
ENGI E1112 Departmental Project Report:
Computer Science/Computer Engineering

Ross Basri and Ruchir Khaitan

May, 2012

Abstract

This report details the results of a term project in ENGI E1112 in Com-
puter Science/Engineering. The goal of this project was to repurpose an
HP20b calculator by replacing the existing firmware with new software built
to given specifications. The final product of the project was a functioning,
reverse-polish notation calculator.

The layers of the software implementation, in the order of which they
were addressed, are displaying output, scanning the keyboard, entering and
displaying numbers and operations, and internalizing mathematical input to
produce a result. Students were tasked with designing and implementing
algorithms to handle each of these aspects in groups of two or three.

Programming for this project was done in C using a LINUX workstation.
A JTAG adaptor was used for communication between the workstation and
the HP20b processor. As planned, students were able to produce a fully
functioning, reverse-polish notation calculator by the end of the term.

1 Introduction
The design challenge for the ENGI E1112 Departmental Lab Project in Computer
Science and Computer Engineering was to program and integrate new firmware
for an HP20b calculator (Figure 1). Students worked in groups of two or three to
replace the existing firmware with their own original and custom-designed soft-
ware.

The ultimate goal of the design challenge was to build a functioning, reverse-
polish notation calculator. In order to accomplish this, the software architecture
students set out to build had to handle input from the keyboard, internalize the
input and formulate a mathematical result, and display the result.

1

Students attacked the design challenge through a series of four labs. Each lab
built upon concepts and software architecture formulated in previous labs, and the
result was incremental steps toward the final goal of a functioning, reverse-polish
notation calculator.

2 User Guide
Reverse-polish notation (RPN) must be used to analyze mathematical functions
on the repurposed HP20b calculator. This is often referred to as a âĂIJpost-fixâĂİ
notation because the operands are listed before the operator is input and applied.
For example, 4+4 in RPN would read 4 4 +. Similarly, 3 * 7 would look like 3 7
* .

When specifically using the repurposed HP20b calculator to analyze RPN
functions, the first thing that should be done is to turn the calculator on using
the ON/C button. Once the desired software is loaded, check to see that the dis-
play reads 0. If anything but 0 is shown on the display, press the = button (this
acts as a clear).

Once the display reads 0, the calculator is ready to receive input. To input
the first number of any mathematical operation, you must hit the desired number
key and then the INPUT key, which looks like an up arrow. Once the INPUT
key is entered, the display should still show only the numeral entered. If an op-
eration is entered first, there will be an underflow error, and the display will read
UNDERFLOW.

To enter the second operand, simply hit the key of the number desired, and then
the operation. The full sequence on the repurposed HP20b calculator to compute
4+4, for example, would be 4 INPUT 4 +. The calculator immediately displays
output once and operation is entered, so the display should now read 8.

To compute more complex operations, such as 4+4*3+3, you must first com-
pute each of the terms separately, and then multiply them. For example, the ex-
pression above would be entered as 4 INPUT 4 + 3 INPUT 3 + *. Once the first
operator + is applied, 8 should be displayed as output. Then, once 3 is input, 8
will be stored in the processor and recalled to be applied as an operand once the *
operator is entered. The display should finally read 48.

Users should be aware of the fact that the software implementation used in
the repurposed HP20b only allows for five separate terms to be used in any sin-
gle calculation (see section 6.4 to understand why). If more than five terms are
entered, an OVERFLOW message will appear on the display. The same message
will be appear if the display value exceeds the maximum allowable spaces on the
display. Additionally, users should be alert to the fact that the division operation

2

Figure 1: The HP 20b

is not functional on the repurposed HP20b calculator. This is due to a software
glitch beyond the scope of the project, and is not a missed goal of the engineers.

3 Social Implications
This platform, with which we practiced embedded systems programming, is far
more versatile than merely reprogramming basic arithmetic functions and reverse
polish notation. It is not a very large leap from that point to programming all
other math functions and infix notation. Beyond that, it is not inconceivable to
imagine the HP-20b as a very primitive text editor and 8 bit game platform. Thus,
the HP-20b is a perfect example of technology trickle down, what was once a
ground breaking personal computer can now be used as a cheap teaching platform
in developing countries, where electricity is often unavailable and funds often
scarce. The HP-20b can be a valuable tool to introduce kids young and old to
programming and application development, with less of a reliance on standard
computers, that could lead to new apps for modern phones. Thus, the next Steve
Jobs or Bill Gates might spring from places we would never have expected.

4 The Platform
The three main components of the hardware platform of the HP20b calculator are
the processor, LCD display, and keyboard. These serve as the three main tools
students used to approach the problems of design and implement their solutions.

