fetno
CGrart

%

3

RetroCraft - A design language for retro platformers

Language Reference Manual

Fernando Luo (fbl12108)

Papoj Thamjaroenporn (pt2277)
Lucy He (1h2574)

Kevin Lin (kl12495)

Table of Contents

3 T 4 o Te [¥ Lot T o TP P PO POROPRP 1
2. LeXiCal CONVENTIONoiiiiiiiiiieeeeee ettt ettt e st s ae e ettt e bt esbeesaeesanesane e b e e beenneennees 1
B R 0o 0 4 1T o PP PPRP PP 1
2.2 TOKEINS .ttt ettt s h e sae e sttt s b e e bt e bt e s bt e h e e e a et e et e Rt e bt e ehe e sheesaeeeb e e be e bt e neenneeenees 1
2.2, 1 KEYWOIAS eeiieieieeiiiieeeieitee e sttt e s sette e e st tae e e sataeeesantaeeesstaeeessbeeessanbaeassasseeeesassaeessansaeessansenessns 1

P A o =T o 41 =T U PP URT PO RTOPRR PP 1

P BN Y=T oI | - Ko TSSOSO PPPRPRPPPRRE 1

2.2, 4 PUNCTUGTOIS ..oiiiiiiiiiiiiiiiii ittt sttt et e s b s s ssa e e s aae e s s ssae e s s eanas 2

PR N O] o 1=T -} o] ¢S 2
2.3 L AFENMEEIC ettt et st e e bbb e s b e e e eareesareeenes 2

2.3.2 COMPATISON .etiiiiieiieiiiittteee e e e ettt e e e e e s sseabeteeeeeesassssbtaaeeeessaaaassbataeeeessaaasnsaaaeeeessasansnsaaaeaesens 3

P T B oY1 Tor- 1 @ o 1T =1 o] PSSR 3

P R NV 1T 0] o 1T G @] o 1=T - o) SRS 3

3L STATEMEBNTS ...coiiiiiii e 3
31 BT, EISE I, BISE ettt ettt e e st ae e s s saaaee s 3
3.2 FOK bbb h bt h bbbt bR et et a e e h e henh e b e bt et et enea 4
3.3 WNE Bttt 4
B DIFEAK ..t b e e bt a bt h e b et et enea 4
3.5 CONMTEENUE. ..ottt b bbbt bbbt bbbt sb et b et st e b e et n b e 4
3.0 O UL N 4
4. Declarations and ASSISNMENTESccoiiiiiiiii i e e e et e e e e re e e e e bte e e e ebaee e esabeeeeennsees 5
4.1 Variable DECIAratioNnc.cuieiieieeieiieit ettt ettt ettt e nr e s re e s sane e 5
N e e VA D 1= Tol - 1 d Lo] PRSP 5
4.3 FUNCLION DECIATATION ..eiiiiiieiiiiiiieeciee ettt ettt ettt e st e e bt e e s steesneeesabeesabaeesnseesneeesaneasns 6
5. Primitive Data Types and BasiC Data TYPEScoeviuiiiiiiiiieeiiiiieeesiiteeesiee e sree e sree e s s sbeeesssnreeesennnes 7
5. PrIMIEIVE Data Ty RS i 7
5.2 BasSiC Data Ty RS ittt 7

6. Operations 0N Graphics ODJECESooociiiiiiiiiie e e e ree e e e e bre e e e s beee e eeanees 10

(o @] oY [Tt a6 o 1 4 ¥ Lot [o PRSP 10

6.2 Display and MOVEMENT ..ciiueiiiiiiiiie ettt e s s e e s st e e s ssbee e s sabeeesesabeeasenareeessnnsens 11
LR R\, oTe [YT ¥ =@] o [Tt £ PSPPI 13
6.4 Advanced Attributes and Functions of ObJECE’Sccovciiiiiiiiiiic e 13
6.4.1 DIMENSIONS ...eeiiiiiiiiiiiiiettte ettt e e et e e e e e s e neb et e e e e e s e s b beeeeeeesesannsbeeeeeessesannnrnenens 13

o S R 6o Yo o [T -1 (=3 o Tor- 1 4o o O OO PTRUPT PP 13
6.4.3 VISIDIIITY eveeeiieiiiee ittt ettt e e st sbe e s bae e s abaesbaeenaaees 13
6.4.4 ONKEYPIESSEA ...ttt sttt be et e et e s teesaesbesreense e 13
6.4.5 ONUPAATEE ..ottt sttt et b e bt n e 14
6.4.6 ONCOTTESTON oottt sttt sttt 14

