
Funk Programming Language Reference Manual

Naser AlDuaij, Senyao Du, Noura Farra, Yuan Kang, Andrea Lottarini
{nya2102, sd2693, naf2116, yjk2106, al3125} @columbia.edu

26 October, 2012

1 Introduction

Thismanual describes Funk, a functional programming languagewith an imperative structure. Funk is designed to allow
simpler parallel programming and higher order functions. Features defining the language include dynamic function
declaration, asynchronous block declarations and strong typing. Thismanual describes in detail the lexical conventions,
types, scoping rules, built-in functions, and grammar of the Funk language.

2 Lexical conventions

2.1 Identifiers

An identifier in Funk represents a programmer-defined object. The identifier starts with a letter or an underscore, and
is optionally followed by letters, numbers or underscores. An identifier name is thus defined by the following regular
expression:

[’a’ - ’z’ ’A’ - ’Z’ ’_’][’a’ - ’z’ ’A’ - ’Z’ ’0’ - ’9’ ’_’]*

2.2 Keywords

Funk has a set of reserved keywords that can not be used as identifiers.

2.2.1 Statements and Blocks

The following keywords indicate types of statements or blocks:

var func async

2.2.2 Control Flow

The following keywords are used for control flow

if else for break return

1

2.2.3 Types

Each primitive type, integer, double, boolean and character, has a name that the program uses for declarations.

int double bool char

A function type, and a function declaration begins with the func keyword.

2.2.4 Built-in Functions

The following keywords are reserved for built in functions.

print double2int int2double bool2int int2bool

2.3 Constants

Funk supports integer, double, character, and boolean constants, otherwise known as literals, inside expressions. Any
arraywith any level of nesting can be also expressed as a literal. Arrays of characters have amore concise representation
as string literals.

2.3.1 Integer

Define a decimal digit with the following regular expression:

digit = [’0’ - ’9’]

An int is a 64-bit signed integer, and consists of at least one digit.

digit+

2.3.2 Double

A double is a 64-bit (”double precision”) floating point number. Like the floating-point constant in the C language, ac-
cording to Kernighan and Ritchie, the constant consists of an integer part of digits, as described in 2.3.1, a decimal point,
a fractional part –ie. the part of the floating point whose absolute value is less than 1, and an exponential part, starting
with ‘e’, followed by an optional sign, and then at least 1 digit, which indicates the power of 10 in the scientific notation.
Define the regular expression of the exponential part as follows:

exp = ’e’ [’+’ ’-’]? [’0’-’9’]+

If the decimal point is present, at least one of the the integer and fractional parts must also be present –the compiler
interprets an absent part as 0. If there is no decimal point, the integer part and the exponent must be present:

((digit+ ’.’ digit* | ’.’ digit+) exp?) | (digit+ exp)

Therefore, the following literals are valid doubles:

1.2 .2 1. 1.2e3 .2e3 1.e3 1e+3 1e-3

However, strings lacking digits either before or aƜer the exponent marker or decimal point, if each exists, and integer
constants are not valid doubles:

12 e3 . .e 1.2e 1.2e+

2

2.3.3 Boolean

The boolean type has two predefined constants for each truth value, and no other values:

true false

2.3.4 Characters and Character Arrays

Characters are single, 8-bit, ASCII characters. Generally, the character values are representable in their printable form.
However, not all characters are printable, and some printable characters conflict with the lexical conventions of charac-
ters and character arrays. They are therefore specially marked with a backslash, and considered single characters. Funk
supports the following escape sequences:

• New line:

\n

• Carriage return:

\r

• Tab:

\t

• Alarm:

\a

• Double quotation marks, to fit inside character array literals:

\”

• The backslash itself:

\\

A literal of character type consists of a single character or escape sequence inside two single quotes:

’c’

Note that the printable characters with escape sequences, ie. the double quotation marks and backslash, do not have
to be escaped, because the compiler processes a single character between two single quotes without any translations
(which is why there is no escape sequence for single quotes). But the compiler also accepts their escaped form. For
example, the following two literals are equivalent:

’\’, ’\\’

A string is a character array. Since strings are widely used we considered a special representation for string constants
which begins and ends with unescaped double quotes.:

”foo”

This is equivalent to:

[3]char {’f’,’o’,’o’}

Each single character or backslash-character pair is a single entry of the character array.

