TaML

Language Reference Manual

Adam Dossa (aid2112)
Qiuzi Shangguan (qs2130)
Maria Taku (mat2185)
Le Chang (1c2879)

Columbia University

29h October 2012

Table of Contents

1.
2.

INEEOAUCTION ...ttt e e e e e e e ettt e e e e st e e e e esa e e e e snaneeeeasteeeeeannnnneeaas 4
LEXICAI CONVEINTIONSeeiiiiieeeeee ittt e e e e e e et e e e e e e e e e et e e e e e e e neeeaeas 4
B B O 1 V- v 101 1<) < AU PO 4
2.2 WHIEE SPACE....cccuiiiiiiiiiieiieeie ettt ettt et e et e s e e ebeesabeesbeeesbeesseessseenseessseenseessseenseesns 4
2.3 COMIMENLS ..o e e e e e e e e e e e e e e e e e e e 4
N o= T I/ 1= 3R 4
2.5 TAENUIIEIS .ttt e et e e 5
2 ST (=Y AT1Y 0T (o £ 5
2.7 CONSTANES . a e aaaa e e e 5
A 8 R [0 (=T o =T @0] = g | 5
2.7.2 FlOAE CONSTANTeeiiiiieeiiiiiieee ettt e e e e e e e e e e e e e e s e b reeeeenns 5
2.7.3 Character CONSEANT........cciuiiiieiiiiiie ettt e e e e annee e 6
2.7.4 SHING CONSTANTeeiiiiiiiiiii ettt e e e e e e e e e e e e e e e e a b nneeeeans 6
2.7.5 B00IEAN CONSIANTvviiiiiiiiiie ettt e e e 6
L/ S LS TP PUUUPPRUPPPPRPPPIN 6
3.l GNEIAI TYPES ciiiiiieeiiieie ettt ettt e et e e et e e e e e e e r e e e e e e e e aane 6
3.1.1 LT L= 1T 6
3.1.2 Floating POiNt NUMDEISuiiiiiiiiiii e 6
I I R O 4 - T = Tod (= £ PP PPPPPPPPRRRTR 7
I 1 1] T - TP PP PP PPPPPPPPPPRPT 7
3.5 BOOIBANS ...t 7
G 1= o] [T IV 1= L TR 7
B.2. 1 TADIE e 8
3.2.2 LI e e e e s 9
3.2.3 e ——————— 10
(0] (=11 0] o 11
4.1 Primary EXPrESSIONS.coiiiiiiieiiieeeeei ittt e et e e e e e e s e e e e e e e s st er e e e e e e e e anae 11
4.1.1 TAENTITIEIS ..o 11
41.2 CONSLANTS ... 11
4.1.3 Parenthesized EXPreSSIONS..........coviiiiiiiiiiiiiiieeiieeeeeeeeeeeeee e ee e aaeeaaeeeees 11
4.2 ASSIGNMENT OPEIALON......cc e i 11
4.3 Arithmetic OPerators. ... eei i, 11

4.4 (00014 a1 o T L= LAV 0] o= = L (o] PP 12

R Moo [Tof= 1 o] o 1] = o] ¢ TP 12
4.6 Table OPEIatOrSccccoi i 12
4.6.1 Table aCCeSS OPEIALOr ‘] .uuuuciiieeiiieiiiiiii e e e e e et e e e e e e e e e e e e e e e e eeerenanas 12
4.6.2 LiNE @CCESS OPEIALON ‘] 1uueeiieiiiiiee ettt a e e e e 13
T T N U= v (o [N G o 0 1= = L (o 13
4.6.4 The at (@) SYMDOL.....ooi i 13
4.7 PreCedenCe RUIESccooiiiiiiiii e 13
SEALIMEINTS ... 14

