provide much information on the runtime

infrastructure and standard libraries for MASL. These topics will appear in other related

documents.

The chapters of this document come as follows.

Chapter 2 discusses the lexical conventions of MASL for identifiers, keywords and

comments. Chapter 3 introduces the data types of MASL. Chapter 3.1 is about the

expressions and operators. Chapter 4 and Chapter 5 focus on functions and objects in

MASL respectively, both of which in fact share a lot of features in syntax and behavior as

basic data types. Chapter 7 discusses the control flow facilities of MASL, and classifies

different types of statements and discusses what constitutes a MASL program. Chapter 8

provides a formal definition for the syntax of MASL using context-free grammar.

1.1 Conventions
In this text, we will use fixed-width font for MASL code, such as:

int year = 2012;

And a serif font type different from the text for production rules:

control-flow-statement:

4

if (expression) statement

if (expression) statement else statement

for (expression
opt

 ; expression
opt

 ; expression
opt

) statement

for (identifier : expression) statement

while (expression) statement

do statement while (expression)

With terminal symbols in bold type and non-terminal symbols in regular type.

2 Lexical Conventions
This chapter gives some basic knowledge of MASL lexicon. More lexical issues will be

discussed in appropriate contexts later.

Currently a MASL source program is written with ASCII only, so the characters mentioned

in the following text all refer to those in ASCII.

2.1 Tokens and Whitespaces
A token is a sequence of characters that specify an entity or mark a language construct in

MASL. Tokens include identifiers, literals, keywords, operators and separators, each of

which will be discussed later.

Whitespaces, including spaces, tabs and newlines, can be used to separate two adjacent

tokens. Sometimes such separation is optional, but in other cases whitespaces are

mandatory.

2.2 Identifiers
An identifier is used to uniquely name an entity in MASL, such as a variable of some basic

type, a function or an object. A legal identifier is a character sequence of one or more letters,

digits or underscores, the first of which cannot be a digit. So the following 3 identifiers are

legal:

month Year Matrix3x3 _message

But the following ones are not:

someone@somewhere 9lives

MASL is a case-sensitive language. So the following 3 identifiers are mutually different:

masl MASL Masl

2.3 Keywords
Keywords are tokens with special meanings that should be reserved. A user-defined

identifier should not be one of the MASL keywords, otherwise the compiling may end up

with errors.

5

All the keywords in MASL are listed below:

boolean break char continue do double else for if int object return

state this while

2.4 Comments
Comments are simply treated as whitespaces by the MASL compiler, but may contain

information that helps explains the code nearby. MASL supports two kinds of comments:

single-line comments and multi-line comments.

A single line comment starts with two slashes (//). The two slashes may or may not be the

first of the line, but everything that follows until the end of the line will be part of the

comment.

A multi-line comment starts with a slash and an asterisk, i.e. /*, and the ends at the first

/ combination. The pair of / and */ may or may not be on the same line, and everything

in between is part of the comment.

Comments may not be surrounded by quotes (“), or they will become part of the string

instead of comments.

3 Types and Values
This chapter discusses the data types supported by MASL and the representation of their

literals, as well as how to define variables.

3.1 Data Types and Literals

3.1.1 Basic Data Types

In MASL, 5 basic data types are supported, namely integers, characters, doubles, booleans

and voids, identified using keywords int, char, double, boolean and void, respectively.

3.1.1.1 Integers

An integer in MASL is signed and 32-bit long, and its literal is a decimal number consisting

of one or more digits, such as:

142857

3.1.1.2 Characters

A character in MASL is an 8-bit ASCII character. It is written as a single character

surrounded with single quotes, e.g. ‘s’, ‘0’, ‘ ‘, etc.

MASL provides a few escape sequences for characters that are not easy to read on the

screen or hard to type with a keyboard, including:

‘\n’ New line character

6

‘\t’ Horizontal table character

‘\0’ Null character

3.1.1.3 Floating Numbers

As for floating point numbers, MASL supports the double precision floating number defined

by IEEE 754. A double literal consists of an integer part and a fraction part separated with

a decimal point, followed by an optional exponent part, which has a letter e or E followed by

a signed or unsigned integer. The fraction part may be omitted with the presence of the

exponent, and the integer part may be omitted with the presence of the fraction part. For

instance, the following double literals are valid:

3.14

3.14e-10

0.314

.314

3e14

3.1.1.4 Booleans

Booleans are used to represent the value of logical truths. There are only 2 literals for the

boolean type, i.e. true and false.