3

2.4 Punctuation

Funk supports primary expressions using the previously-mentioned identifiers and constants. Primary expressions also
include expressions inside parentheses. In addition, parentheses can indicate a list of arguments in a function declara-
tion, a function variable declaration, or a function call:

f() //function call

Braces indicatea statement inblocks, includingblocks thatmakeup functionbodies. Theyarealsoused for array literals:

{
//this is a block
}

var a [2]int = [2]int{1,2} // more about arrays in later sections

Brackets indicate array types and access to array elements:

a[0] //access to element 0 in array a
[3]int //this is a data type

Semicolon is used to separate statement and expression in a for loop:

for i=0;i<10;i=i+1

Comma is used to separate elements of a list:

int a,b = 0,1

2.5 Comments

Multiline comments in Funk start with /* and terminate with the next */. Therefore, multiline comments do not nest.
Funk also supports single-line comments starting with // and ending at the end of the line.

2.6 Operations

Funk supports a number of operations that resemble their arithmetic and boolean counterparts.

2.6.1 Value Binding

A single equal sign indicates assignment in an assignment or declaration statement:

=

4

2.6.2 Operators

Funk supports the following binary operators:

-, *, /, %
&, ^, |, <<, >>
==, !=, <=, <, >=, >
&&, ||

Funk also supports the following unary negations:

!, ~

And there are two operations that can be unary or binary, depending on the expression:

+, -

3 Syntax

3.1 Program structure

At the highest level, the program consists of declarations only. While a program can initialize global variables with ex-
pressions, all other statements, including assignments to existing variables, must be inside function bodies:

Global function or variable declarations (interchangeable)

program:

declaration
program declaration

declaration:

funcdec
vardec new-line
new-line

3.1.1 Variable Declarations

Variables can be declared and initialized globally, or locally in a function, with the vardec rule

var new-id-list var-type new-line

var is the keyword. new-id-list can be one ormore newly declared identifier tokens. var-type is the type, which has to be
one of the allowed primitive types or function, or a possibly-multidimensional array of the aforementioned types.

var-type:

array-markeropt single-type

single-type:

5

func (formal-listopt) var-typeopt
int
double
char
bool

array-marker:

array-level
array-marker array-level

array-level:

[]
[expression]

The declaration ends with a new line.
Variables can also be initialized:

var new-id-list var-type = actual-list new-line

actual-list is a comma-separated list of expressions and anonymous function declarations (which cannot be inside ex-
pressions, since there are no operations on functions). 3.2 will describe expressions in detail.

3.1.2 Global and Anonymous Functions

Global functions are defined the following way:

func ID (formal-listopt) var-typeopt block

func is the keyword. ID identifies the instance of the function. If var-type is not specified, the function cannot return a
value. block contains the function body. formal-list (optional) in the parentheses would include the formal arguments,
which are clusters of variables of the same type, indicated by a var-type. If there is only one variable of the type, the
single-type use of formal-list can omit the name, but for the purpose of function declaration headers, all namesmust be
present:

formal-list:

formal-type-cluster
formal-list , formal-type-cluster

formal-type-cluster:

var-type
new-id-list var-type

The mandatory global function in Funk is main, which marks the entry point of a program. It takes no parameters (so it
does not support command line arguments), and returns no values.

6

1 func main() {
2 print(”Hello world!\n”)
3 print(”Goodbye world!\n”)
4 }

Listing 1: main function in a sample program

Anonymous functions are declaredwith a similar syntax and are used like expressions (see 3.3) but without an identifier,
as the program can refer to them as variables. Except for the fact that the parameters must all have names here, the
function header, excluding the body, resembles the corresponding single-type:

func (formal-listopt) var-typeopt block

3.2 Expressions

3.2.1 Primary expressions

Primary expressions consist of:

• Literals

– The primitive literals mentioned in 2.3, which the grammar calls INT_LIT, DOUBLE_LIT, BOOL_LIT and
CHAR_LIT.