5.1 Variable declarations and initialization Statements............cccvvviiiiiiiie i 14
B5.1. L Ty P8 SP OO OIS e 14
5.1.2 Variable DECIArationsccuuiiiiiiiiiieiiiii ettt 14
5.1.3 Variable INitIaliZation ... 15
514 Initialization and Declaration of Table TYPes........cccuveviiiiiiiiiiiiiee e 15
5.2 EXPreSSIiON StAtEMENLSciiiiiiieeiiiiis et e e e et s s e e e e e e e e et s e e e e e e e eenaaa s e eeeeeeenes 15
5.3 SEeleCtion STAEMENTSuuiiiiiiiiiei it e e e e e e s e e e e e e e e aae 15
5.4 BIOCK STAIEMEINTSooiiiiiiiiiii ettt e e 16
5.5 Iterative STAEIMENTSuiiiiiiiieie ittt e e e e e e r e e e e e e e aane 16
5.6 REetUIN StAtEMENTS. ... 16
FUNCLIONS ..ottt e oo e et e e e e e e e s e et e e e e e e e e s nn e e e eneaannes 16
6.1 FUNCLON DECIATAtIONSuuiiiiiieeeiiiiit ettt e e e e e e e e e e annnes 17
6.2 The Main FUNCHON ... e e e e enes 17
6.3 BUII-IN FUNCLONS ... e e e e e 18
1 o0 o1 18
Language Formalizations / GramMarueeeiiiieiiiiiiiiiiee et e e e e 18
8.1 SCANNET.MII ..ottt e e e e 19
ST = £=T= T 0] 20

- Page 3 -

1. Introduction

The purpose of TaML is to provide users with an efficient and simple language for building,
editing, and manipulating tables (commonly known as spreadsheets). For example, through only
a few simple lines of code, a user can create a table, populate the table with data, edit the data,
and perform mathematical operations on this data (summing values in various cells etc.) . As one
could imagine, performing operations such as this in Java or C++ could take hundreds of lines of
code!

At a higher level, the functionality of this language could be used to allow programmers to
quickly and efficiently manage budgets, calculate yearly taxes, or otherwise keep track of
various types of numerical data and the relationships between this data.

2. Lexical Conventions

2.1 Character Set

TaML uses the ASCII character set, and assumes all input streams are in this character set.

2.2 White Space

As in the C language, white space (defined as any of blanks, tabs, newlines and comments), is
ignored except as it serves to separate tokens. White space is required to separate any tokens of
the above types which would otherwise be adjacent.

If the input stream has been parsed into tokens up to a given character, we adopt a greedy parsing
approach and the next token it taken to include the longest possible string of characters that could
possibly constitute a token.

2.3 Comments

A comment is introduced by a # character, and the comment is taken to be the text to the right
hand side of the # character (including the # character) until the closest following new line
character in the input stream, or the end of the input stream, whichever occurs first. Specifically
an occurrence of an additional # character within a comment as defined above is ignored (the # is
taken as part of the comment), and as such comments do not nest, or span multiple lines.

Note that a # cannot form part of a string literal or be a character literal, so its sense is not
ambiguous in these contexts.

2.4 Token Types

- Page 4 -

Token types in TaML can be one of the following:
[. Identifiers

II. Keywords
I1I. Constants (literals)
IV. Operators
V. Functions

2.5 ldentifiers

An identifier is a sequence of letters, digits, and underscores (_). The first character must be a
letter. Uppercase and lowercase letters are distinct. Identifier length is unlimited.

2.6 Keywords

Table 2.1 lists the set of identifiers, that are reserved for keywords in TaML. These identifiers
cannot be used for any other purpose.

bool false if rint true
cell for int return then
char float line string

clse func INULL table

Table 2.1: Keywords in TaML

2.7 Constants

There are several types of constants allowed in TaML. Every constant has a specific type
associated with it of either int, float, char, string or bool. Int, float, string, and char can also be
associated with the special constant null, which indicates an unset or undefined value. Null must
still have a type (of either int or float) associated with it.

2.7.1 Integer Constant

An integer constant is a sequence of digits which is optionally signed by a preceding negation
character “-”. All integer constants are considered to be decimal and of type int.

2.7.2 Float Constant

A floating constant consists of an integer part, a decimal point, a fraction part, an e, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of
digits. Either the integer part or the fraction part (but not both) can be missing. Either the decimal
point or the e and the exponent (not both) can be missing. All float constants are considered to be
decimal and of type float.

- Page 5 -

2.7.3 Character Constant

A character constant is a character enclosed in single quotation marks, such as "x’. Note the
character can be any member of the 52 upper and lower case standard english alphabet, or one of
the digits from 0 to 9, or one of * ’, “\r’, “\n’. Every character constant is considered to be of type
char.

2.7.4 String Constant

A string constant is a sequence of characters surrounded by double quotation marks, as in “cat”.
As in character constants the sequence of characters can include any of the 52 upper and lower
case standard english alphabet, any digits, and any of * ’, “\r’, “\n’. Every string constant is
considered to be of type string.