3.1.1.5 Void

The data type void is used to represent “nothing”. Sometimes a MASL function does not

return a value, and in this case, we say the return type of that function is void, equivalent

to saying the function returns nothing.

There is only one literal for void: void itself.

3.1.2 Lists

A list is essentially an array of elements of the same type. The literal of a list is written as

zero or more elements surrounded with a pair of curly braces, each adjacent two separated

with a comma:

{1, 2, 3, 4, 5}

At runtime, we can read, write or remove any elements of a list, and also add new elements

to a list at specified positions. These will be discussed in Section 4.9.

3.1.2.1 Strings

A string in MASL is essentially a list of characters. MASL provides a more convenient way

to write a string literal. That is to write a sequence of characters and surround them with a

pair of double quotes. For example:

“Goodbye, cruel world.”

7

3.1.3 Functions and Objects

Functions and objects are two other important data types of MASL. Since their features are

much more complex than these basic data types, they will be elaborated in Chapter 5 and 6

respectively.

3.2 Variables
Generally, a variable is a named memory block containing a value of some data type. For

instance, the following two statements define an integer variable and a double variable

respectively:

int x = 2;

double y = 3.14e11;

And the following statement defines an integer list which contains 4 integers:

int[] list = {1, 2, 3, 4};

As a string is just a list of characters, the following code defines a string:

char[] str = ”This is a string.”;

If a variable is declared but not initialized, however, that variable will hold the default

value of its type. The default values for int, char, double and boolean are 0, ‘\0’, 0.0

and false, respectively. The default value for a list of type T is [].

3.3 Type System
MASL will enforce strong and static typing rules on basic data types, functions and lists.

That is, the type check is done at compile time, and there are a lot of restrictions on

intermixing operations between different types of data to prevent runtime errors.

However, MASL deals with objects in a duck typing manner, which will be discussed in

detail in Chapter 6.

4 Expressions
This chapter classifies all forms of expressions in MASL, and gives a formal description to

each of them.

4.1 Primary Expressions
Primary expressions can be identifiers, literals or expressions in parentheses.

primary-expression:

identifier

literal

 (expression)

8

4.1.1 Identifier

An identifier is a primary expression provided it has been properly declared. The type of an

identifier is determined by its declaration.

4.1.2 Literal

The type of a literal primary expression specifies the constant of some data type.

4.1.3 Parenthesized Expression

A parenthesized expression is a primary expression whose type and value are identical to

the enclosed expression.

4.2 Postfix Expressions
Postfix expressions contain operators grouping from left to right.

postfix-expression:

primary-expression

postfix-expression [expression]

postfix-expression (argument-expression-list
opt

)

postfix-expression . identifier

postfix-expression ++

postfix-expression --

argument-expression-list:

expression

expression, argument-expression-list

4.2.1 List Reference

A postfix expression followed by an expression in square brackets is a postfix expression

denoting a subscripted list reference, which will be introduced in Section 4.9.1.1.

4.2.2 Function Calls

A function call is a postfix expression, consisting of a function name followed by

parentheses containing a possibly empty, comma-separated list of argument expressions,

which constitute the arguments passed to the function.

4.2.3 Member References

A postfix expression followed by a dot followed by an identifier is an expression that

accesses the member of an object (See Section 6.2).

4.3 Unary Operators
Expressions with unary operators group from right to left.

unary-expression:

postfix-expression

++ unary-expression

-- unary-expression

9

unary-operator cast-expression

unary-operator: one of

+ - !

4.3.1 Prefix Incrementation Operators

A unary expression proceeded by a ++ or -- operator is a unary expression. The operand is

incremented or decremented by 1 respectively. The value of the expression is the value after

the increment or decrement.

4.3.2 Unary Plus Operator

The operand of the unary + operator must have a numeric type, and the result is the value

of the operand.

4.3.3 Unary Minus Operator

The operand of the unary - operator must have a numeric type, and the result is the value

of the operand.

4.3.4 Logical Negation Operator

The operand of the ! operator must have boolean type and the result is the negation of

operand.