– Character arrays of the token STRING

– Identifiers of the token ID

– Arrays: Array literals begin with their type, and the expressions they contain must be of the same type; they
are of the same primitive type as the array, but have one less array level

actual-arr:
arr-header { actual-listopt }

arr-header:
arrary-marker single-type

For example, a 3x2, 2-level array looks like this:

[3][2]int {[2]int{1,2},[2]int{3,4},[2]int{5,6}}

• Asynchronous blocks have the value and type of whatever the block returns.

async block

However, the program will not wait for the return value until it is required in another expression. Therefore, if the
block is inside another expression, it always blocks until completion. And if it is an rvalue, the program does not
block until the corresponding lvalue is used inside another expression.

1 {
2 var i int = 3 + async { return 0 } /* blocks immediately */
3

4 i = async { return 1 } /* does not block yet */
5 var j int = i /* blocks */
6

7 j = async { return 2 } /* does not block yet */
8 i = 1 + j /* blocks */
9 }

Listing 2: Blocking conditions for async

7

• Parenthesized expressions

(expression)

3.2.2 Precedence of Operations

We list the operations in order from highest to lowest precedence. The full grammar enforces precedence using similar
rules as the C grammar, according to its LRM.

1. Under certain conditions, the two postfix expressions appear outside of expressions that the program evaluates.

The program can call functions if the expression before the parentheses is of type func, and the types of the actual
parameters in actual-list, if any,match the formal arguments of the function. The type of the expression is the type
of the return value, so, as an expression, the function must return a value.

func-call-expr:

expression (actual-listopt)

An expression can extract its value from an array. The leƜ expression must be an array type, so that the value
resulting from the array access has a type that is one array level shallower than that of the leƜ expression (eg. if a
has type [][]int, then a[0] has type []int). The right expression, inside the brackets, must be of integer type.

obj-get-expr:

primary-expr
expression [expression]

We reveal the primary-expr rule not only to show the precedence, but also because accessing a pure primary ex-
pression is useful when this expression is used in assignments, which 3.3.1 will explain.

2. Prefix, unary operations

un-op expression

• + optional positive sign for int and double

• - 2-complement negation for int and double

• ! Boolean negation for bool

• ̃ 1-complement (bitwise) negation for int

3. Binary operations. In addition to specific restrictions, the two operands of a binary operationmust have the same
type. Unless noted otherwise, they will return the same type. The subscripts are added for clarity.

expressiona bin-op expressionb

The items in the following list start from the highest precedence, and all operations are leƜ-associative.

(a) *, /, %: Arithmeticmultiplication and division are valid for both int and double types. Themodulo opera-
tion gives thepositive remainderwhen expressionb divides expressiona. Therefore, themodulooperation
only applies to integers.

(b) +, -: Arithmetic addition and subtraction of int and double values.

(c) <<, >>: Bitwise shiƜ for int values. Return expressiona shiƜed leƜ or right by expressionb bits.
expressionb can be negative, in which case the shiƜ direction is reversed, and the expression shiƜs by the
absolute value of expressionb.

(d) <, >=, >, =<: Real-number comparison for int, double, and char values. Returns bool value.

(e) ==, !=: Equality and inequality for int, double, char, and bool values. Returns bool value.

8

(f) &: Bitwise AND for int values. The program evaluates both expressiona and expressionb.

(g) ̂: Bitwise XOR for int values. The program evaluates both expressiona and expressionb.

(h) |: Bitwise OR for int values. The program evaluates both expressiona and expressionb.

(i) &&: Logical AND for bool values. The program evaluates expressionb if and only if expressiona is true

(j) ||: Logical OR for bool values. The program evaluates expressionb if and only if expressiona is false

3.3 Statements

3.3.1 Assignments

assign-stmt:

obj-get-expr-list = actual-list new-line

An assignment statement defines an obj-get-expr list as the lvalues. Unlike its usage in expression, each lvalue must be
either an ID token, or any n-level array access of an array object indicated by an ID token. This rule assures that there is
an identifier that can reach the assigned value.

The rvalues are in actual-list, an expression list followed by a new line to end the statement. The expressions are of
various types, and each ith lvalue will store the evaluated value of the ith rvalue. Therefore, each ith lvalue and rvalue
must match in type, and the number of lvalues and rvalues must be the same.