2.7.5 Boolean Constant

A boolean constant can be either the token “true” or the token “false.” Every boolean constant is
considered to be of type bool.

3. Types

TaML has two main types -- general types and table types. Explicit conversions between types
(e.g., casting) is not allowed in TaML.

3.1 General Types

The general types consist of integers, floating point numbers, characters, strings, and booleans.
The size, range, and default value for each is as specified in Table 3.1.

Primitive Type |Size Range Default VValue

Integer 4 bytes -2,147,483,648 to 2,147,483,647 INULL

Floating Point 4 bytes 1.40129846432481707¢-45 to NULL
3.40282346638528860e+38

Character 1 byte ASCII NULL

String > 1 byte |One or more ASCII INULL

Boolean 1 byte true, false false

Table 3.1: General Data Types Information

3.1.1 Integers

Integers in TaML are always signed and are represented by 4 bytes. This results in a range of
roughly -2 million to 2 million for integers. The default value of an integer is set as NULL.

3.1.2 Floating Point Numbers

- Page 6 -

Floating point numbers in TaML are represented by 4 bytes, resulting in a range of roughly
1.40129846432481707e-45 to 3.40282346638528860e38. The default value for a floating point
is NULL.

3.1.3 Characters
Each character is represented by 1 byte, and has a default value of NULL.

Characters consist of single characters as defined above. In TaML, characters are not allowed to
be used in Tables (tables only accept integers and floats), and thus the main use of chars and
strings in TaML is for output to a terminal or other output destination.

3.1.4 Strings

Strings consist of one or more characters as defined above. The size of the string is dependent
upon the number of characters in the string. The default value of a string is NULL.

In TaML, strings are not allowed to be used in Tables (tables only accept integers and floats),
and thus the main use of chars and strings in TaML is for output to a terminal or other output
destination.

3.1.5 Booleans

Booleans values are 1 byte and consist of either a “true” or “false” value. The default value for a
boolean is false.

In TaML, characters are not allowed to be used in Tables (tables only accept integers and floats),
and thus the main use of bools in TaML is for comparison logic.

3.2 Table Types

In addition to the general types, TaML also provides for several “table types” that are specific to
the TaML language. These table types are the cell, the line, and the table. The default values
and example syntax for initializing these types are shown in Table 3.2.

In general, the table types can provide more functionality than the general types mentioned in
section 3.1. For example, a cell type may not only represent a certain value (such as an integer
value held by that cell) but also a reference or other means of associating that cell with a
particular coordinate in the table.

Table Type |Example Initialization Syntax Default Value

Table table t = ([3,4], int); INULL

creates a table type called “t” with 3 rows and 4 columns

- Page 7 -

Line

line r =t[3,@];

Creates a line called “r” that holds all cells in row 3 of table “t”
(e.g., r represents a row)

linec =1[@,2];

Creates a line called “c” that holds all cells in column 2 of table
“t” (e.g., c represents a column)

line sc = t[2~5, 2];

Creates a line called sc that holds all cells in column 2 from
rows 2 to 5 inclusive.

[Note: The @ and ~ operators are discussed in more detail in
section 3.2.2

INULL

Cell

cell c =1[1,2];

Creates a cell called “c” that corresponds to row 1, column 2 of
table “t”

INULL

3.2.1 Table

Table 3.2: Table Types - default values and example initialization Syntax

A table in TaML consists of one or more cells arranged in rows and columns. The default value
of a table that has not yet been initialized is NULL. In order to create and initialize a table, the
number of rows, number of columns, and numeric type of the table should be specified. The

syntax is:

table tableName = ([number_of rows, number_of columns] data_type);

Where the data_type is either “int” or “float.” For example, to create a table named “myTable”
with 3 rows and 4 columns and which holds integers, you would define:

table myTable = ([3,4] int);

The values stored in the cells of the table must all be consistent. For example, if myTable is
initialized to hold integers, then all cells in myTable must hold integers.

Lastly, TaML only allows for creating 2-dimensional tables. However, a 1-dimensional table
can be mimicked by setting either the number of rows or columns to 1. For example, a table

with 1 row of floats can be mimicked by using:

table myTable = ([1,10] float);

- Page 8 -

TaML does not allow for creating or “mimicking” tables with 3-dimensions or greater,
furthermore the size for both the rows and columns must be strictly greater than 0.

3.2.2 Line

A line in TaML consists of either an entire line of cells in a table or a subrange of contiguous
cells in a table. In other words, a line can be equal to either a column or a row in the Table, or to
a contiguous subset of a column or row in a table.

