Easy Circuit

-An easy language to design your circuit and figure it out

Language Reference Manual

Lei Zhang |LZ2343 Xingyue Zhou |XZ2299
Liming Zhang |LZ2342 Yingnan Li|YL2884

Wei Zhang |WZ2254

Easy Circuit
Language Reference Manual

Contents
INEEOAUCTION ...ttt ettt et sttt ettt et ae s 2
LeXiCal CONVENTIONSevuiiiieiiriieteeieeiteie ettt ettt ettt ettt et e e enees 3
TOKEIS ...ttt ettt et sttt et st na e 3
COMUMENES ...ttt ettt st e e e s it s beesat e et e sbeeereenaneens 3
WHIEESPACE ...ttt ettt ettt ettt et et e et e e st e e bt e s saeenbeessbeenseannneenseas 3
TACIEITIELS .ttt ettt sbe e st e b e 3
K@YWOTIAS ..ttt ettt e e bt e b e et e e e abeenbeesnneenneas 3
OPCTALOTS ...ttt ettt ettt ettt ettt e st e e sttt e st ee e et eeenaaeeessteeesseesnsbeesnsteesnseeennseeenns 4
EXPression and OPETAtorscc.eeeeeeriierieeiiienieeieesiieeteesiteeteesteesaeesseessseenseesnseenseessseenseas 4
ASSIZNIMENL ...ttt eite ettt e et e et e e aeesteeeebeeseeesbeenseesnseenseesnseeseessseenseesnsesnseas 4
Series Connection, Parallel CONNECHION.......ccuvvvivviiiiiiiiiiiiiieee et 5
ATTERIMETIC 1.ttt ettt sttt et sbe e 5
BINATY .o ettt e bbb esabeebeesnaeeaneas 6
COMIPATISOM ...ttt eite et ete e et e et te st e ebeesateebeesabeeseessseenseesnsesnseesnseenseassseensaesnseans 6
Precedence and aSSOCIAtIVILY........cecuierieiiienieeieeeiie ettt ettt be e eaeees 7
DIECIATALION ...ttt sttt ettt sttt ettt 7
TACIEITIELS ..ttt ettt ettt e b 7
Resistance DeClaration..........coeevuieierieniieieniieie ettt 8
Function Declaration..........cc.eeieririerieniieieniieeee ettt 8
FUNCHON CYPES ..ttt ettt ettt et esite e e e ssbeenseesaseens 8
Function definitionsccceeoveiieiiniinieeeeeeeee e 8
FUNCtion Callscooeiiiiiiiiieieeee et 9
FUNCHON SCOPE....uiieiiieiiieiieete et ettt st e eneees 10
EXAMPIE ..ot 10
STALEIMEINLS ...ttt ettt ettt ettt ettt et et enees 11
Conditional Stat@MENL.......cc.eeuiriiiiieieriieie ettt 11
Case/SWILCh SEIUCLUIEScc.evviriiiiiiieiieieeee et 12
FOT-LOOPS ettt ettt et sttt et e e e et e eteeeabeenbeeenne 12
StanAard LIDTATYoooiiiiieiieeiieee ettt ettt ettt e e e et et e eenbeeneas 12

Easy Circuit
Language Reference Manual

Introduction

Circuit design plays an important role in many areas. However, some
circuit operations, such as computing equivalent resistance, or
transforming a circuit, though intuitional in some ways, are still hard to
formulary expressed in mathematic or program. Famous electronic
design automation (EDA) and simulation program, such as Multisim[1],
can help engineers to solve these problems. However, for common
students, these developing environments seem to be heavy and
expensive. Besides, even for people who are experts in using such
simulation software, these applications sometimes still lacks of
controllability and accuracy when dragging an element or drawing a
wire on the screen. To overcome such weakness, Easy Circuit is a slight,
succinct, accurate and easy-to-control programming language, which
facilitates people to design, control and analysis circuits. By Easy Circuit,
people who as long as possess basic knowledge of programming and
circuit, can design a circuit from scratch, and then model it into a
component with a function defining its properties. Such modularized
components can be reused in a more complicated electronic system.
Easy Circuit has the following features:

Easy to learn: The style is similar to java, and contains basic primitive
types and operators, such as int, float, long, double, boolean, +, -, *, /, etc.
Have customized operators and data structures:

Our language contains operators and types especially for circuit design
and calculation, such as series connection, parallel

connection, and reciprocal; resistance, capacity, inductance, switch,
power, wire, etc.