3.3.2 Blocks and Control Flow

• Block

A block is defined inside curly braces, which can include a possibly-empty list of statements.

• Selection statement

A selection statement is an if or if-else statement that takes anexpression that evaluates to abool value:

if expression block
if expression block else block

There exists ambiguity with the selection statement: “if expression if expression else”, which is why
Funk selects between blocks rather than statements.

• Iteration statement

An iteration statement begins with the for keyword. We support three types of for loops. The first is a
regular for loop with a starting assignment, a boolean loop condition expression, and an assignment
for advancing to the next iteration. The three parts are separated by semicolons. The other loops are a
for loopwith one expression (similar to while loop), and a for loopwith no expression. The expressions
must evaluate to a bool value. A missing expression implies true –ie. an infinite loop:

for assign-stmtopt ; expressionopt ; assign-stmtopt block
for expressionopt block

• Jump statements

The return keyword accepts an optional anonymous function or expression and ends with a newline.
It exits out of the smallest containing function or async body. async is an expression described in 3.2.1

return expressionopt new-line

9

The break keyword breaks iteration of the smallest containing for loop. In other words, it jumps to the
code immediately following the loop.

• A statement can call functions using the func-call-expr syntax. Changes to the state of the function due to the call
persist. Therefore, the function expression to the leƜ of the parentheses must be an ID, or an n-level array access
of an ID, ie. an lvalue that can store the changed function instance. The function does not need to return a value,
and the program discards any value that it does return.

• vardec

4 Scoping Rules

Funkuses lexical scoping: the scopeof anobject is limited to theblock inwhich it is declared, andoverrides, or suspends,
the scope of an object with the same identifier declared in a surrounding block.

4.1 Lexical Scoping with Blocks

When the program declares object o with identifier id in declaration Do, Do can assign a value to o using id. Moreover,
inBo, the block that directly containsDo, any statement aƜerDo that assigns to or reads from id in fact does so from o,
with two important exceptions.

The first is function closure, which subsection 4.2 will cover in more detail. The second exception is the declaration of
the same variable inside the first approximation of the scope of o. When id is on the leƜ side of another declaration,D′

o,
inside a blockB′

o, contained inBo, then id is not bound to o starting from the leƜ side ofD′
o until the end ofB

′
o. Instead,

D′
o will create a new object, o′, and id will refer to it until the end B′

o, aside from the previously-mentioned exceptions.

1 {
2 var i int = 0
3 print(i) /* 0 */
4 if (i == 0) {
5 i = i + 1 /* this will refer to the i from line 2 */
6 print(i) /* 1 */
7 var i char = ’c’ /* suspend scope of i from line 2 */
8 print(i) /* c */
9 if (i == ’c’) {
10 var i double = 1.1 /* suspend scope of i from line 7 */
11 print(i) /* 1.1 */
12 }
13 print(i) /* c */
14 }
15 print(i) /* 1 */
16 }

Listing 3: Scope suspended in contained block

Note that for globally-declared variables, Bo includes the entire code. However, in this case, id can only be used inside
a function body.

In certain contexts, id cannot refer tomultiple objects. WhileD′
o can redeclare id in a block thatBo contains,Bo cannot

directly contain D′
o; the programmer cannot redeclare id in the same block.

1 {
2 var i int = 0 /* first declaration */
3 print(i) /* 0 */

10

4 var i int = 10 /* illegal redeclaration */
5 }

Listing 4: Illegal variable redeclaration

Likewise, the program cannot use the old o when redefining it in block B′
o

1 {
2 var i int = 0
3 if (i == 0) {
4 /* illegal use of old object on right side */
5 var i int = i + 1
6 }
7 }

Listing 5: Cannot use old object for defining new object with the same Id in a nested block.