6.5 The EVENTEMANAGET ...ttt ettt st st be e bt e st st e st e e teebeenbeens 14
7. Built-in & ReqUIred FUNCLIONSooiiiiiiiiciee ettt e e ate e e e e aae e e e s aaee e e ennees 14
28 N 11F= 0 T o S () ST 14
A Ve (o 11 Y= @] o T 1= ot £ 14
7.3 start I VOId (MAp BMAP) .ottt 15
7.4 onGameENded = VOEA () oottt et et nn 15
7.5 typeof : bool (ObJeCt 0, SEYPES) . 15
7.6 cast : <newType> (<variable type> $X, <nNewType>)cvvieverereennns 16
7.7 setTimeStep : void (Float BLIMESTEP) .o 16

8. SAMPIE COUR ...t e e et e e e st te e e e e b ta e e e e ataeeesbtaeeesataeeeeaataeeeeantaeeeeanraeeeaans 17

1. Introduction

This is the Language Reference Manual for the RetroCraft programming language. RetroCraft is a
language that provides users with the building blocks to conveniently and creatively design their
own game level for a platform game. RetroCraft defines an intuitive syntax that will allow the
programmer to express the boundaries of a level, gameplay mechanics, and events. The language
will execute user specified events including collisions, transitions, and movements. RetroCraft
offers a default collision detection engine for appropriate element interactions, which users can
choose to overload to customize their own events.

The default file extension for our language is .rc.

2. Lexical Convention

2.1 Comments
Double forward slashes // indicate the beginning of a single line comment. Multiple line comments
will begin with /*and end with */.

2.2 Tokens
The types of tokens in our language are: keywords, identifiers, constants, string literals, operators
and separators.

2.2.1 Keywords

RetroCraft has a list of reserved words with fixed purposes.

Variable type declaration: int, float, char, string, bool, function

Control flow: if, else, while, for, return

Data object: Array, Image, Map, PlayerObj, Object, EnvObj, ActObj, EventManager
Truth values: true, false

2.2.2 Identifiers

Identifiers begin with a dollar sign ($) followed by a sequence of upper and/or lowercase
characters, digits and underscores, starting with a non-numerical character. The keywords in 2.2.1
are not valid identifiers. Upper and lower case characters are unique, making identifiers case-
sensitive.

2.2.3 Separators
\t tab

\n new line feed

<space=> space

2.2.4 Punctuators

; end of line

, separates arguments, object attributes, and
array elements

{3} code block

single quotes for char

double quotes for string

O function calls or arithmetic operations

[1] array

- referencing object’s attributes and functions

2.3 Operators

2.3.1 Arithmetic
Our arithmetic operators will be the standard operators present in most languages. The symbols
and associated operations are as follows:

: Assignment

+,- Addition and
Subtraction

+2,-: Shorthanded
Increment and
Decrement

*,/ Multiplication and
Division

% Modular

Exponentiation

Arithmetic expressions will be made using infix notation, i.e. operandl operator operand2.
The standard order of operations specified by arithmetic will be honored, i.e. PEMDAS.

Arithmetic can be done with the types: int, float, char. The result type of the arithmetic
operation will depend on the operands. For example, arithmetic with integers will return an
integer. However, arithmetic with an integer and a float will result in a syntax error.

2.3.2 Comparison

= Equal

1= Not equal

> Greater than

< Less than

>= Greater than or
equal

<= Less than or equal

These operators compare variables and/or constants with each other and return a boolean
constant (true or false). Incompatible types will result in a syntax error.

2.3.3 Logical Operators
&& AND
1 OR
! NOT

Logical operators can be used with expressions which evaluate to either true or false. The order
of precedence is: NOT, AND, then OR. It is recommended that a parenthesis is used when an
expression involves multiple logical operators, e.g, ($x = 3) || ((3x = 4) && (By = 1))
instead of ($x = 3) || ($x = 4) && ($By = 1)

2.3.3 Member Operators
Member operators on objects will use a single dot (.) notation. For example, to access the height
property of a Map object gameMap, the notation gameMap - he ight should be used.