The default value of a line that has not yet been initialized is NULL. To create and initialize a
line that represents a row or column, respectively, the following syntax can be used:

Create a “row” line
line lineName = tableName[row_number, startindex~endIndex];

Create a “column’ line
line lineName = tableName[startindex~endIndex, column_number];

The tilde (“~”) is an operator in TaML which indicates a range of contiguous cells. For example,
to create a “row” line called “myLine” that represents cells 2 through 4 (inclusive) in row 5 of
the table called “myTable” you could define:

line myLine = myTable[5,2~4];

The ampersand operator (“@”) can be used in place of the tilde syntax to indicate an entire row
or an entire column in a table. In other words, the syntax [@,3] indicates all cells from cell 0 to
the last cell in column 3. Or, to put this in layman’s terms, [@,3] merely indicates column 3.

Thus, as an example, the syntax for creating a line called “myLine” that represents row 4 in the
table called “myTable” you could define:

line myLine = myTable[4,@];

Note that when an initializing a line, exactly one of the column or row values must include a
tilde or ampersand. For example, the following line initializations are not allowed:

#NOT allowed: Either the row or column must have a tilde or ampersand
line myLine = myTable[4,5];

#NOT allowed: Both the row and column cannot have a tilde/ampersand
line myLine = myTable[4~5,1~5];

- Page 9 -

line myLine = myTable[@,1~5];
line myLine = myTable[4~5,@];

3.2.3 Cell

A cell type represents the basic unit of a table. The default value of a cell that has not been
initialized is NULL.

Each cell can represent one coordinate in the table. As mentioned above, all cells in a table
should represent the same type of data. For example, if one cell in a table represents an integer,
then all cells should hold an integer. However, note that a cell with value NULL will not clash
with the other cells in the table. For example, if a table has cells representing integers, then a cell
with value NULL is also allowed to be in the table.

A cell can be created and initialized with the syntax:
cell celIName = tableName[row_number, column_number];

For example, to create a cell named “c” that represents the third row and fourth column of the
table named “myTable” you could define:

cell c = myTable[3,4];
The type cell has different behaviour depending on the context in which it is referenced.

If it is referenced on the left hand side of an assignment, the behaviour is to assign the right hand
side value of the assignment to the coordinate in the table referenced by the cell.

For example the value at row 3, column 4 in myTable can be changed by declaring, for example:
¢ = 2000; # Changes the value of row 3, column 4 of myTable to 2000

If it is referenced outside of an assignment then a cell will resolve to being the value at the
coordinate in the table referenced by the table.

For example if we wish to compare whether the value in coordinate row 3, column 4 with row 4,
column 3 we could do:

cell a = myTable[3,4];
cell b = myTable[4,3];
if (a > Db) then {...}

- Page 10 -

4. Expressions

4.1 Primary Expressions

There are three types of primary expressions: identifiers, constants, and parenthesized
expressions.

4.1.1 Ildentifiers

Identifiers represent variables or functions.

4.1.2 Constants

Constants can be divided into five categories: integer, float, character, string and boolean. The
specific definitions for each can be seen in Section 2.7.

4.1.3 Parenthesized Expressions

Parenthesized expressions have the same value as the expression without parentheses. The
function of the parentheses is to change the inside expression’s precedence in the process of
evaluation.

4.2 Assignment Operator

_9

In our language, is the assignment operator. The function of an assignment is to pass a value
to the identifier on the left side of the expression. Assignment operators are binary and right-
associative. The left operand must be a “left value.” We define legal left values in our language
as variables, where the type of the variable is either line, cell, int, float, bool, char or string. The
right operand must be an expression. The types of the two operands needs to be consistent. Once
the assignment statement is taken, the left operand will have the same value as the right
expression, and the expression returns the value of the left operand. We note that consistent here
usually means “of the same type”, with the exception of where a cell is the left hand side of an

assignment operation, in which case it is defined as in section 3.2.3.

4.3 Arithmetic Operators

Arithmetic operators include “+7, “-”, “*”_ /" and “%".
+ -> addition
- -> subtraction
* > multiplication

/ -> division

All of the operators above are binary and left-associative.

- Page 11 -

For all operators, both operands must be of the same type, since no implicit casting is allowed.
Furthermore, all operands associated with arithmetic operators must be of type int or float.