Functional: User can use our language to model a circuit, i.e., to define
a function to describe the properties of certain circuit. In functions, the

parameters are the adjustable component in the corresponding circuit.

Easy Circuit
Language Reference Manual

Lexical conventions

Tokens

There are 5 classes of tokens: identifiers, keywords, whitespace,

operators, and other separators.

Comments

The characters /* introduce a comment, which is terminated by the
characters */.

The characters // also introduce a comment, which is terminated by the
newline character. Comments do not nest. Lines marked as comments

are discarded by the compiler.

Whitespace
Blanks, tabs, and newlines, collectively referred to as “white space” are

ignored except to separate tokens.

Identifiers
An identifier is a sequence of letters and digits, the first character must

o 124

be alphabetic. The underscore counts as alphabetic. Upper and

lower case letters are considered different.

Keywords

The following identifiers are reserved as keywords and may not be used
otherwise. In this manual, keywords are bolded.

if

else

for

while

return

int

float

new

Easy Circuit
Language Reference Manual

switch
case

res

bit
function

Operators

An operator is a token that specifies an operation on at least one
operand. The operand may be an expression or a constant.

Arithmetic operators: +,-, *, /, %, ~

Comparison operators: <, >, <=, >=, =, ==

Bitwise operators: !, », 1", &, 1&, |

Assignment operator:=

Circuit operator: # $

Expression and Operators

Easy Circuit language is described using expressions which are made up
of one or more operators and operands.

An operand can be either a single res or a res equal to a set of res. All
expressions will return a res or an equal res that is then be assigned to a
resistance or a set of resistance. This section will detail operators

ordered from the most basic blocks to complex operations.

Assignment

The most basic assignment is a single resistance or a single bit value.
The value of resistance can be a decimal value or a binary value.

(a)

res resistance_name = new res(resistance_value);

res r0 = new res(); //assigning an empty value

res rl = new res(6); //assigning a decimal value

Easy Circuit
Language Reference Manual

(b)
bit bit_name = bit_valueb;
bit b1 =001101b; //assigning a binary value

bit b2=110010b;

Series Connection, Parallel Connection

To place two or more resistance in series or in parallel connection, we
use the concatenation syntax and parenthesis to represent the highest
precedence.

(a) Series:

res r_series = rl#r2;

(b)Parallel:

res r_parallel = r1$r2;

(c) Combination of series and parallel connection in left-right order.

res rc = r1#r2$r3#r4;

// resultin: res rc = r1#r2; rc=rc$r3; rc=rcHr4;

(d) Parenthesis

Parenthesis has the highest precedence.

(ri#r2)$r3; //resultin r1#r2$r3
r1#(r2$r3); //result in r2$r3#ri
Arithmetic

Arithmetic operators are shorthand for common equal operations. Most
of they operate on the value of two resistances or their equal resistances.
An exception is that Reciprocal operation is on the value of one
resistance or its equivalent resistance. All operations are done in two’s

complement and they will return the value of the new resistance.

resrl =newres(1);
res r2 = new res(2);
res r3 = new res();
res r4 = new res(1.0);
res r5 = new res(2.0);

Easy Circuit
Language Reference Manual

Operator Example Result Note
Plus r3.value=rl.value+r2.value | r3.value = 3
Minus r3.value=r2.value-rl.value | r3.value =1 | r.value should be more
than or equal to zero.
Multiplication | r3.value=rl.value*r2.value | r3.value = 2
Division r3.value=rl.value/r2.value | r3.value =0 | The data type of r.value
r3.value=r4.value/r5.value | r3.value=0.5 | depends on the data
type of its divisor and
dividend.
Reciprocal r3.value = ~r5.value r3.value=0.5 | It returns the
r3.value = ~r2.value r3.value =0 | reciprocal value. The
data type depends on
the original data type.
Binary