Member operators on our zero based arrays will use a square bracket notation. For example, to
access the 2nd index of an array sampleArray, the notation sampleArray[1] should be used.

3. Statements

31 1f, else if, else
iT else 1T andelse statements are used to control when their contained blocks of code will be
executed. For example:

if (logical expression) {
// code executed if above expression evaluated to true
} else if (logical expression) {

// code executed if first logical expression was false and
// the second was true

} else {

// code executed if both logical expressions were false

}

Code conditional on an if statement must be surrounded by brackets.

3.2 for
for statements are used to control the number of times a block of code is executed. The for
statement has three components:

for (<variable initiation> ; <logical expression> ; <variable
increment/decrement>) {
// code to execute

}

The code will continue to be executed as long as the logical expression is true. The variable
initiation and increment/decrement give a compact way to control the number of times the code is
executed. For example, the following would iterate through the code 5 times:

for (int $1 : 0; $1 < 5; $i++) {
// code to execute

}

3.3 while
Awhileloop evaluates the bracketed statements if the given logical expression remains true.

while (logical expression) {
// code to execute

}

3.4 break
break keyword is only used in either for or whi le loops. When the statement ‘break; ” is used,
the program steps out of the loop regardless of the current state of the logical expression.

3.5 continue
continue keyword is only used in either for or whi le loop. When the statement ‘continue;”
is used, the program skips to the end of the current iteration.

3.6 return
Functions terminate when they reach a return statement. If the function has a return type, return

must be followed by a value of that type.

4. Declarations and Assignments

4.1 Variable Declaration
We can declare a new primitive variable using the following syntax:

// Declaration and Assignment combined
<primitive type> $<var_name> : <value>;

or,
// Declaration and Assignment done separately

<primitive type> $<var_name>;
$<var_name> : <value> ;

For example:
int $mylnt : 5;
or,

int $mylnt;
$mylInt : 5;

Section 6.1 will discuss the declaration and construction of object types.

4.2 Array Declaration
To define an array, we use a square bracket to declare the array, while the elements of the array are
specified by curly brackets. If the user wishes to specify only the size of the array during
construction, the user can just specify the size after the object type (without square brackets). The
syntaxes are shown below:

Array $<name_of_array> : Array <object_ type> <size>;

or,
Array $<name_of _array> : Array <object type> [

<object type> {
<attribute_name> : <attribute_type> value

For example:

Array $arrayOfints : Array int 3;
$arrayOfints[0] = 4;

$arrayOfints[1] =
$arrayOfints[2] =

(|
N -

or,

Array $arrayOfints : Array int [

For objects:

Array $arrayOfEnvs: Array EnvObj [

EnvObj {
$x : 1.0,
$y - 1.0
3,
EnvObj {
$x - 2.0,
$y - 2.0
}

1:

The way we can access an array element is the following:
$arrayOfEnvs[1]
The index of any array starts from zero.

The size of elements in the array can also be accessed by the attribute length. For example:
$arrayOfEnvs. length

4.3 Function Declaration
Function declarations begin with the keyword function. The header will also contain the return
type and formal parameters. If there is no return type, void should be used instead.

function func_name : <return type> (<parameters>) {
// Implementation

j

For example,

function addStairs: void (Map $map, Image $steplmg, int $size,
float $x, float $y) {
for (int $i : $x; $i < $x+Psize; $i++){
for (int $j - $y; $J < $y+Psize-$i; $j++){
EnvObj $step : EnvObj {

$envimage : $steplmg,

$x : $i,
Sy : $j
¥
$map .addEnvObj ($step);
¥
}
return;

¥

We will inherit the same mechanism on parameter passes from OCaml: all parameters are implicitly

passed by reference.

5. Primitive Data Types and Basic Data Types

5.1 Primitive Data Types

bool true, false, 0, 1

int ---, -1, 0,1, ...

float floating-point numbers, such as 3.14127
string “Hello World”

char “c’

5.2 Basic Data Types

Array Stores a collection of data elements of the data type. Array elements are
(See 4.2) accessed with square brackets.
Attributes
int $lengthThe length of the array
Image Contains the string of the path to the input image.
Attributes
string $srcThe relative path to the image file
Map The canvas for the game. It is the container for all the PlayerObj, EnvObj

and ActObj objects in the game. It also contains attributes that affect its
contained objects, including gravity values.