4.4 Algorithmic Operators
The algorithmic operators can be divided into two categories. The first category includes

multiplicative operators while the second includes additive operators.

multiplicative-expression:

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

4.4.1 Multiplicative operators

The multiplicative operators *, / and % group from left to right.

The operands of * and / must have numeric type. The operands of % must have integral

type. The binary * operator denotes multiplication. The binary / operator yields the

quotient, and the % operator the remainder of the division of the first operand by the second;

if the second operand is 0, the result is undefined. Otherwise, it is always true that (a / b)

* b + a % b is equal to a. If both operands are non-negative, then the remainder is non-

10

negative and smaller than the divisor; otherwise, it is guaranteed only that the absolute

value of the remainder is smaller than the absolute value of the divisor.

4.4.2 Additive Operators

The additive operators + and – group from left to right. The result of the + operator is the

sum of the operands, and the result of the – operator is the difference of the operands.

4.5 Relational Operators
relational-expression:

additive-expression

relational-expression < additive-expression

relational-expression > additive-expression

relational-expression <= additive-expression

relational-expression >= additive-expression

The relational operators group left-to-right, but this fact is not useful. The operators < (less

than), > (greater than), <= (less or equal), >= (greater or equal) all yield false if the

specified relation is false and true if it is true.

4.6 Equality Operators
equality-expression

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression

The == (equal to) and != (not equal to) operators are analogous to relational operators

except for their lower precedence.

4.7 Logical Operators
logical-AND-expression:

equality-expression

logical-AND-expression && equality-expression

logical-OR-expression:

equality-expression

logical-OR-expression || equality-expression

4.7.1 Logical AND Operator

The && operator groups left-to-right. It returns true if both its operands are true, false

otherwise. This operator performs short-circuit calculation.

4.7.2 Logical OR Operator

The || operator groups left-to-right. It returns true if either of its operands is true, and

false otherwise. This operator performs short-circuit calculation.

11

4.8 Assignment Expression
assignment-expression:

unary-expression = assignment-expression

In an assignment expression, the value of the right-side expression replaces that of what is

referred to by the expression on the left.

4.9 List Operations

4.9.1.1 List References

A postfix expression followed by an expression in square brackets denotes a subscripted list

reference. The first expression must have the type a list of T, where T is some type, and the

other expression must be of int type or turn out to be a list of int.

The index is 0 based, which means list[0] returns the reference to the first element in

list.

Some examples of getting list elements are given below:

 int[] list = {10, 11, 12, 13, 14, 15};

 list[1]; // Returns 11.

 list[{0, 1, 2}]; // Returns a sublist {10, 11, 12}.

4.9.1.2 Range Generation

The range generation expression can be used to generate a range of numbers conveniently.

It has the form:

expression:

{ expression
start

 : expression
step

 : expression
end

 }

{ expression
start

 : expression
end

 }

expression
start

, expression
step

 and expression
end

 can be of int or double type. If

expression
step

 is not specified, the step of this range will be 1 by default. This will generate

a list of numbers (int or double) starting from expression
start

, with each element produced

by adding expression
step

 to the previous one. If expression
step

 is positive, then the last

element is no greater than expression
end

. If it is negative, then the last element is no less

than expression
end

.

If expresion
step

 turns out to be 0, only expresion
start

 and expression
end

 will be included in

the list generated.

Here are some examples of range generation:

 int[] list1 = [0 : 3]; // {0, 1, 2, 3}

 double[] list2 = [1.0 : 2.2 : 7.0]; // {1.0, 3.2, 5.4}

12

4.9.1.3 Concatenation

Two lists can be concatenated with the operator ^. A concatenation operator returns a new

list which is a concatenation of the given two lists in the order they appear in the

expression.

expression:

expression ^ expression

4.10 Miscellaneous Operators
There are still some operators not covered in this chapter. Below are some of them, which

will be discussed in detail in the following text.

4.10.1.1 Dot operator

A dot operator (.) is used to access a member of an object.

expression:

expression . identifier

For example:

someObject.someMember;

accesses the member someMember of object someObject.

4.11 Precedence and Associativity
The following table lists operators with their associativity in MASL, in the order of

descending precedence from top to bottom.

