Gateway: ENGI E1112
CS Lab Project

Ross Basri
Ruchir Khaitan
Design Brief

• Program and integrate new firmware for an HP 20b calculator.
Specifications

• Final product must…
Limitations

- HP20b calculator
- Linux Workstation
- JTAG adaptor
Lab 1: Hello World

- Objective: To create a function that takes an integer argument and displays it in decimal on the calculator.
void lcdprint(int input){
 if(input == 0){
 lcd_put_char7('0', NUM_COLUMNS);
 return;
 }
 int remainder, count = NUM_COLUMNS;
 int negative = input < 0 ? 1 : 0;
 int output = negative ? -1*input : input;
 while(output>0){
 remainder = output%10;
 lcd_put_char7('remainder',count--);
 output = output/10;
 }
 if(negative) lcd_put_char7(45, count); //print minus sign
}

Lab 2: Listening to the Keyboard

• Objective: To write software that will read the keyboard on the HP 20b and display which key is pressed.
Lab 2: Listening to the Keyboard
int returnColumn=NUM_COLUMNS; //default case
extern int keyboard_key()
{
 int column, row;
 for(column=0; column<NUM_COLUMNS; column++){
 keyboard_column_low(column);
 for(row=0; row<NUM_ROWS; row++){
 if(!keyboard_row_read(row))
 return row;
 }
 keyboard_column_high(column);
 }
 returnColumn = column;
}

extern int getColumn(){ //accessor for which column was pressed
 return returnColumn;
}
Lab 3: Entering and Displaying Numbers

- Objective: To write code that will let the user enter and edit numbers.
void keyboard_get_entry(struct entry *result) {
 int key;
 unsigned int num = INT_MAX;
 for (;;) {
 while (keyboard_key()) ; //wait until no key is pressed
 while (!(key = keyboard_key())) ; //wait until key is pressed
 if (key >= '0' && key <= '9') {
 if (num == INT_MAX) num = 0;
 if (num < 100000000)
 num = num * 10 + (key - '0');
 } else if (key == '\r' || key == '+' || key == '-' || key == '*' || key == '/') {
 result->number = num;
 result->operation = key;
 return;
 }
 lcd_print_int(num);
 }
}
Lab 4: An RPN Calculator

- Objective: To create a functioning, reverse-polish notation calculator.
Lab 4: An RPN Calculator
if (current > STACK_SIZE-1) lcd_print7("OVERFLOW"); //Handle overflow
else {
 if (current < 0) lcd_print7("UNDERFLOW"); //Handle underflow
 else lcd_print_int(popped); //Print 0 in case of clear
}
}
else if (entry.operation == '\r') stack[current++] = entry.number;
else {
 popped = stack[--current];
 if (entry.number == INT_MAX) popped2 = stack[--current]; //no number pressed, only operation, i.e. 5 3 4 + +
 else popped2 = entry.number; //number and operation given
 if (entry.operation == '+') result = popped + popped2;
 if (entry.operation == '-') result = popped - popped2;
 if (entry.operation == '*') result = popped * popped2;
 if (entry.operation == '/') result = popped / popped2;
 stack[current++] = result;
 lcd_print_int(result);
}
To Conclude…