4.2 Function Closure

Each function instance has an environment associated with it. Let C be the scope of object o, with identifier id. For a
function, F , inside C , let S = {s0, . . . sn} be all the statements in F that use id that would refer to o according to the
rules detailed in the previous subsection. If si is the first statement in which id appears on the leƜ hand side, or is called
as a function instance, all sj : j < i , as well as id on the right side of si, use the value of o as it appeared before the
declaration of F , or since the last execution of the same instance of F . On the other hand, all statements sj : j ≥ i
use a new o′ that was a distinct, deep copy from o. Likewise, any changes to o aƜer F does not change the values used
in F , even when the program executes the instance aƜer the change. As a consequence, the only effect of a function on
the outside scope is through its return values, and not through side effects or parameters, which are passed as values or
deep copies.

1 {
2 var i int = 0
3 print(i) /* 0 */
4

5 var inc func() int = func() int {
6 print(i)
7

8 i = i + 1
9

10 print(i)
11

12 return i
13 }
14

15 print(i) /* 0 */
16

17 var j int = inc() /* ”01” */
18 print(i) /* 0 */
19 print(j) /* 1, because it contains the return value */
20

21 i = 100
22 print(i) /* 100 */
23

24 j = inc() /* ”12”, which the last assignment did not change */
25

11

26 /* deep copy of function */
27 var inc_inc func() int = func() int {
28 return inc()
29 }
30

31 j = inc_inc() /* ”23” */
32 print(j) /* 3 */
33

34 j = inc_inc() /* ”34” */
35 print(j) /* 4 */
36

37 j = inc() /* ”23”, which inc_inc did not change */
38 print(j) /* 3 */
39 }

Listing 6: Examples of closures; block comments indicate the value printed to standard output

Closure is necessary primarily in order to support higher order functions. Functions in funk can be passed around and
subsequently executed outside of their original scope. Consider the following example as an explanation why closures
are necessary:

1 // fib returns a function that returns
2 // successive Fibonacci numbers.
3 func fib() func() int {
4 var a, b int := 0, 1
5 return func() int {
6 a, b := b, a+b
7 return a
8 }
9 }
10

11 func main() {
12 f := fib()
13 // Function calls are evaluated left-to-right.
14 print(f()) //1
15 print(f()) //1
16 print(f()) //2
17 print(f()) //3
18 print(f()) //5
19 }

Listing 7: Function invoked outside its original scope

The fib function returns an anonymous function to the caller. This anonymous function has variables a and b as free
variables and gets executed outside its original scope, specifically in the scope of the main function. What happen is
that at function declaration time the anonymous function creates a copy of a and b (the function environment) from the
surrounding scope which will be used on subsequent invocations.

Closures are also used to avoid race conditions in async blocks.

1 {
2 var i int = 0
3 var a, b int
4

5 print(i) /* 0 */
6

12

7 a = async {
8 i = i + 1
9 return i
10 }
11 print(i) /* 0 */
12

13 i = 10
14 b = async {
15 i = i + 2
16 return i
17 }
18

19 print(a) /* 1 */
20 print(b) /* 12 */
21 print(i) /* 10 */
22 }

Listing 8: Closure for async Block

The two async blocks seem to compete for variable i defined in the outer scope. Both blocks will instead create a closure
of all their free variables effectively eliminating race conditions.

4.3 Assignment and Parameter Passing

In Funk, we try to minimize side effects, including those that may arise in assignments. Therefore, copy-assignment
statements, or assignments that use a variable directly on the right without performing any operations, copy the value,
rather than reference, of the variable. In addition, the assignment reads the values of the right hand side before it could
change any of them.

Let S be the scope of o as defined in the previous subsections. If o is on the right side of an assignment, a, the target
object of the assignment, oa, identified by ida, stores a deep copy of the value of o.

1 {
2 /* functions */
3 var i int = 0
4 print(i) /* 0 */
5

6 var inc func() int = func() int {
7 i = i + 1
8

9 print(i)
10

11 return i
12 }
13

14 inc() /* 1 */
15

16 var inc2 func() int = inc /* copying function */
17

18 inc() /* 2 */
19 inc() /* 3 */
20

21 inc2() /* 2 */
22 inc() /* 4 */

13

23

24 /* arrays */
25 var arr [2]int = [2]int{0, 1}
26 print(arr[0]) /* 0 */
27

28 var arr2 [2]int = arr /* copying array */
29 print(arr2[0]) /* 0 */
30 arr2[0] = 2
31 print(arr2[0]) /* 2 */
32 print(arr[0]) /* 0 */
33 }

Listing 9: Deep copies of function instances and arrays

Our language supports assignment of multiple objects. The right hand side of the assignment gets evaluated first from
leƜ to right, then the results are copied to the objects. Therefore, changes to objects on the leƜ side do not affect their
values on the right side. This enables swapping of values of objects.