4.4 Comparative operators

66'=’,

Comparative operators are “>,’<”, “>="_“<="_““‘=="and . All of the comparative
operators are binary and left-associative. The two operands on either side of a comparative
operator(‘“>”, “<”, “>="_“<=") must be of the same type and must be of type int or float. The
two operands for operator “==""and “!=" can be of type int, float, or bool and must be type

consistent.

A comparative expression returns a boolean value which indicates the predicate.

4.5 Logical operators

Logical operators in our language includes “&&”, ‘||” and “!”.

&& -> logical and
I -> logical or
! -> logical not

“&&” and “||” are binary and left-associative. The operands on both sides of the operator must be
of boolean type.

GC"’ C"?’

is unary operator and the operand after “!” must be a boolean type as well.
An expression involving logical operators returns a boolean value.

4.6 Table operators

4.6.1 Table access operator ‘[]’

e.g. inta=tablel[m,n]; #Assigns the value of table coordinate [m,n]
#to the variable *“*a”
tablel[m,n] = 2000; #Sets the value of table coordinate [m,n] to 2000
tablel[m,n]

1) Note that m and n must be expressions that evaluate to positive integers (greater than or
equal to 0). In this case, tablel[m,n] returns the value of the coordinate at row m, column n.

2) If m or n is in the format of “integer~integer”, and the other is a single integer, then
table1[2~3,5] returns a line.

line linel= tablel[2~3,5];

- Page 12 -

If m and n both are in the format of “integer~integer”. table1[2~3,5~6] returns a table.

table table2= tablel1[2~3,5];

4.6.2 Line access operator ‘[]’

e.g. inta=linel[2];
linel[2]=1000;

linel[m]

1) Note that m must be an expression that evaluates to a positive integer, greater or equal to.
In this case, line1[m] returns the m-th value of the line.

inta = linel[1];
2) If m is in the format of “integer~integer”, linel[m] returns a line.
line line2 = linel[2~3];

4.6.3 The tilde (~) operator

1) If one of m and n is in the format of “integer~integer”, table1[m,n] returns a line.
line r = table1[1,2~3]

2) If both m and n are in the format of “integer~integer”, table [m,n] returns a table. In this
case we can initialize a new table using this approach, with the new table inheriting the type from
the table from which it is being initialized.

table table2 = table[1~2,3~4]

4.6.4 The at (@) symbol

1) The symbol @ represents all the cells in a table’s row or columns. For example,
table1[@,3] returns all cells in column 3. As another example, table1[4,@] returns all cells in
row 4.

In other words, all of the expression above mean we want to access the value of specific cells in
table. The operator ‘[]” thus takes three operands: object-name, row-num and column-num.

Object-name must be either of type table or of type line. The row-num and column-num values
must be integers, an @, or in an “integer~integer” format.

4.7 Precedence Rules

- Page 13 -

To avoid ambiguity, we have defined the precedence of operators as below. The operators have
on top have higher priority than those below it.

1 0

3 *

4 + -

5 > < <= >=l===
6 !

7 &&

8 |

9 =

5. Statements

5.1 Variable declarations and initialization statements

5.1.1 Type Specifiers
In TaML, Type specifiers are as follows:

int : integer numbers

float: floating point numbers

char: characters

string: strings

bool: boolean values

cell:a cell unit in the table

line: a horizontal or vertical array of cells
table: a table with cells in it

5.1.2 Variable Declarations

Variable declarations are treated as statements in TaML. Declarations have the form of :
Type_Specifier identifier_list;
Where an identifier_list can be either a list of identifiers, or a single identifier:
identifier_list -> identifier_list | identifier

For example, to declare two tables at once:

- Page 14 -

Table a, b;

5.1.3 Variable Initialization

Variable initializations are treated as statements in TaML.
To declare and initializations a variable at the same time, the following syntax can be used:
Type_Specifier identifier_list = intialization_value;

Where, once again, the identifier_list can be either a list of identifiers, or a single identifier. For
example, to declare two tables at once:

Table a, b = ([m,n],int);

5.1.4 Initialization and Declaration of Table Types

The specific syntax for declaring and initializing the table types (i.e., cells, lines, and tables) is
summarized in Table 3.2 and is discussed in detail in Section 3.2.

5.2 Expression statements

In TaML, most statements are expression statements which have the form of
expression;

Every expression can be used here. Note there is a semicolon at the end of the expression.

5.3 Selection statements

Selection statements have the following two forms in TaML:

if (controlling_expression) block_statement
if (controlling_expression) block_statement else block_statement

Selection statements choose one of a set of statements to execute, based on the evaluation of the
controlling_expression.