Operator Associativity

(expr) [index] . -> left to right

! ++ --

unary operator: + -
right to left

* / % left to right

+ - left to right

< <= > >= left to right

== != left to right

&& left to right

|| left to right

+= -= *= /= %= = right to left

13

5 Functions

5.1 Defining a Function
Much like defining a variable of some basic data type, a function can be defined by

assigning a function literal to a function variable. For instance:

(double, double): double average =

(double a, double b):double { return (a + b) / 2.0; }

in which average is the name for the function and (double, double):double is the

type of the function. The whole thing on the right side of = is a function literal:

(double a, double b):double { return (a + b) / 2.0; },

which specifies a list of parameters followed by the return type of the function separated by

a colon, and then a compound statement which will be executed when the function is

invoked.

To make programmers of C family languages more comfortable, we introduced a syntax

sugar for function definitions as illustrated below:

double average(double a, double b) { return (a + b) / 2.0; }

which is equivalent to the previous style of function definitions.

In conclusion, function definitions have the form:

function-declaration:

function-type-specifier identifier = function-literal

type-specifier identifier (parameter-list) compound-statement

where:

parameter-list:

parameter , parameter-list

parameter

function-type-specifier:

(parameter-type-list) : type-specifier

parameter-type-list:

type-specifier, parameter-type-list

parameter , parameter-type-list

type-specifier

parameter

14

function-literal:

(parameter-list) : type-specifier compound-statement

parameter:

type-specifier identifier

The default value of a function is a function that simply returns the default value of the

return data type of that function.

5.2 Invoking a Function
To invoke a function, apply a pair of parentheses, which is considered an operator, to a

function and a list of arguments passed to it.

An example of function invocation is shown below:

average(1.0, 2.0);

5.2.1 By-value vs. By-Reference

When passing basic type arguments to a function, what the function access is just a copy of

the arguments passed in. Thus, modification to the arguments inside the function does not

affect the original data.

When passing an argument which is a list, a function or an object, however, what is

actually passed is the copy of the reference to the original data. Thus the code inside a

function is able to modify the value of such an argument, but it cannot modify the original

reference itself, since what it accesses is merely a copy of that reference.

5.3 Functions as First Class Objects
Functions are first-class objects in MASL. That is, they can be passed as arguments to

other functions or be returned by other functions, as well as assigned to some function

variable. Thus the following MASL code snippet is allowed:

(double):double times(double scale) {

return (double number):double { return number * scale; };

}

(double):double twice = times(2);

double processNumber(double number, (double):double functor) {

return functor(number);

}

Since a MASL functions cannot be modified once it is defined, even though a copy of its

reference is passed as an argument, the function passed cannot be modified by the code in

the function it is passed to.

15

6 Objects
In MASL, an object is an entity that encapsulates a set of attributes, behaviors and states,

and relates them together. An object may have different behaviors under different states,

and these behaviors may in turn access the attributes of that object or change its state. In

essence, an object in MASL is a Definitive State Automaton (DFA).

6.1 Object Definition
An object in MASL can be defined like this:

object objectName = {

…

};

The statement block surrounded by the curly braces is the body of the object, which consists

of the member variables, member functions and states of that object.

6.2 Member Variables
Defining a member variable uses almost the same syntax as defining a variable, except that

member variable declaration should only appear in an object body:

object A = { int number; };

To access the variable member in object A, we write:

A.number

Or

A.number = 1

A member variable is a left value. This means that we can read or overwrite the value of a

member variable.

A member variable can be initialized when you define it, like:

object A = { int number = 10; };

If a member variable is not initialized, it will be set to the default value for its data type.

For example, the default value for an integer would be 0.

The default value of an object is {}, indicating an object with no members.

6.3 Member Functions
Since the function is also considered a data type in MASL, the way we define a member

function is much like the way we define a member variable of other types.

Object A = {

16

int number = 5;

int timesNumber (int n) {

return number * n;

}

};

As we can see from the code above, a member function has access to the member variables

defined in the same objects. To invoke that member function, we write:

A.timesNumber(6)

Actually, the notation above is just a syntactic sugar for:

timesNumber(A, 6)

In this way, timesNumber knows that the variable number is in the object A, i.e. A.n. In

timesNumber we can also write number as this.number, with this pointing to the

hidden leading parameter which should be the object the function is called on, that is A in

this case.