1 {
2 var a, b int = 0, 1
3 print(a, b) /* 0 1 */
4

5 /*
6 * the assignment changes a and b, but not before it reads the
7 * original values
8 */
9 a, b = b, a
10 print(a, b) /* 1 0 --note the swap */
11 }

Listing 10: Assignment to the leƜ side does not affect the right side

However, being free from side effects does not imply that functions are referentially transparent in our language (due
to closures). Evaluations of the same function at different times can held different results if the function environment
is modified between different function calls. Consider the following example using the Fibonacci closure and multiple
assignments.

1 // fib returns a function that returns
2 // successive Fibonacci numbers.
3 func fib() func() int {
4 var a, b int := 0, 1
5 return func() int {
6 a, b := b, a+b
7 return a
8 }
9 }
10

11 func main() {
12 var a,b,c = fib(),fib(),fib() // a=1 b=1 c=2 ..
13 }

Listing 11: Multiple assignment and closures

For consistency with copying-by-value, as well as function closure, function calls also copy parameters by value, evalu-
ating the right side expressions from leƜ to right.

14

1 {
2 var i int = 0
3 print(i) /* 0 */
4

5 var inc func(int) int = func(i int) int {
6 i = i + 1
7

8 return i
9 }
10

11 print(inc(i), i) /* 1 0 */
12 }

Listing 12: No side effects on parameters

5 Type Conversions

Funk is a strongly typed language; therefore it performs no implicit type conversion. It is the responsibility of program-
mers to convert operands to the correct type. For example, consider arithmetic operations between an integer and a
floating point operand:

1 var a int = 1
2 var b double = 2.0
3 var c double = a + b //the compiler rejects the expression, as the types are not

the same

The programmer has to explicitly convert operands:

1 var a int = 1
2 var b double = 2.0
3 var c double = int2double(a) + b

Webelieve that this approach is less error prone than implicit conversion. For a complete list of conversion functions see
Section 6.

6 Built-in Functions

6.1 Conversion Functions

Funk has four conversion functions to and from the int type:

• double2int(x double) int: The function discards the fractional part of x and returns the integer part of x as an int.

• int2double(x int) double: The function returns a double with the fractional part equal to 0 and the integer part
equal to x.

• boolean2int(x bool) int: If x is true, the function returns 1. Otherwise it returns 0.

• int2boolean(x int) bool: If x is equal to 0, the function returns false. Otherwise it returns true.

15

6.2 The print function

A Funk program performs printing using the print function. The syntax and semantics of the print function are inspired
by the Python 3 function with the same name. Like the async keyword, the print function is not present in the Go lan-
guage that we are using as the baseline. Go uses the Printf function included in the fmt package as the standard function
for formatted I/O. Even though the authors of Go claim to have better mechanisms than the C language printf ¹, the se-
mantics and syntaxof fmt.Printf are almost indistinguishable from its C counterpart. Thereforewedecided to implement
a function similar to the Python 3 print function for the following reasons:

• The print function does not have a format string, making formatted I/O simpler and less error prone.

• The print function is polymorphic, which is also helpful for the programmer.

For example consider the following snippet:

1 var a int = 1
2 var b int = 2
3 print (a,”+”,b,” is ”, (a+b)) // prints 1+2 is 3

The syntax of our print command is the following:

1 print([expression, ...])

The function prints the concatenation of the string representation of each expression to standard output. It does not
automatically end the output with a newline, but the user can include expressions whose string representations include
a newline.

In contrast, print function in Python 3 has these features that allow programmers to specify 3 optional parameters:

1. sep is a separator that print outputs to I/O between every expression in the list.

2. end is a string that the function prints aƜer it has output all the expressions.

3. file specifies the destination for the print statement.