Bit operators represents the basic AND, OR and NOT operation.

res a = new res(01b);
res b = newres(11b);

Operator Example Result
NOT la 10b
AND a&b 01b
OR alb 11b
NAND al&b 00b
NOR allb 10b
XOR a"b

XNOR al"b

Comparison

Comparison operators will compare the values of two resistance which

do not to be equally sized and will return a Boolean type value.

resrl = newres(1);

Easy Circuit
Language Reference Manual

res r2 = new res(2);

Operator Example Result

Less than rl.value <r2.value True

Less than or equal to rl.value <=r2.value True

Greater than rl.value > r2.value False

Greater than or equal to rl.value >=r2.value False

Equal to rl.value ==r2.value False

Not equal to rl.value !=r2.value True
Precedence and associativity

Operators, in order of decreasing precedence Associativity

++ -- (postfix, for-loops only)

Left to right

'+ - & & * ™ | !l|(unary) ~(reciprocal) ++ -- (prefix,

for-loops only)

Right to left

*/ Left to right
+ -(binary) Left to right
<<=>>= Left to right

Left to right

& !& (binary)

Left to right

A 17 (binary)

Left to right

| !| (binary)

Left to right

$ (binary)

Left to right

Right to left

Declaration

There is one special type of declarations in Easy Circuit.

Identifiers

Identifiers are user-friendly names, much like variable names in most
programming languages. They must start with upper-or lower-case

letter followed by any sequence of letters, numbers, and underscores.

Easy Circuit
Language Reference Manual

No other characters are allowed in identifier names.

Resistance Declaration

Resistance are declared using the keyword res:

res resistance_name = new res(resistance_value); //single Resistance

In addition, the declared res can also take values immediately during
the declaration. Following the identifier a space, an equals sign, another
space:

res R3 =R2;

Function Declaration

Easy Circuit language support user-defined and system-defined
functions. Normally user of Easy Circuit can use functions to model a
circuit component with specific properties (e.g., to compute equivalent
resistance of such circuit component) and to reuse it in a more
complicated electronic system.

Like C, a function in Easy Circuit contains zero or more statements to be
executed when it is called, can be passed zero or more arguments, and

can return a value.

Function types
A function’s type means the type of the value that is returned after
executing the function. The type can be any data type in Easy Circuit

Language. If the function returns no value, the type of function is void.

Function definitions
In Easy Circuit Language, a function has the following syntax:
function <function-type> <function-name> (parameterl-type

parameterl-name, parameter2-type parameter2-name,......)

Easy Circuit
Language Reference Manual

{

statement 1;
statement 2;

return statement;

}

In the function definition, the function uses the input parameters to
execute the statements and return the value of the statement, with the
type defined in <function-type>

For example, the following function equi_res4 can compute equivalent

resistance of 4 parallel connected resistors.

function res equi_res4(res rl, res r2, res r3, res r4)
{
res res_equi= r1$r2$r3$r4;

return res_equi;

}

Function Calls
A function call is a primary expression. Just like in C or Java, in Easy
Circuit Language, an expression used to invoke a function has the

following format:

<function-name> (parameter1l-name, parameter2-name,......);

(parameter1l-name, parameter2-name,......) contains a
comma-separated list of expressions that are the arguments to the
function. The following is an example of a call to the function equi_res4

defined in the previous part.

{

Easy Circuit
Language Reference Manual

res rl=new res(2);

res r2=new res(2);

res r3=new res(2);

res r4=new res(2);

res r_total=new res();

r_total =equi_res4(rl,r2,r3,r4);

}

After execute the code above the r_total will be assigned a res type

variant with value of 0.5.

Function Scope

In Easy Circuit Language, variant declared within one function is valid
only in that function. The functions that have been defined will be

accessible in the whole file.