3

4.1 The Processor

The standard processor on the HP20b is an Atmel AT91SAM7L128 ARM7TDMI-
core low-power microcontroller in CoB packaging (See Figure ??). It runs at a
speed of 30MHz and it is phase-locked loop (PLL) controlled, simply meaning
that the output signal is kept in phase with the input signal. The processor includes
128KB of programmable, flash memory and 6KB of RAM, 2KB of which is non-
volatile [1].

4.2 The LCD Display

The LCD (Liquid Crystal Display) contains two alphanumeric lines to which out-
put can be written (See Figure 3). At the beginning of the project, students were
given a function library, including the function lcdputchar7, which takes as an ar-
gument a character in ASCII and an integer indicating the column on the display
to which the given character should be placed. This function played an integral
role in building other functions facilitating the display of output. One more cru-
cial function was lcdinit, which initialized the LCD to display output and without
which display would not have been possible. This function was called at the be-
ginning of all main methods.

4.3 The Keyboard

The last piece of hardware architecture that served a crucial role in approaching
the design challenge was the keyboard. The keyboard is scanned as a 6 x 7 matrix
([1]). The exact hardware mechanism that allowed scanning of the keyboard was
a circuit running underneath the keyboard and broken by the spaces between the
keys. Beneath each individual key lies a conductor that completes the circuit when
pressed. To check if a specific key is pressed, a controller compares the voltage in
the circuit on both sides of the key. If the key is pressed, the circuit is completed
and the voltage will be the same, otherwise, there will be a potential difference,
and the controller determines that the key is not pressed (See Figure ??).

5 Software Architecture
The reprogrammed firmware consists of four functions that build on each other
and provide the foundations for each successive module of code. The first is the
function for printing integers on the LCD screen, which is an integral part of the
calculator function. After that, the second function detects when a key is pressed
and using the previous code, prints it on the screen. Extending that functionality,
the third function takes meaningful calculator entries by reading a number and an
operator from user input and displays them on the keypad. The final code builds
on all of these input and output capabilities and uses the processing power of the

4

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 2: A block diagram of the AT91SAM7L microcontroller that is at the heart
of the HP 20b

5

Figure 3: LCD Display of the HP20b calculator

6

Figure 4: A schematic diagram of the HP20b keyboard

7

calculator to evaluate the inputs as expressions in a RPN calculator and display
the results on screen.

6 Software Details
6.1 Lab 1: A Scrolling Display

The objective of the first lab was to display a scrolling message. Specifically,
the objective was to create a function that takes an integer argument and displays
it in decimal on the HP20b LCD display. Figure 5 shows one solution to this
problem, a function called lcdprint. Firstly, this function checks to see if the
desired output value is 0 because this is a case that requires less calculation and
is easy to handle apart from the default cases. Then, the function checks if the
input is negative. The variable negative is set to true or false accordingly, and if
the value is negative, it is made positive to facilitate calculations. Then, a while
loop is entered in which the value to be displayed is divided mod 10 until it reaches
zero, with each remainder being placed at the next available column on the display
(value of post-decremented count). The last job of the function is to check place
the character - at the front end of the displayed number if the input value was
negative.

6.2 Lab 2: Scanning the Keyboard

For lab 2, the objective was to write software that can read the keyboard of the
HP20b and display which key is being pressed. To do so, it was instrumental to use
the functions given that set the columns voltages to low, and the function that read
the rows to determine whether or not a key was being pressed in a nested for loop,
iterating through each column, and within each column, iterating through each
row. If no key was pressed, we returned the number of rows as a default case. We
also too the column number as an integer, and used a global variable returnColumn
to encode the column number as we did not yet know how to pass two variables
at the same time. We accessed this variable through an accessor function named
getColumn. In main, we encoded the result by noting that numbers are arranged
in an orderly matrix, so the column number sets an upper and lower limit on what
the values of the keys within the column can be, and exploited that as an alterative
to individually defining each row and column combination as a number. We tested
this software by pressing numbers and seeing what the calculator displayed on the
screen, and thankfully, it worked! Figure 6 shows the code that was used.