We are not implementing the first two because the simplified print function can still output any format by manually
adding in the separators and the end of line string. And since we are not considering file I/O for our language, we are not
going to implement the last as well.

7 Grammar

In the grammar listed below, we have some of undefined terminals like ID, INT_LIT, DOUBLE_LIT, CHAR_LIT, BOOT_LIT
and STRING. They are tokens passed in from the lexer. The words in textwriter style are terminal symbols given
literally, with the exception of new-line indicating the line break. And for symbols with the subscript opt, they will
be expanded in the actual grammar with a non-terminal that consists of an empty part and the actual symbol. “one
of” indicates separate tokens, listed in a single line, to which the non-terminal could expand. And with those indicated
above, the grammar represented here will be accepted by the ocamlyacc parser-generator.

program:

declaration
program declaration

¹http://golang.org/pkg/fmt/

16

http://golang.org/pkg/fmt/

declaration:

funcdec
vardec new-line
new-line

block:

{ stmt-listopt }

stmt-list:

new-line
stmt-list stmt new-line
stmt-list new-line

funcdec:

func ID (formal-listopt) var-typeopt block

anon:

func (formal-listopt) var-typeopt block

vardec:

var new-id-list var-type
var new-id-list var-type = actual-list

formal-list:

formal-type-cluster
formal-list , formal-type-cluster

formal-type-cluster:

var-type
new-id-list var-type

new-id-list

ID
new-id-list , ID

single-type:

func (formal-listopt) var-typeopt
int
double
char
bool

var-type:

array-markeropt single-type

17

arr-header:

array-marker single-type

array-marker:

array-level
array-marker array-level

array-level:

[]
[expression]

actual-arr:

arr-header { actual-listopt }

actual-list:

expression
anon
actual-list , expression
actual-list , anon

obj-get-expr-list:

obj-get-expr
obj-get-expr-list , obj-get-expr

assign-stmt:

obj-get-expr-list = actual-list new-line

stmt:

block
func-call-expr
return expression
return anon
break
if expression block
if expression block else block
for assign-stmtopt ; expressionopt ; assign-stmtopt block
for expressionopt block
assign-stmt
vardec

expression:

or-expr

or-expr:

and-expr
or-expr || and-expr

18

and-expr:

bor-expr
and-expr && bor-expr

bor-expr:

bxor-expr
bor-expr | bxor-expr

bxor-expr:

band-expr
bxor-expr ^ band-expr

band-expr:

eq-expr
band-expr & eq-expr

eq-expr:

comp-expr
eq-expr eq-op comp-expr

eq-op: one of

== !=

comp-expr:

shiƜ-expr
comp-expr comp-op shiƜ-expr

comp-op: one of

< <= > >=

shiƜ-expr:

add-expr
shiƜ-expr shiƜ-op add-expr

shiƜ-op: one of

<< >>

add-expr:

mult-expr
add-expr add-opmult-expr

add-op: one of

+ -

19

mult-expr:

un-expr
mult-expr mult-op un-expr

mult-op: one of

* / %

un-expr:

post-expr
un-op un-expr

un-op: one of

- + ! ~

post-expr:

obj-get-expr
func-call-expr

obj-get-expr:

primary-expr
post-expr [expression]

func-call-expr:

post-expr (actual-listopt)

primary-expr:

INT_LIT
DOUBLE_LIT
CHAR_LIT
BOOL_LIT
STRING
ID
actual-arr
async block
(expression)

20

	Introduction
	Lexical conventions
	Identifiers
	Keywords
	Statements and Blocks
	Control Flow
	Types
	Built-in Functions

	Constants
	Integer
	Double
	Boolean
	Characters and Character Arrays

	Punctuation
	Comments
	Operations
	Value Binding
	Operators

	Syntax
	Program structure
	Variable Declarations
	Global and Anonymous Functions

	Expressions
	Primary expressions
	Precedence of Operations

	Statements
	Assignments
	Blocks and Control Flow

	Scoping Rules
	Lexical Scoping with Blocks
	Function Closure
	Assignment and Parameter Passing

	Type Conversions
	Built-in Functions
	Conversion Functions
	The print function

	Grammar