6.4 States
Every object in MASL has a built-in automaton. An object may behave differently in

different states, and may transfer from one state to another under some conditions. An

object may have one state as its current state. During a simulation step, for each object in

the container for the simulation, the code in its current state gets executed. If an object does

not have a current state, however, all its parts will be defined, but it will not perform any

actions in subsequent simulation process.

Here is a sample that defines several states in an object.

object Warrior = {

state watch { if(enemyInSight()) -> attack; }

state attack { fight(); if(!enemyInSight()) -> watch; }

boolean enemyInSight() { … }

void fight() { … }

};

-> is called the state transition operator, which sets the current state of the object to the

one on the right side.

You may retrieve the name of the current state of an object using its built-in variable

member state, which is a string. It is automatically updated every time the current state

of the object changes.

17

The current states can be set upon object creation. Thus we can write:

object Warrior = {

state watch { if(liveEnemyInSight()) -> attack; }

state attack { fight(); if(!liveEnemyInSight()) -> watch; }

boolean liveEnemyInSight() { … }

void fight() { /* Fight with a sword. */ … }

int health = 100;

int level = 1;

int x;

int y;

} -> watch;

The object warrior will go into watch state after creation.

In fact, any statements can be written inside an object body, and these statements will be

executed once when the object is initially created.

6.5 Duplication
To build a new object based on an existing one, we can use object duplication in MASL like

this:

object Warrior1 = Warrior { x = 100; y = 200; };

object Warrior2 = Warrior { x = 50; y = 300; level = 4; };

Everything in Warrior is copied into Warrior1 and Warrior2, and during the

initialization of Warrior1 and Warrior2, the member variables x, y and level are set to

some other value.

MASL does not support class-based inheritance. But since an object can be built based on

another by copying all its members, their member functions can be overwritten. The sample

below illustrates this.

object SuperWarrior = Warrior {

void fight() { /* Fight with a laser gun. */ … }

};

In this case, everything in Warrior, including states and members, is copied into

SuperWarrior, while the member function fight in Warrior is replaced with a new one.

New members can be added to enhance existing objects as well. For example:

object Point = { double x; double y; };

object ColorPoint = Point { string color; }

18

6.6 Access Control
In MASL, all members within an object can be accessed from both inside and outside that

object. That is, all object members have a public access level.

6.7 List Functions
Lists in MASL are objects too. A list has some members that provide useful information or

operations on itself. Suppose list is a list whose elements are of type T. Then:

list.length is a member variable that stores the number of elements in the list. It

will be updated automatically as the number of elements in the list changes. Setting

it will have no effect.

list.filter(f) returns a sublist of list that only contains elements which meet a

criterion defined using the parameter f. f is a function of type (T):boolean. The

element being judged will be passed to it as an argument and it will return true

when that element meets the criterion, otherwise returns false.

6.8 Duck Typing

As we can see from the samples of SuperWarrior and ColorPoint, members can be

added to objects at runtime. This means that there is no enforcement on what type an

object should be. Since MASL is a prototype-based language, it does not clearly differentiate

object types – it uses duck typing instead. That is, if a member referred to on an object

exists, the value of that member is simply retrieved. If it does not exist, an error will be

signaled. This principle holds for both non-function members and member functions. In this

way, an object variable can be assigned with any object, and any object can be passed to a

parameter of object type. But there is a risk of mistyping, which the users should be take

care of.

7 Statements

7.1 Types of Statements
A statement is a basic execution unit in MASL. In general, statements are executed in the

order they are written in the programs. There are several types of statements.

statement:

declaration-statement

expression-statement

compound-statement

control-flow-statement

jump-statement

19

7.1.1 Declaration Statement

Declaration statements are related to the declaration of variables. There are three kinds of

declaration statements:

declaration-statement:

basic-type-declaration ;

function-declaration ;

object-declaration ;

basic-type-declaration:

basic-type-specifier init-declarator-list

init-declarator-list:

init-declarator

init-declarator , init-declarator-list

init-declarator:

identifier

identifier = expression

function-declaration:

type-specifier identifier = literal

type-specifier identifier (parameter-list) compound-statement

object-declaration:

object identifier = object-literal

7.1.2 Expression Statement

Expression statements are the most frequently used statements, most of which are

assignments or function calls.