6.3 Lab 3: Entering and Displaying Numbers

For lab 3, the objective was to write code that would allow the user to input both
a number and an operation, and then display then both on the LCD screen. Fur-

8

#include "AT91SAM7L128.h"
#include "lcd.h"
#define NUM_COLUMNS 11

void lcdprint(int input){
if(input == 0){

lcd_put_char7(’0’, NUM_COLUMNS);
return;

}
int remainder, count = NUM_COLUMNS;
int negative = input < 0 ? 1 : 0;
int output = negative ? -1*input : input;
while(output>0){
remainder = output%10;
lcd_put_char7(’remainder’,count--);
output = output/10;

}
if(negative) lcd_put_char7(45, count); //print minus sign

}

int main()
{

lcd_init();
lcdprint(4384);
return 0;

}

Figure 5: My solution for lab 1: the scrolling message

9

#include "AT91SAM7L128.h"
#include "lcd.h"
#include "keyboard.h"
#define KEYBOARD_COLUMNS 0x7f
#define KEYBOARD_ROWS 0x400fc00
#define NUM_COLUMNS 7
#define NUM_ROWS 6

int main()
{

// Disable the watchdog timer

*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

lcd_init();
keyboard_init();

lcd_print7("SEE");

keyboard_column_low(0);

int row, column;
for (;;) {

row = keyboard_key();
column = getColumn();
switch(column){

case 3:
lcd_put_char7(’0’+6+row,5);
break;

case 4:
lcd_put_char7(’0’+3+row,5);
break;

case 5:
lcd_put_char7(’0’+row,5);
break;

default:
lcd_put_char7(’E’,5);
break;

}
}
return 0;

}

const unsigned char keyboard_row_index[] = {11,12,13,14,15,26};

extern void keyboard_init(){}

extern void keyboard_column_high(int column){} //set given column to high

extern void keyboard_column_low(int column){} //set given column to low

extern int keyboard_row_read(int row){} //see if given column is high or low

int returnColumn=NUM_COLUMNS; //default case
extern int keyboard_key()
{

int column, row;
for(column=0; column<NUM_COLUMNS; column++){
keyboard_column_low(column);
for(row=0; row<NUM_ROWS; row++){
if(!keyboard_row_read(row))
return row;
returnColumn = column;

}
keyboard_column_high(column);

}
return NUM_ROWS; //default case

}

extern int getColumn(){ //accessor for which column was pressed
return returnColumn;

}

Figure 6: My solution for lab 2: Scanning the Keyboard

10

thermore, lab 3 was the first time we had to use pointers to structs. Our code,
which uses Professor Edwards version of keyboardkey, assigns an integer key,
and an integer num. It then waits for a key to be pressed, and if that key, en-
coded within key, is a number as defined by ASCII, it appends that number to the
variable num, after subtracting the ASCII value of zero, to encode it as a pure in-
teger, unless num goes beyond the calculators limit of digits available for display.
This continues indefinitely until the user enters an operation. Operations are de-
fined by either characters or combinations of characters, and we used the standard
definitions given in the keyboardkey matrix. When the user enters an operation,
the pointer is directed to num for the structs number, and key for its operation,
and the code closes by printing the num variable. See Figure 7 for more details.
If the user enters an operation without entering a number, INTMAX, the largest
unsigned integer the processor can handle is passed as an error check.
6.4 Lab 4: An RPN Calculator

The objective of lab 4 was simple: to build upon the functions created in the
previous three labs to build an RPN calculator. To implement a post-fix calculator,
a stack must be used. A stack is an abstract data type and a last in, first out data
structure. The way a stack works is very similar to a stack of dishes, the last dish to
be placed on top of the stack is the first one to come off. The stack implemented in
this version of the repurposed HP20b is an array of size 5, and the static memory
allocation property of an array explains why only 5 terms can be calculated at
once. Figure 8 shows the code that implements the RPN calculator. An infinite for
loop is used to keep the calculator accepting input and returning output for as long
as necessary. The first thing the algorithm does after instantiation/initialization of
variables is call the keyboardgetentry function, described in 6.3, then check for
underflow/overflow or clear conditions (count value less than 0 or greater than 4 or
= button pressed). If these conditions are met, a for loop is used to reset all values
in the stack to 0 and reset count to 0. Otherwise, if the input key is the operation
passed by the get entry function, the accompanying numeric value is pushed on to
the stack. Otherwise, one value is popped from the stack, and if both number and
operation are given, the operation is applied and the return value is displayed. If
only an operation was given, INTMAX will be passed by keyboardgetentry, and
a second value will be popped from the stack and the operation applied instead to
these two values. Lastly, the result is pushed back onto the stack.
7 Lessons Learned
We learned many things from this course, not the least of which was the basics
of C. This is especially important because C is in certain aspects much more low

11

#include "AT91SAM7L128.h"
#include "lcd.h"
#include "keyboard.h"
#define NUM_COLUMNS 7
#define NUM_ROWS 6
#define KEYBOARD_COLUMNS 0x7f
#define KEYBOARD_ROWS 0x400fc00

int main()
{

struct entry entry;
// Disable the watchdog timer

*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

lcd_init();
keyboard_init();

lcd_print7("PRESS");

keyboard_get_entry(&entry);

lcd_put_char7(entry.operation,4);

for (;;) {
int c = keyboard_key();
lcd_put_char7(c > 0 ? c : ’ ’, 3);