Example

In the following code, a function called get_equal_res was defined to

module the circuit component in the figure.

o B o N e N
R, R, R,

function res get_equal_res (resrl, resr2, res r3, res r4)

{

res res_total=new res();
res t_total.value=(((r1#r3)$r2)#r4).value

10

Easy Circuit
Language Reference Manual

return res_total;

}

// Define the function to calculate the equivalent resistance in circuit

module showed in the picture.

res rl=new res(3); // Assign the values of R1, R2, R3 and R4
res r2=new res(6);
res r3=new res(3);
res r4=new res(3);

res rTotal= get_equal_res(rl, r2, r3, r4);

// Get the equivalent resistance.

Statements
A semicolon is necessary after a statement in Easy Circuit. Because
whitespace has no effect, the semicolon is used to signal the end of a
statement.

res rTotal=13;

Conditional Statement

Conditional statements work just as they do in C with if and else.

If (r1.value < r2.value){

resr3=rl;

}
Else {

res r4=r2;

}

11

Easy Circuit
Language Reference Manual

Case/Switch Structures
Case structures use the case keyword and work similar to the switch statement in C.
switch (a){
case b:
// Code
break;
case c:
// Code
break;
default:
// Code
break;

}

For-loops
For loops in Easy Circuit is similar to the for loops in C

For(i=0; i<18; i++){

Standard Library
The standard library of Easy Circuit Language defines several basic and
frequently used circuit components which the user can invoke easily

without tedious coding of thus components.
Here are some examples:
As the figure shows as follow, y configuration and delta configuration

are commonly used in circuit calculation. They can be transformed into

each are by the formulas show as following.

12

Easy Circuit
Language Reference Manual

(b}

y configuration(left) and delta configuration(right)

(o _RR,+RR +RR, o RuRy,

- R, 'R, +R,, +R,,
Ir. RIRLHRRFRR, g R,,R,,

: R, R, +R,, +R,
R, —RiR2 +R.R, +RAR, ___ RuR,

' R, - R,+R,,+R,

Formula of transformation between y configuration and delta configuration

YToDelta is a pre-defined module which can transform resistors in a
y configuration to a delta configuration, and DeltaToY can transform

resistors in a delta configuration to a y configuration,

YToDelta{

int YR1;

int YRZ;

int YR3;

res DR12=new res(YR1*YR2+YR2*YR3+YR3*YR1)/YR3;
res DR23=new res(YR1*YR2+YR2*YR3+YR3*YR1)/YR1;
res DR31=new res(YR1*YR2+YR2*YR3+YR3*YR1)/YR2;

}

13

Easy Circuit
Language Reference Manual

DeltaToY{

int DR12;

int DR23;

int DR31;

res YR1=new res(DR12*DR31)/(DR12+DR23+DR31);
res YR2=new res(DR12*DR23)/(DR12+DR23+DR31);
res YR3=new res(DR23*DR31)/(DR12+DR23+DR31);

®

Function bit 74hc138 (bit input)

{
If input. value[1-3] = 100b return “input error”;
If input = 100000b return new bit (01111111b);
If input = 100001b return new bit (10111111b);
If input = 100010b return new bit (11011111b);
If input =100011b return new bit (11101111b);
If input =100100b return new bit (11110111b);
If input =100101b return new bit (11111011b);
If input =100110b return new bit (11111101b);
If input =100111b return new bit (11111110b);

Else return new bit (11111111b)

}

Function bit 74hc338 (bit input)

{
If input. value[3] = 1b return new bit (11111111b);

If input. value[1-3] = 011b return new bit (11111111b);

14

Easy Circuit
Language Reference Manual

If input. value[2] = 1b return new bit (11111111b);
If input = 100000b return new bit (01111111b);
If input = 100001b return new bit (10111111b);
If input = 100010b return new bit (11011111b);
If input =100011b return new bit (11101111b);
If input = 100100b return new bit (11110111b);
If input =100101b return new bit (11111011b);
If input =100110b return new bit (11111101b);
If input =100111b return new bit (11111110b);

15