Variable and Object Attributes
float $gx Gravity vector. Determines how quickly (and in which

float $gy direction) Player or EnvObj objects accelerate when
unrestricted

float $width The width and height of the grid
float $height

Image A background image
$background

PlayerObj Player character
$player

Array ActObj An array of the ActObj ’s in the map
$actObjs

Array EnvObj Anarray of the EnvObj ’s in the map
$envObjs

Array TextObj An array of the TextObj ’s in the map
$textObj

Function Attributes
addPlayer (PlayerObjAdd the given player object to the
$p | aye r) map.

addActObj (ActObj $actObj) Add $actObj to the array $actObjs
addEnvObj (EnvObj $envObj) Add $envObj to the array $envObjs

addTeXt(_)bj (TextObj Add $textObj to the array
$textObj) $textObjs

Object

The superclass of PlayerObj, EnvObj, ActObj, TextObj. Will be useful
for collision detection and polymorphism.

Variable and Object Attributes

float $px x and y coordinate of the object
float $py

float $width width and height of the object
float $height

bool $visibleindication if the object can be seen or not

PlayerObj

This class extends Object.
The user controlled character which can be controlled to move through the
map.

Variable and Object Attributes

int $imagelndex Index thatindicates what image in $playerImgs
to be drawn on the screen

Array Image Images of the character at different states
$playerimgs
float $vx Velocity of the player

float $vy

Function Attributes

onKeyPressed(Map $map, Given the keyboard input, update the

char $c) PlayerObj

onUpdate(Map $map) For each time step, update the attributes of
the player based on the given environment,
such as gravity

onCollision(Map $map, Specifies action when the player collides

Object $input) with object input

For every time step, EventManager will call the function attributes in the
following order: onKeyPressed, onUpdate, and onCol lision

EnvObj

Environmental object. This class extends Object.

Environmental objects are arranged in the map grid to define the valid,
navigable space for the PlayerObj and ActObj’s. All environmental objects
are static and cannot affect the state of other objects.

Variable and Object Attributes
Image $envImage The image for the object

Examples: unbreakable walls, static platforms, hills

ActObj

Active object. This class extends Object.

Active objects are those that have more than one state (right now dictated by
variable visible), or can change the state of other objects (e.g. make the
player invisible, i.e., die). They are also arranged in the map grid, but can be
mobile.

Variable and Object Attributes

int $imagelndex [ndex thatindicates whatimage in $obj Imgs to
be drawn on the screen

Array Image Images of the object at different states
$obj Imgs

float $vx Velocity of the player

float $vy

Function Attributes

onKeyPressed(Map $map, Given the keyboard input, update the object

char $c)

onUpdate(Map $map) For each time step, update the attributes of
the ActObj based on the given environment,
such as gravity or existing velocity

onCollision(Map $map, Specifies action when this ActObj collides

Object $input) with object input

Examples: script controlled characters (‘enemies’), static objects that
change the state of anything else, traps, spikes.

TextObj Text object. This class extends Object.
We can display text on the screen along with the scene in the game.

Variable and Object Attributes
string $text the message to be displayed

Examples: score panel at the top of the screen, “Game Over” message.

EventManager |lterates through all the objects at each time step and calls the onUpdate,
onKeyPressed, and onCollision functions of the objects when

appropriate.

Function Attributes

Se'_tT imeStep(float Setthe global time step; i.e., the frequency in which

$timestep) EventManager will be called. This is function call
is mandatory to run the game. (Default value = 0.04
s)

start(Map Given the map which contains all the game objects,

$gameMap) start running the game. Perform collision

detection/resolution and updates until
$gameMap . gameEnded is true, then call
$gameMap .onGameEnded ()

6. Operations on Graphics Objects
Since RetroCraft is primarily graphics based, we require a specific set of attributes and methods in
order to control the layout and flow of the game. The following sections describe them.