The controlling_expression of an if statement must have scalar type.
For both forms of the if statement, the first statement is executed if the controlling_expression

evaluates to true. For the second form, the second statement is executed if the
controlling_expression evaluates to false. To avoid ambiguity, an else clause that follows

- Page 15 -

multiple sequential else-less if statements is associated with the most recent if statement in the
same block (that is, not in an enclosed block).

5.4 Block statements

Block statements are a list of zero or more statements and zero or more declarations. surrounded
by braces:

{

declaration_list
statement _list

}

declaration_list -> declaration_list | declaration
statement_list -> statement_list | statement

Note that each statement and declaration in the statement_list and declaration_list, respectively,
must end in a semicolon.

5.5 lterative statements

In TaML,we only have one form of iteration statement which takes the form of a for loop:
for (first_expression; second_expression; third_expression) block_statement

the first_expression in the iterative statement is evaluated once at the beginning of the first
iteration, while the second_expression is evaluated every time before the execution of the
block_statement. If the second_expression is equal to false, the iteration terminates and the
block_statement is not executed. Otherwise, if the second_expression evaluates to true, the
block_statement will be executed. The third_expression is evaluated at the end of each
execution of the block_statement and re-establishes the conditions for the next loop (e.g., for
determining whether first_expression is still satisfied).

5.6 Return Statements

You can use the return statement to end the execution of a function and return program control to
the function that called it. Here is the general form of the return statement:

return return_value;

6. Functions

- Page 16 -

6.1 Function Declarations

In TaML, it is possible to specify a named function, which can then subsequently be referenced
via its identifier.

A function is declared using the reserved keyword func as follows:
func return_type function_identifier (parameter_list) statement_block

return_type can be one of either void, int, float, bool, line, cell or table and represents the type of
the value that is returned by a call to a given function

function_identifier must conform to the same format as identifiers (as in section 2.5). Two
functions cannot be declared with the same identifier, nor can an identifier be used which
matches an identifier used to represent a variable elsewhere in the program.

parameter_list is a (possibly empty) list of parameters that the function takes as arguments. The
parameter list is a comma separated list of type and identifier pairs, for example:

int a, int b, float c

statement_block is a block statement as defined in 5.4. Within such a block statement, if the
return type of the function is not void, there must be a return statement, which returns a value of
the appropriate type.

An example function declaration:
func int myFunction(int a, int b) {
intc;

c=a+b;
return c;

6.2 The Main Function

Execution begins in a method named “main” in TaML, so there must exist one and only one
main function. The main function should have the following format:

func return_type main(string[] args){}

The return_type of the main function must be of type int.

- Page 17 -

6.3 Built-In Functions

There is one built-in function, “print,” in TaML. Print does not return any value. The print
function takes exactly one argument, which can be of type: int, float, bool, string, char, table, line
or cell.

When the type of parameter is int, float, bool, char, string or cell, the print function will print the
value associate with its argument on the screen and move to a newline. If the argument is of type
table or line, the output will be as followings:

>>print(line_1)
A B C D E F

1]1000 | 2000 | 3000 | 4000 | 5000 | 6000

>>print(table 1)
A B C D E F

11000 | 2000 | 3000 | 4000 | 5000 | 6000
12000 | 3000 | 4000 | 5000 | 6000 | 7000

| e
|

| e,
16000 | 7000 | 8000 | 9000 | 1000 | 2000
v

~N N D W

/. Scope

In TaML, there are two kinds of lexical scopes for variables: local and global.

Any variable declared outside of a function or statement block has global scope; such a variable
will be visible starting from its declaration until the end of the program file.

Any variable declared within a function or statement block has local scope and is only visible

within that function or statement block respectively. In other words, a local variable of the same
name declared elsewhere is a different variable.

