Project Report: Computer Science/Computer Engineering

By: David Boucard, Eileen Li, Phoenetia Browne
HP 20b Business Consultant

- Simple Calculator
- Used for:
 - Business
 - Finance
 - Real Estate
 - Accounting
Our HP 20b User Guide

- Press any number key to display
- Maximum digits to display at once is 9
- +/- changes sign of input
- Press and operation key to stop
 - +, -, x, /, input
Platform

- Basic scientific and statistical functions
- JTAG header
- Processor
- LCD
- Keyboard
LCD Display

- lcd.c
- lcd_put_char7
- lcd_init

Figure 3: The HP20b LCD Screen. It has a 43 x 6 pixel display matrix, various display indicators.

Figure 4: Running the “Hello” program.
Keyboard

- `keyboard_column_high`
- `keyboard_column_low`
- `keyboard_row_read`
Software Details

The developed software works towards:

- Display Functionality
- Scanning Functionality
- Input Functionality
Display Functionality

6.1 Lab 1: A Scrolling Display

The general method of creating a display for integers is to handle the three distinct types of integer inputs: negative, zero and positive and to create methods to handle each.
```c
#include "AT91SAM7L128.h"
#include "lcd.h"

int main()
{
    int digitNumber = 0; // how many digits are in the input
    int input = -12345; // the value you want to display
    int absInput = abs(input); // absolute value of the input

    lcd_init();
    // We are going to count how many digits are in the input
    while (absInput != 0) // If absInput is not 0
    {
        // divide absInput by 10, and count times we can divide by 10
        absInput = absInput/10;
        digitNumber++;
    }

    absInput = abs(input); // Overwrite with the original value
    int i;

    for (i=0; i < digitNumber; i++)
    {
        int remainder = absInput % 10;
        // 48 == '0' we are adding 48 for conversion int to char
        lcd_put_char7(remainder+48, digitNumber-i);
        absInput = absInput / 10;
    }

    // if the input is negative
    if (input < 0) {
        lcd_put_char7('-', 0);
    }

    // if the input is 0
    if(input == 0)
    {
        lcd_put_char7('0', 1);
    }
    return 0;
}
```
Scanning Functionality

6.2 Lab 2: Scanning the Keyboard

- Implements an algorithm which cycles through arrays of rows and columns. The code interprets the changes in voltage as user inputs. This is implemented using nested for loops.
#include "AT91SAM7L128.h"
#include "keyboard.h"

#define NUM_COLUMNS 7
#define NUM_ROWS 6
#define MAX_INT 100000000
#define KEYBOARD_COLUMN_NUM 0x7f
#define KEYBOARD_ROW_NUM 0x400fc00

const char keyboard_keys[NUM_COLUMNS][NUM_ROWS] = {
 {'N', 'L', 'P', 'M', 'F', 'A'},
 {'C', 'R', 'V', 'B', '%', 'L'},
 {'V', '(', ')', '~', 'b', 0},
 {'w', '7', '8', '9', ',', 0},
 {'n', '4', '5', '6', '*', 0},
 {'S', '1', '2', '3', '!', 0},
 {0, '0', ',', '=' ,'+', 0}};

int keyboard_key()
{
 int row, col;
 for (col = 0; col < NUM_COLUMNS; col++) {
 keyboard_column_low(col);
 for (row = 0; row < NUM_ROWS; row++)
 if (!keyboard_row_read(row)) {
 keyboard_column_high(col);
 return keyboard_keys[col][row];
 }
 keyboard_column_high(col);
 }
 return -1;
}
6.3 Lab 3: Entering and Displaying Numbers

The next goal of the project is to take in many integer inputs and an operation arguments to prepare for the arithmetic operations. The three main types of inputs were handled as: integer keys, operation keys, and the delete key. Each modifies both the display and the input user data.
void keyboard_get_entry(struct entry *result)
{
 int integer = 0;
 int digitCount = 0;
 char key;

 char lastKey;
 int i;
 int sign = 1;

 for(;;)
 {
 while(!((key = keyboard_key()))); // Do nothing while nothing is pressed

 key = keyboard_key(); // Get input

 if(key != lastKey && key != -1) // As long it's a newly pressed and actual input
 {
 if(key >= '0' && key <= '9' && integer < MAX_INT) // Integer input
 {
 if(digitCount == 0)
 {
 lcd_print7(" ");
 }
 integer = integer * 10 + (key - '0'); // Display
 digitCount++;
 lcd_put_char7(key, 2 + digitCount);
 }

 if(key == 'r' || key == '=' || key == '*' || key == '-' || key == '+') // Operation input
 {
 lcd_put_char7(key, 0);
 result->number = integer * sign;
 result->operation = key;
 break;
 }
 }
 }
}
if(key=='b' && digitCount>0) // When the entered key is backspace
{
 integer=integer/10;
 lcd_putchar7('''', 2 + digitCount);
 digitCount--; //shift
}

if(key=='~') //Negation input which is +/-
{
 sign = sign* -1;
 if(sign == -1)
 {
 if(sign == -1)
 {
 lcd_putchar7('-', 1);
 }
 else {
 lcd_putchar7('-', 1);
 }
 }
 else {
 lcd_putchar7('''', 1);
 }
 lastKey = key;
}
Lessons Learned
Questions?