6.1 Object Construction
Object variables are declared and constructed similar to the syntax specified in the variable
declaration section above (4.1):

<object type> $<var_name>;
$<var_name> : <attributes>;

or,

<object type> $<var_name> : <attributes>;

Instead of a primitive type, the variable name is preceded by an object type, specified as a data
object keyword in section 2.2.1. The value specified is a dynamically constructed object written in
bracket notation. For example,

Map $gameMap;
$gameMap : Map {
$width: 600.0,
$height: 480.0,
$background: Image {
$src: “images/forestScene.jpg”
}.
$player: Array Player [
$mario //a previously defined Player object
1.
$actObjs: Array ActObj [],
$envObjs: Array EnvObj [],
$onUpdate: null
}:
or,
Map $gameMap : Map {
$width: 600.0,
$height: 480.0,
$background: Image {
$src: “images/forestScene.jpg”
}-
$player: Array Player [
$mario //a previously defined Player object
1.
$actObjs: Array ActObj [1,
$envObjs: Array EnvObj [],
$onUpdate: null

3

6.2 Display and Movement

The game map is a grid of a user-determined height and width measured in pixels. Coordinates
increment up and to the right, such that the bottom left space in the map has the coordinates (0,0).
Game objects, such as players, enemy characters and walls, are rectangular shaped entities
specified by height and width values and are placed on the game map grid at specified coordinates
according to their $px and $py attributes. Upon rendering an object, the bottom left corner of the
object is placed at the specified coordinate on the game map and the rest of the object spans the
space above and to the right.

In order to simulate movement, we have provided an EventManager oracle which redraws the

scene described by the game map and its objects at each timestep. The coordinate values of each
object can be changed by any of the user defined functions assigned to its onKeyPressed,

onUpdate, or onCollision attributes. For each frame, the EventManager oracle cycles
through each of the objects on the map currently being run and calls the onKeyPressed function
if a key is being pressed and updates each of the objects according to those functions. Then cycling
through the objects a second time, the onUpdate function of each object is called to apply more
changes. Finally, the EventManager cycles through all possible pairs of objects on the map to
determine which pairs are at a point of collision, a state we define as two objects whose bounding box
perimeters are either in contact or overlapping. Then for each of those objects found to be in a point
of collision, their onCol I 1sion function is called with an input parameter of the object colliding
with it in order to resolve those collisions.

Ideally, a user defined onKeyPressed function would be written to govern all changes to the
object that user input would control, such as the increase of the velocity of the Player object when
the user inputs a move forward key. Then the onUpdate function would be written to make
changes to the object based on its current attributes and the passive rules of the environment, such
as gravity and friction. Lastly, the onCol lision function acts to apply the final checks to the
system in the common case of object collision, such as making sure Player objects do not pass
through the walls of the map.

For example, here is the definition of a player object on a map with wall objects on the south, east
and west borders who starts on the accelerates to the right up to a certain speed as a user presses
and holds down the “D” key but gradually comes to a halt when the user lets go of the key. The
reverse is also true if the user were to press and hold down the “A” key. Additionally, when the
player object runs into the wall object, it will come to an immediate halt.

PlayerObj $myPlayer: PlayerObj {
$height: 20.0,
$width: 10.0,
$px: 10.0, //assuming the walls and floor are 10px thick

$py: 10.0,

$vx: 0.0,

$vy: 0.0,

$playerimgs: Array Image {
Image {

$src: “images/playerlimage.jpg”
}
3,
$visible: true,
$onKeyPressed: void (Map $gameMap, char $keyPressed) {
it ($keyPressed = “d”) {
if ($vx >= 0.0) { $vx +: 2.0; }
else { $vx : 2.0; }
it ($vx > 10.0) { $vx - 10.0; }
}

else if ($keyPressed ‘a’) {

if (vx <= 0.0) { $vx - 2.0; }

else { $vx : -2.0; }
if ($vx < -10.0) { $vx : -10.0; }
}
3,
$onUpdate: void (Map $gameMap) {
// $timestep is a global variable of the game
$px : $px + $vx * $timestep - 0.5 * $gameMap.gx *
$timeStep N 2.0;
3,
$onCollision: void (Map $gameMap, Object $collidingObject) {
it (typeOf($collidingObject, EnvObject)) {
if (Bpx <= $collidingObject.px) {
$px : $collidingObject.px - $width;
$vx : O;
}
else if ($px > $collidingObject.px) [
$px : $collidingObject.px + width;
$vx : 0O;

¥

6.3 Modifying Objects
Attributes of various objects can be modified after object creation by referencing the object
($<object name>) and using the punctuator “ . ” to call attributes:

main - int Q {
ActObj $newturtle : $createTurtle: void (60, 50,
“./img/turtlel_png”);

/* some code */

$newturtle._height : 40;
$newturtle._width : 40;

}

6.4 Advanced Attributes and Functions of Object’s

The object does not only provide basic attributes such as width and height of the object, but also
some functionality that, after being defined by the user, can be used to control the behavior of the
object and its interaction with other objects.