8. Language Formalizations / Grammar

The grammar of TaML is described in the scanner.mll and parser.mly files below

- Page 18 -

8.1 Scanner.mll

{ open Parser }

let digit = [-]

let ip = digit+

let fp = digit+

let ie = digit+

let dp =

let exp = ("+"]'-1)? ip

(* Clearly ip, fp, ie are all identical, but for clarity we separate *)

rule token = parse
[1 { token lexbuf } (* Whitespace *)

" { comment lexbuf } (* Comments *)
{ LPAREN }
{ RPAREN }
{ LSQPAREN }
{ RSQPAREN }
{ LBRACE }
{ RBRACE }
{ WILDCARD }
{ RANGE }
{ SEMI }
{ commA }
{ PLUS }
{ MINUS }
{ TIMES }
{ DIVIDE }
{ ASSIGN }
{ EQ }
{ NEQ }
{ LT}
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

LEQ }
GT }
GEQ }
AND }
OR }
NOT }
IF }
ELSE }
FOR }
RETURN }
NULL }
CELL }
LINE }
TABLE }
FUNC }
INT }
FLOAT }

>

>=||
n&&u
" | | "

wyn

i
"else"
"for"
"return”
"NULL"
"cell”
"line"
"table"
"func”
"int"
"float"
"bool" BOOL }

"string" { STRING }

"char" { CHAR }

]?ie as 1lit { INTLITERAL(int_of_string 1lit) }

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| "<="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

- Page 19 -

(((ip dp fp)|(ip dp)|(dp fp))(exp)?)|(ip exp) as lit { FLOATLITERAL(float_of_string lit) }

|
| "true" | "false" as lit { BOOLLITERAL(bool of_string 1lit) }
| [1['a’- - - 1*[] as lit { STRINGLITERAL(lit) }
| [1M'a"- - - 10] as 1lit { CHARLITERAL(1lit) }
| ['a'- -'Z' ['a- - - 1* as ident { ID(ident) }
| eof { EOF }
| _ as char { raise (Failure("illegal character " ~ Char.escaped char)) }
and comment = parse
[] { token lexbuf } (* Return to normal scanning *)
| { comment lexbuf } (* Ignore other characters *)

8.2 Parser.mly

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA
%token PLUS MINUS TIMES DIVIDE ASSIGN

%token EQ NEQ LT LEQ GT GEQ AND NOT OR

%token RETURN IF ELSE FOR WHILE

%token INT FLOAT BOOL CHAR STRING

%token LSQPAREN RSQPAREN WILDCARD RANGE NULL CELL LINE TABLE FUNC
%token <int> INTLITERAL

%token <float> FLOATLITERAL

%token <char> CHARLITERAL

%token <string> STRINGLITERAL

%token <bool> BOOLLITERAL

%token <string> ID

%token EOF

%nonassoc NOELSE
%nonassoc ELSE

%right ASSIGN NOT

%left EQ NEQ

%left LT GT LEQ GEQ AND OR
%left PLUS MINUS

%left TIMES DIVIDE

%start program
%type <int> program

%%

program:
/* nothing */ { @ }
| program fdecl { o }
| program vdecl { 0 }
/* e.g. func int some_func (int a, int b, float c¢) { Table foo; do_something; } */

fdecl:
FUNC ptype ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE

{o}

/* List of all types */
ptype:

- Page 20 -

INT {0}
| FLOAT {0}
| BOOL {0}
| CHAR {0}
| STRING {0}
| TABLE {0}
| CELL {0}
| LINE {0}

/* Types that can be used in tables */
ttype:
FLOAT {0}
| INT {0}
/* Parameters of a function */
formals_opt:
/* nothing */ { @ }
| formal_ list { o }
formal_list:
ptype ID {o}
| formal list COMMA ptype ID { 0 }

/* A table selection that returns a table e.g. [1~5, @] */
table_sel:
LSQPAREN range_op COMMA range_op RSQPAREN { © }

/* a table selection that returns a line e.g. [4, @] */
line_sel:
LSQPAREN INTLITERAL COMMA range_op RSQPAREN { © }
| LSQPAREN range_op COMMA INTLITERAL RSQPAREN { 0 }

/* A table selection that returns a cell e.g. [4, 5] */
/* NB - also used in table initialization to set table size */
cell _sel:

LSQPAREN INTLITERAL COMMA INTLITERAL RSQPAREN { © }

/* A line selection that returns a line -- selects a contiguous subset of a line */
line_of_line:
LSQPAREN range_op RSQPAREN { © }

/* A line selection that returns a scalar -- a single cell value*/
scalar_of_line:
LSQPAREN INTLITERAL RSQPAREN { © }

/* A range of cells can either be selected with the wildcard -- @ -- or *
/* by specifing the range with, for example, 4~6 */
range_op:

WILDCARD { @ }
| INTLITERAL RANGE INTLITERAL { © }

/* List of Variables declared -- used in fdecl*/
vdecl_list:
/* nothing */

{e}
| vdecl list vdecl { 0 }

- Page 21 -

/* we allow variable initialization to default (null or false) or specific values */
vdecl:
vdecll {o} /* default initialization*/
| vdecl2 {0} /* Explicit initialization value*/

/* Default initiliazations: Keep in mind that our language will default set all of */
/* these to a value of "NULL" except for bool, which has a default value of "false" */
vdecll:

INT ID SEMI {
| FLOAT ID SEMI ({
| STRING ID SEMI {
| BOOL ID SEMI {
| CHAR ID SEMI {
| TABLE ID SEMI ({
| LINE ID SEMI {
| CELL ID SEMI {

/* Explicit initialization value */
vdecl2:

INT ID ASSIGN INTLITERAL SEMI {0} /* int a = 4; */
| INT ID ASSIGN NULL SEMI {0} /* int a = NULL; */
| INT ID ASSIGN ID cell_sel SEMI {0} /* int a = tablel[3,4]; */
| INT ID ASSIGN ID scalar_of line SEMI {0} /* int a = linel[4]; */
| FLOAT ID ASSIGN FLOATLITERAL SEMI {0} /* float b = 4.0; */
| FLOAT ID ASSIGN NULL SEMI {0} /* float b = NULL; */
| FLOAT ID ASSIGN ID cell sel SEMI {0} /* float b = tablel[3,4]; */
| FLOAT ID ASSIGN ID scalar_of_line SEMI{ o } /* float b = linel[4]; */
| STRING ID ASSIGN STRINGLITERAL SEMI {0} /* string s = "cat"; */
| STRING ID ASSIGN NULL SEMI {0} /* string s = NULL; */
| CHAR ID ASSIGN CHARLITERAL SEMI {0} /* char c = 's'; */
| CHAR ID ASSIGN NULL SEMI {0} /* char ¢ = NULL; */
| BOOL ID ASSIGN BOOLLITERAL SEMI {0}
| TABLE ID ASSIGN LPAREN cell sel COMMA ttype RPAREN SEMI { © } /* table t = ([3,4], int); */
| TABLE ID ASSIGN ID table_ sel SEMI {0} /* table t = tablel[1~2,3~4] */
| TABLE ID ASSIGN NULL SEMI {0} /* table t = NULL; */
| LINE ID ASSIGN ID line_sel SEMI { e} /* line 1 = tablel[@,2]; 1line 1 = linel[1~3,2]; */
| LINE ID ASSIGN ID line of line SEMI {0} /* line 1 = linel[1~4]; */
| LINE ID ASSIGN NULL SEMI {0} /* line 1 = NULL; */
| CELL ID ASSIGN ID cell sel SEMI {0} /* cell c = tablel[5,2]; */
| CELL ID ASSIGN NULL SEMI {0} /* cell ¢ = NULL; */

/* List of Statements declared -- used in fdecl*/
stmt_list:
/* nothing */ { @ }
| stmt_list stmt { @ }

block_stmt:
LBRACE stmt_list RBRACE { © }

stmt:

expr SEMI { o }
| RETURN expr SEMI { o }

- Page 22 -

| IF LPAREN expr RPAREN block_stmt %prec NOELSE { o }

| IF LPAREN expr RPAREN block stmt ELSE block_ stmt {0}

| FOR LPAREN expr SEMI expr SEMI expr RPAREN block_stmt { @ }
| WHILE LPAREN expr RPAREN block_stmt { © }

expr:
INTLITERAL

| FLOATLITERAL

| CHARLITERAL

| STRINGLITERAL

| BOOLLITERAL

| 1D

| ID table_sel

| ID line_sel

| ID cell_sel
| ID line_of_line
| ID scalar_of line
| expr PLUS expr
| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
|
|
|
|
|
|
|
|
|
|
|
|

expr EQ expr
expr NEQ expr
expr LT expr
expr LEQ expr
expr GT expr

expr GEQ expr

expr AND expr

expr OR expr

NOT expr

ID ASSIGN expr

ID LPAREN actuals_opt
LPAREN expr RPAREN

OO0 OO0 OOFEODOITITOOEOOEOOOOOOOOOO®

PAREN { © } /* Function Call */

Pl o e R N s T e T e e N N S e e e Y N

(&)
L S L B L e S N N L S e e e S L

actuals_opt:
/* nothing */ { @ }
| actuals_list {0}
actuals_list:
expr {9}
| actuals_list COMMA expr { © }

- Page 23 -