}

return 0;
}

const unsigned char keyboard_row_index[] = {11,12,13,14,15,26};

/* Character codes returned by keyboard_key */

const char keyboard_keys[NUM_COLUMNS][NUM_ROWS] = {
{’N’, ’I’, ’P’, ’M’, ’F’, ’A’},
{’C’, ’R’, ’V’, ’B’, ’%’, ’L’},
{’\r’, ’(’, ’)’, ’~’, ’\b’, 0},
{’\v’, ’7’, ’8’, ’9’, ’/’, 0},
{’\n’, ’4’, ’5’, ’6’, ’*’, 0},
{’S’, ’1’, ’2’, ’3’, ’-’, 0},
{ 0, ’0’, ’.’, ’=’, ’+’, 0}};

void keyboard_init(){}

void keyboard_column_high(int column){}

void keyboard_column_low(int column){}

int keyboard_row_read(int row){}

int keyboard_key(){}

void keyboard_get_entry(struct entry *result)
{

int key;
unsigned int num = INT_MAX;
for (;;) {

while (keyboard_key()) ;
while (!(key = keyboard_key())) ;
if (key >= ’0’ && key <= ’9’) {

if (num == INT_MAX) num = 0;
if (num < 100000000)

num = num * 10 + (key - ’0’);
}
else if (key == ’\r’ || key == ’+’ || key == ’-’ || key == ’*’ || key == ’/’) {

result->number = num;
result->operation = key;
return;

}
lcd_print_int(num);

}
}

Figure 7: My solution for lab 3: Entering and Displaying Numbers

12

#define STACK_SIZE 5
#include "AT91SAM7L128.h"
#include "lcd.h"
#include "keyboard.h"

int main()
{

int i;
struct entry entry;
// Disable the watchdog timer

*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

lcd_init();
keyboard_init(); //Initialize keyboard

int stack[STACK_SIZE];
int current=0;
int popped, popped2, result;
for(;;){
keyboard_get_entry(&entry);
if(entry.operation == ’=’ || current > 4 || current < 0){ //clear by = key, overflow, or underflow
current = 0;
for(i = 0; i < STACK_SIZE; i++) stack[i] = 0;
popped = 0;
popped2 = 0;
result = 0;
if(current > STACK_SIZE-1) lcd_print7("OVERFLOW"); //Handle overflow
else{

if(current < 0) lcd_print7("UNDEFLOW"); //Handle underflow
else lcd_print_int(popped); //Print 0 in case of clear

}
}
else if(entry.operation == ’\r’) stack[current++]=entry.number;
else{
popped = stack[--current];
if(entry.number == INT_MAX) popped2=stack[--current]; //no number pressed, only operation
else popped2=entry.number;
if(entry.operation == ’+’) result=popped+popped2;
if(entry.operation == ’-’) result=popped-popped2;
if(entry.operation == ’*’) result=popped*popped2;
if(entry.operation == ’/’) result=popped/popped2;
stack[current++]=result;
lcd_print_int(result);

}
}
return 0;

}

Figure 8: My solution for lab 4: the RPN calculator

13

level focused than its other beginner programming language counterparts such as
Java, Python or Matlab. Also, we learned about the fundamentals of systems pro-
gramming in a restricted environment where its not possible to call upon libraries
or APIs to solve tricky problems. Finally, we learned better communication skills,
both between ourselves, and in our presentations to the class.

8 Criticism of the Course
This course was for the most part very effective at teaching systems programming.
One area that could have been improved was the instruction of C. We feel that if
that topic had been presented earlier in the course, it would have helped make
the labs, and the code surrounding them, more comprehensible. As it was, both
members of the team had some prior programming experience, but for a team
completely devoid of any such experience, which is a probable situation, some
of the labs must have been extremely challenging. Other than that though, this
course was educational, rewarding, and fun.

References
[1] Hp-20b repurposing project. Online http://www.wiki4hp.com/

doku.php?id=20b:repurposing_project.

14

http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://www.wiki4hp.com/doku.php?id=20b:repurposing_project

	Introduction
	User Guide
	Social Implications
	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Software Details
	Lab 1: A Scrolling Display
	Lab 2: Scanning the Keyboard
	Lab 3: Entering and Displaying Numbers
	Lab 4: An RPN Calculator

	Lessons Learned
	Criticism of the Course