6.4.1 Dimensions
Each object’s dimension attributes, $height and $width, define the rectangular area of pixels
allotted to it on the grid.

6.4.2 Coordinate Location
Each object’s coordinate attributes, $px and $py. These coordinates could be changed over the
course of a game with functions such as onKeyPressed, onUpdate, and onCol lision.

6.4.3 Visibility
The visibility of objects can either be true or false. These values, again, could be altered
during the game with functions: onKeyPressed, onUpdate, and onCol lision.

6.4.4 OnKeyPressed
onKeyPressed method provides the user an ability to define the behavior of the object dictated

by some input from the keyboard. onKeyPressed command will be constantly called as long as
keyboard input is received.

6.4.5 OnUpdate

onUpdate method allows user to specify behavior of the object that is dependent on the timer. The
EventManager, at each time step will call on Player and ActObj’s onUpdate function and
execute any specified instructions.

6.4.6 OnCollision

onCol l1sion method lets users to define the behavior between interactions with AcCtObj ”s and
Player objects. The EventManager will iterate through all objects to check for collisions. If there
is a collision, the onCol lision methods in the affected objects will be invoked.

6.5 The EventManager

The EventManager is a built-in object that monitors and updates each object at each time step
which by default is set to 0.04 seconds. Updates are carried out by the EventManager looping
through each of the objects associated with a game map and calling each of their onKeyPressed,
then each of their onUpdate functions, and finally each of their onCol lision functions. After all
game map objects have been updated and all collisions have been resolved, the EventManager
then renders each of the objects onto the game map.

Within the main class, the game is started by calling the start function of the EventManager
instance: eventManger.start(Map $map). More about this function can be found in Section
7.3

7. Built-in & Required Functions

7.1 main - int
Every game created by RetroCraft requires a main function. All games will begin execution from
this function.

The main() function is composed of two main sections. The first section includes the initialization
of the Map, EnvObj ‘s, ActObj ’s, and the PlayerObj. The next section is a call to the

EventManager, the engine of the game, using the start() function. Within this method (details
in 7.3), the EventManager will manage collisions and events, until an end condition is reached.
Then, the start function will proceed to call the maps onGameEnded()function. Post-game
events would be coded here, for example the user can display a “Game Over” method.

7.2 Adding Objects

addPlayer : void (PlayerObj $player)
addEnvObj : void (EnvObj $envObj)
addActObj : void (ActObj $actObj)
addTextObj : void (TextObj $textObj)

These are functions of the Map.

The function adds the PlayerObj, EnvObj or ActObj object to the map at the coordinates
($px, $py) where $px and $py are attributes of the object, given to it when it’s initiated. The
function will error if there is already an object at ($px, $py).

7.3 start : void (Map $map)

This is a function of the EventManager.

In order for the EventManager to run, certain functions for the Player and ActObjs must be
defined. More specifically, the onUpdate, onKeyPressed and onCol lision functions must be
defined before eventManager . start($gameMap)can be called.

The start function loops through code which goes through a series of steps:
1 Checksifakey has been pressed
a If a key has been pressed, pass that key to each ActObj’s and Player’s
onKeyPressed()function
2 Calls the onUpdate of each ActObj and the Player
3 Checks for collisions between all objects
a If there is a collision, call the appropriate onCollision functions contained in each
object.
b Correct the position of the objects if necessary to avoid overlapping.
4 Draw the Map and objects at their updated locations.
Continue looping back to step 1 as long as an $gameMap . gameEnded is false
6 Call $gameMap.onGameEnded()

93]

7.4 onGameEnded : void (O

This is a function of the game Map. It is executed by the EventManager when gameplay has ended,
with functionality differing based on the outcome of the game (i.e. win or lose).

The function will evaluate the objects in the map and display the appropriate end of game message.
For example, the Map could determine that the player has lost if the PlayerObj is invisible.

onGameEnded : void O {
if ($player.visible = true) {

$winMsg : TextObj {
$height: 30,
$width: 300,
$px: 10.0,
$py: 10.0,
$visible: true,
$text: “You win!”