expression-statement:

expression ;

;

7.1.3 Compound Statement

In some situations, a block of statements need to be treated as a whole. Such a statement

block is called a compound statement.

compound-statement:

{ statement-list }

statement-list:

statement

statement statement-list

20

7.1.4 Control Flow Statements

Control flow statements make the execution of statements depend on some conditions. Such

statements includes if, for and while statements.

control-flow-statement:

if (expression) statement

if (expression) statement else statement

for (expression
opt-init

 ; expression
opt-condition

 ; expression
opt-update

) statement

for (type-specifier identifier : expression) statement

while (expression) statement

do compound-statement while (expression)

Specifically, in the statement:

for (expression
opt-init

 ; expression
opt-condition

 ; expression
opt-update

) statement

Any or all of the three expressions may be omitted. And if expression
opt-condition

 is omitted,

the condition for iteration will be forever true, creating an infinite loop.

In the other form of for loop:

for (type-specifier identifier : expression) statement

The expression should turn out to be an iterable object, i.e. an object that can return an

iterator, such as a list. And in every iteration of the loop, a variable named with the

identifier will hold the value of the element pointed to by the iterator of expression.

7.1.5 Jump Statement

Jump statements in MASL can transfer the control flow instantly to another location.

jump-statement:

continue ;

break ;

return expression
opt

 ;

A continue statement may appear only within a loop. It causes control to pass to the loop-

continuation portion of the smallest enclosing loop.

A break statement may appear only in a loop, and it will terminate the execution of the

smallest enclosing loop statement. Control will pass to the statement following the

terminated loop statement.

A function returns to its caller by a return statement. When return is followed by an

expression, the value is returned to the caller of the function. The expression is converted to

the type of the return value of the function it appears in if the implicit conversion is viable.

21

7.2 Structure of a MASL Source File
In the top level of a MASL source file, the declaration statements, the expression

statements, the control flow statements and compound statements may appear in any order,

as long as the variables in a statement are still within its scope (see Section 7.3). These

statements will be executed in sequence at runtime.

program:

statement-list

7.3 Scope

7.3.1 Lexical Scoping

MASL supports lexical scoping for variable bindings. Thus, the scope of a variable is

effective from the end of its declaration statement till the end of the current block i.e. the

inner-most component statement it is defined in.

If a variable is defined in the head of a block, such as the loop-continuation portion of a loop,

or the parameter list of a function, then the variable is accessible in the entire body block.

Besides, code in a block is able to access the variables defined in an outer enclosing block. It

is not true in reverse, however. This holds for a state versus an object definition, a function

and the top level of a MASL source file, etc.

7.3.2 Object Member Accessibility

While conforming to lexical scoping rules, object member accessibility is also determined by

the way it is created. In Section 6.5 we said that when an object is built based on another,

all the members of the latter one will be copied into the former one. Thus, when trying to

access a member of an object, MASL will check all the members defined specifically in that

object as well as the base object it is copied from.

There is no inheritance in MASL, and one member name in an object must correspond to at

most one member. If an attempt is made to write to a member with the same name as a

member from the base object, that member is simply overwritten instead of being hidden.

7.3.3 Global Object

In fact, the top level code of an MASL source file is part of the definition of the global object,

which is implicit to the user. There is only one global object per MASL program. Thus, any

variables defined outside all objects and functions become members of the global variable.

The statements in the top level is outside any state of the global object, and are thus

executed only once before the global enters a state. None of the global object states will be

exposed to the user. They are used by the underlying simulation engine, which is not

addressed in this language reference manual.

22

8 Grammar
program:

statement-list

statement:

declaration-statement

expression-statement

compound-statement

control-flow-statement

jump-statement

declaration-statement:

basic-type-declaration ;

function-declaration ;

object-declaration ;

basic-type-declaration:

basic-type-specifier init-declarator-list

init-declarator-list:

init-declarator

init-declarator , init-declarator-list

init-declarator:

identifier

identifier = expression

function-declaration:

function-type-specifier identifier = function-literal

type-specifier identifier (parameter-list) compound-statement

parameter-list:

parameter , parameter-list

parameter

function-type-specifier:

(parameter-type-list) : type-specifier

parameter-type-list:

type-specifier, parameter-type-list

parameter , parameter-type-list

type-specifier

parameter

function-literal:

23

(parameter-list) : type-specifier compound-statement

parameter:

type-specifier identifier

object-declaration:

object identifier = object-literal

object-literal:

object-name object-body

object-body

object-body:

{ state-declaration-list statement }

state-declaration-list:

state-declaration

state-declaration state-declaration-list

state-declaration:

state identifier compound-statement

expression-statement:

expression ;

;

compound-statement:

{ statement-list }

statement-list:

statement

statement statement-list

control-flow-statement:

if (expression) statement

if (expression) statement else statement

for (expression
opt-init

 ; expression
opt-condition

 ; expression
opt-update

) statement

for (type-specifier identifier : expression) statement

while (expression) statement

do compound-statement while (expression)

jump-statement:

continue ;

break ;

return expression
opt

 ;

24

primary-expression:

identifier

literal

 (expression)

postfix-expression:

primary-expression

postfix-expression [expression]

postfix-expression (argument-expression-list
opt

)

postfix-expression . identifier

postfix-expression ++

postfix-expression --

argument-expression-list:

expression

expression, argument-expression-list

unary-expression:

postfix-expression

++ unary-expression

-- unary-expression

unary-operator cast-expression

unary-operator: one of

+ - !

multiplicative-expression:

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

relational-expression:

additive-expression

relational-expression < additive-expression

relational-expression > additive-expression

relational-expression <= additive-expression

relational-expression >= additive-expression

equality-expression

relational-expression

25

equality-expression == relational-expression

equality-expression != relational-expression

logical-AND-expression:

equality-expression

logical-AND-expression && equality-expression

logical-OR-expression:

equality-expression

logical-OR-expression || equality-expression

assignment-expression:

logical-OR-expression

unary-expression = assignment-expression

	1 Overview
	1.1 Conventions

	2 Lexical Conventions
	2.1 Tokens and Whitespaces
	2.2 Identifiers
	2.3 Keywords
	2.4 Comments

	3 Types and Values
	3.1 Data Types and Literals
	3.1.1 Basic Data Types
	3.1.1.1 Integers
	3.1.1.2 Characters
	3.1.1.3 Floating Numbers
	3.1.1.4 Booleans
	3.1.1.5 Void

	3.1.2 Lists
	3.1.2.1 Strings

	3.1.3 Functions and Objects

	3.2 Variables
	3.3 Type System

	4 Expressions
	4.1 Primary Expressions
	4.1.1 Identifier
	4.1.2 Literal
	4.1.3 Parenthesized Expression

	4.2 Postfix Expressions
	4.2.1 List Reference
	4.2.2 Function Calls
	4.2.3 Member References

	4.3 Unary Operators
	4.3.1 Prefix Incrementation Operators
	4.3.2 Unary Plus Operator
	4.3.3 Unary Minus Operator
	4.3.4 Logical Negation Operator

	4.4 Algorithmic Operators
	4.4.1 Multiplicative operators
	4.4.2 Additive Operators

	4.5 Relational Operators
	4.6 Equality Operators
	4.7 Logical Operators
	4.7.1 Logical AND Operator
	4.7.2 Logical OR Operator

	4.8 Assignment Expression
	4.9 List Operations
	4.9.1.1 List References
	4.9.1.2 Range Generation
	4.9.1.3 Concatenation

	4.10 Miscellaneous Operators
	4.10.1.1 Dot operator

	4.11 Precedence and Associativity

	5 Functions
	5.1 Defining a Function
	5.2 Invoking a Function
	5.2.1 By-value vs. By-Reference

	5.3 Functions as First Class Objects

	6 Objects
	6.1 Object Definition
	6.2 Member Variables
	6.3 Member Functions
	6.4 States
	6.5 Duplication
	6.6 Access Control
	6.7 List Functions
	6.8 Duck Typing

	7 Statements
	7.1 Types of Statements
	7.1.1 Declaration Statement
	7.1.2 Expression Statement
	7.1.3 Compound Statement
	7.1.4 Control Flow Statements
	7.1.5 Jump Statement

	7.2 Structure of a MASL Source File
	7.3 Scope
	7.3.1 Lexical Scoping
	7.3.2 Object Member Accessibility
	7.3.3 Global Object

	8 Grammar