};

addTextObj ($winMsg);

} else if ($player.visible = false) {

$loseMsg : TextObj {
$height: 30,
$width: 300,
$px: 10.0,
$py: 10.0,
$visible: true,
$text: “Game Over”

};

addTextObj ($loseMsg);
}
return;

}

After this function runs, the start() function of the EventManager terminates.

7.5 typeOf : bool (Object $o0, <type>)

Given Object $0, and a type this function returns whether the object is of the given type. This can
be useful for implementing unique behaviours between different types of objects. For example in
collision resolution:

$onCollision: void (Map $gameMap, Object $collidingObject) {
it (typeOf($collidingObject, EnvObj)) {
// Some behaviour
} else if (typeOf($collidingObject, ActObj)) {
// Alternative behaviour
}
}

7.6 cast : <newType> (<variable type> $x, <newType>)
Given a variable of data type (int, Float, char, string, bool) and a new type to convert to,
cast the variable to the specified new type. An example is shown below:

int $mylnt : 10;
string $myFloat;
$myFloat : cast($mylnt, float); // $myFloat is now 10.0

7.7 setTimeStep : void (float $timeStep)
This is a function of the EventManager.

Set the global time step; i.e., the frequency in which EventManager will be called. This is function
call is mandatory to run the game. The use of example:

setTimeStep();

8. Sample Code

PyramidTurtle.rc

/*
Demonstrate a simple game with one player and one enemy. If the
player reaches the flag, then he wins. The player loses the game
if he hits the turtle.

*/

float $timeStep : 0.04;

/*
Create a declining stairs that has bottom-left corner at (0,0), with
its width, height, and step size determined by given parameters.
*/
function $createStairs: Array EnvObj (string $steplmg, float $height,
float $width, float $steps) {

Array $envObjs : Array EnvObj $steps;

float $stepHeight : ($height / $steps);

float $stepWidth : ($width / $steps);

float $x_coord : 0.0;

float $obj height : S$height;

while ($obj _height > 0.001) { // Prevent floating point errors
EnvObj $step : EnvObj {

$envimage : Image { $src : $stepimg },
$px : $x_coord,
$py : 0.0,

$height - $obj_height,
$width : $stepWidth,
$visible: true
bs
$envObjs.add($step);
$x_coord +: $stepWidth;
$obj height -: stepHeight;

return $envObjs;

¥

function $createHorizontalGround: Array EnvObj (string $groundimg,
float $x, float 3y, TFloat $obj height, Float $obj width int
$noO0fTiles) {

Array $envObjs : Array EnvObj $groundTiles;

float $x_coord : $x;

float $y coord : $y;

for (int $i = 0; $i < $noOfSteps; $i++) {

EnvObj $tile : EnvObj {

$envimage : Image { $src : $groundimg },
$px : $x_coord,
$py - 0.0,

$height : $obj_ height,
$width - $obj_width,
$visible: true
}
$envObjs.add(Stile);
$x_coord +: $obj_width;
}

return $envObjs;

function main : int) {
ActObj $turtle : {
$objImg : Image {
$src : “turtle.gif”

}-
$px - 30.0,
$py : 270.0,

$width : 30.0,
$height : 50.0,
$vx - 10.0,
$vy : 0.0,
$visible : true,
$onUpdate : void (Map $gameMap) {
$vy : $vy - $timestep * $gameMap.gy;
$px : Ppx + Pvx * SPtimestep - 0.5 * SPgameMap.gx *
$timeStep N 2.0;
$py : Spy + Svy * SPtimestep - 0.5 * S$gameMap.gy *
$timeStep N 2.0;
3,
$onKeyPressed : void (Map $gameMap, char $c) {
// Do nothing. Turtle unaffected by key presses.

3.

e — Oy

$onCollision : void (Map $gameMap, Object $0) {
// 1T the turtle i1s on the ground, move the y
// coordinate back to prevent penetration.
if (typeOf($0, EnvObj) &&
($py < $0.py + $o.height) &&
($py + $height > $0.py)) {
$vy - 0;
$py - $py + $vy * $timestep + 0.5 * $gameMap.gy *
($timeStep N 2.0);
// 1f the turtle touches the player, the player
// faints and the game is over.
} else if (typeOf($0, PlayerObj)) {
$gameMap.player.visible : false;
$gameMap.gameEnded : true;

¥

ActObj $goal : {
$objImg - Image { $src : “flag.png” },
$px - 0.0,
$py : 300.0,
$height : 30.0,
$width - 30.0,
$vx - 0.0,
$vy - 0.0,
$onUpdate : null,
$onKeyPressed : null,
$visible: true,
$onCollision : void (Map $gameMap, Object $0) {
// 1T turtle touches the flag, do nothing
if (typeOf($o, ActObj)) {
return;
by
// 1T the player touches the flag, end the game
it (typeOf($o, PlayerObj)) {
$gameMap.player.visible : true;
$gameMap.gameEnded : true;

¥

Array EnvObj $stairs : createStairs(“stairs.png”, 300.0, 300.0,
30.0);

Array EnvObj $ground : createHorizontalGround(*‘ground.png”,

300.0,

e — iy

0.0, 30.0, 30.0, 10.0);

Map $gameMap : Map {
$width : 600.0,
$height: 480.0,
$gy : -10.0,
$gx : 0.0,
$gameEnded: false,
$onUpdate: null,
$onGameEnded: void () {
TextObj $message;
if ($player.visible = false) {
$message : TextObj {
$height : 100.0,
$width : 50.0,
$px : 275.0,
$py - 190.0,
$text : “You lost!”
}:
+
else if ($player.visible = true) {
$message : TextObj {
$height : 100.0,
$width : 50.0,

$px : 275.0,
$py : 190.0,
$text : “You won!”

};
}
addTextObj ($message) ;

};

Player $myPlayer: Player {
bool $jumping : false, // Define custom variable $jumping
float $jumpVv : 15.0, // Define initial jumping velocity
$height: 20.0,
$width: 10.0,
$px: 500.0,
$py: 30.0,
$vx: 0.0,
$vy: 0.0,
$playerimg: Image {
$src: “images/playerimage. jpg”

3.

$visible: true,
$onKeyPressed: void (Map $gameMap, char $keyPressed) {

if ($keyPressed = “d?) {
if (Bvx >= 0.0 && $vx < 10.0) { $vx +: 2.0; }
else { $vx : 10.0;
}
else if ($keyPressed = “a’) {
if ($vx <= 0.0) { $vx - 2.0; }
else { $vx : -2.0; }
if ($vx < -10.0) { $vx : -10.0; }
}
else if ($keyPressed = “w?) {
if ($Jumping = false) {
$jumping = true;
$vy = $jumpV;

}
3,
$onUpdate: void (Map $gameMap) {
// $timestep is a global variable of the game
$vy - $vy + $timestep * $gameMap.gy;
$px : Ppx + $vx * Stimestep + 0.5 * S$gameMap.gx *
$timeStep N 2.0;
$py : $py + $vy * S$timestep + 0.5 * S$gameMap.gy *
$timeStep N 2.0;
}.%onCollision: void (Map $gameMap, Object $0) {
if (typeOf($0, EnvObject)) {
// For horizontal collisions, move the X
// coordinate back.
iIT ((Bpx < $0.px + $o.width) &&
($px + $width > $o0.px)) {
// IT hitting EnvObj from right
$px = $o0.px + $o.width;
} else if (($0.px < $px + $width) &&
($0.px + $o.width > $px)) {
// IT hitting EnvObj from left
$px = $o.px - $width;
ks

// For vertical collision, set $vy = 0
else if (($o.py < $py + $height) &&
($0.py + $0.height > $py)) {
// 1Tt hitting EnvObj from below
$vy = 0.0;
$py = $o0.py - $height;
} else if (($py < $o0.py + $o0.height) &&
(Bpy + $height > $o.py)) {
// 1T hitting EnvObj from above
$vy = 0.0;
$py = $o.py + $o.height;
$jumping = false;

}

$gameMap .addPlayer ($myPlayer);

$gameMap .addActObj ($turtle);

$gameMap .addActObj ($goal);

for (int $i : 0; 1 < $stairs.length; $i++) {
$gameMap.addEnvObj ($stairs[$i]);

}

for (int $i : 0; 1 < $ground.length; $i++) {
$gameMap .addEnvObj ($ground[$i]);

}

EventManager.setTimeStep($timeStep);
EventManager .start($gameMap) ;

