
1

ENGI E1102 Departmental Project Report:

Computer Science/Computer Engineering

David Figueroa and Justin Zhao

May 10, 2012

Abstract

 Using the powerful programming language of C, the language of the

code used in Hewlett-Packard’s HP-20b Business Calculator, we, under

the provision of Professor Stephen Edwards and Yoonji Shin, redesigned

the previous functionalities of the calculator to provide the user with a

completely different finished product, a fully-functional Reverse Polish

Notation (RPN) calculator. This calculator “hacking” project consisted of

four smaller projects that each built upon the previous one. Even though

the end goals at each of the four steps were clear, the openness of the

programming platform allowed for much freedom in terms of how the

given task could be accomplished. As a class, we went over different

groups’ codes, critically examining and discussing what could have been

better or more efficient. Nevertheless, seeing the engineering perspective

behind calculators served as a new experience for both of us,

successfully immersing ourselves in the language of C.

1 Introduction

The HP 20b Business Calculator shown in Figure 1 is a standard business

calculator with special features for financial and business-related applications. In

this course, we explore the possibilities of reprogramming the HP 20b calculator

to perform RPN computations. In the labs leading up to our final product, we

review different groups’ solution to the common objectives presented in each of

the four labs. The calculator code is built and modified in the programming

2

language C, which also serves as a valuable memory conservation because the HP

20b only has 128 kb of flash memory. Under the valuable guidance of Professor

Edwards and Yoonji Shin, we were able to successfully produce a final RPN

calculator product.

 In this report we have included a user guide for our RPN Calculator (Section

2), the social implications of the calculator (Section 3), the platform on which our

calculator was built (Section 4), the software architecture for our calculator

program (Section 5), the details of each lab and the code for each (Section 6), the

lessons we learned throughout the class and our experience with the calculator

(Section 7), and finally our criticisms of the course (Section 8).

Figure 1: HP 20b Calculator
2

3

2 User Guide

2.1 Reverse Polish Notation

 In the simplest of situations, Reverse Polish Notation (RPN) calculators

require a number to be input followed by another and then an operation is then

used to manipulate the two numbers previously input. When inputting expressions

to be solved the operators are input after the numbers. To add two numbers such

as 7 and 5 you would input [7], [5], [+] instead of what one would normally be

used to with the operator in between the two numbers.

2.2 The Stack

 Because RPN calculators need for numbers being input to be saved before

being manipulated, the numbers are stored into a stack of numbers with a

maximum of 10 input numbers. This means that up to 10 numbers may be saved

into the calculator for manipulation. By entering a number and pressing INPUT,

the number is saved into the next available spot on the stack and will be the

number that is manipulated after inputting another number if followed by an

operation key.

2.3 The Keyboard

The keys available for our use on the HP 20b calculator are:

• The 10 number keys labeled 0-9, used to input numbers onto the display

• The 4 operation keys labeled +, −, and × used to indicate operations to be

performed on the numbers previously input

• The key labeled +/− used to change the number being displayed to positive or

negative

• The INPUT key used to save the number being displayed

• The ON/CE key used to turn on the calculator

• The ⇐ key used to erase numbers incorrectly input

4

2.4 The Display

 The Display on the HP 20b calculator is an LCD display with 12 functioning

spaces. It displays the number last input, the result after an operation, the next

number on the stack to be manipulated or some type of error message.

2.5 Using the HP 20b Calculator as an RPN Calculator

 To turn on the calculator simply press the ON/CE key located at the lower left

corner of the keyboard area. To input a number simply press the desired number

keys on the keyboard and the number will come up on the display.

 To start manipulating numbers with the calculator remember that the

operations must be input after the numbers. Here are some examples to

demonstrate how the calculator works.

 Example 1: Adding 3 and 5

1 - Press the [3] key followed by the INPUT key.

2 - Press the [5] key and then press the [+] key. The sum of the two numbers, 8,

should now be displayed on the display

 Example 2: Subtracting 12 from 8

1 - Press the [8] key followed by the INPUT key

2 - Press the [1] and [2] keys followed by the [−] to get the difference, -4

 Example 3: Adding 2 to the product of 3 and 4

1 - Press the [3] key followed by INPUT key

2 - Press the [4] key followed by the [×] key to get 12.

3 - Press the [2] key followed by the [+] key to get 14.

 Example 4: Multiplying 2,3 and 4

1 - Press the [2] key followed by INPUT

2 - Press the [3] key followed by INPUT

3 - Press the [4] key followed by [×] to multiply 4 and 3

4 - Press the [×] key again to multiply that product, 12 by 2 to get 24.

5

 Example 5: (10×3) − (5×2)

1 - Press the [1] and [0] keys followed by INPUT

2 - Press the [3] key and [×] to multiply the two numbers to get 30

3 - Press the [5] key followed by INPUT

4 - Press the [2] and the [×] key to multiply 5 and 2 and get 10

5 - Press the [+] key to then add 10 to 30 and get 30

3 Social Implications

 Calculators such as the HP 20b are used for all kinds of calculations such as

those of a student performing simple calculations to those of scientists calculating

a rocket’s projections through space. Calculators are needed to perform

calculations quickly in many different situations, though our reprogrammed

calculator would not do well in projecting the path of a rocket, it is very useful for

students learning something simple such as the order of operations. Through this

project we see the possibilities of what we can make a simple calculator do by

reprogramming it. The program we created for the calculator is just one small

example of the many things we can do with calculators.

4 The Platform

 The public availability of the HP 20-b calculator’s software development kit

and schematics made it the ideal calculator to reprogram. At the core of this

calculator system is its processor, its LCD display, and its keyboard.
3
 In order to

communicate with the computer, Professor Edwards installed a JTAG header

(seen in Figure 2) onto the back of the calculator. For power, the calculator used

up to two C2302 3V batteries. Using Professor Edwards software foundation for

the calculator, we were able to reprogram the calculator.

4.1 The Processor

 The HP 20-b calculator uses an Atmel AT91SAM7L128 processor, a member

of the 7L series of microcontrollers designed for low power (L). The processor

6

boasts 128 kilobytes of high speed flash memory with 6kb of static random access

memory (SRAM).
1
 The processor operates at a frequency of 36 MHz, yet

consuming just 0.5 mA/MHz when active and 100 nA when powered off.
 1

 Part of

this impressive power saving also comes from the processor’s feature of leaving

unused peripheral components of the calculator unpowered.
1
 The processor

controls the power supply to every peripheral and manages every peripheral’s

power consumption. More details on this processor can be read on the Atmel

website. Figure 3 shows a block diagram of the processor.

4.2 Liquid Crystal Display (LCD)

 The calculator’s LCD display served an important role in the reprogramming

of the HP 20-b calculator. When running our new program, the calculator’s LCD

display was our only means of assessing if our program was truly working

correctly. The LCD features fifteen digit display spaces, each space consisting of

seven segments. Each of the 12 larger displays are separated by periods and

commas while the three smaller ones on the right side are reserved for exponents.

There is also one LCD segment on the very left, reserved for printing the negative

sign for a negative number, but these LCD displays are unused. For our RPN

calculator program, we instead reserve the left-most display space for the negative

sign while 11 digits spaces are used for displaying numbers. For modifying the

LCD, Professor Edwards provided the class with the functions lcd_init,

lcd_put_char7, and lcd_print7. lcd_init initializes the LCD display,

lcd_put_char7 puts a character into one of the 15 displays, and lcd_print7 which

prints a sequence of characters. From lab 1, we add the LCD function

lcd_print_int to put an integer onto the LCD. Figure 4 shows the schematics for

the LCD while Figure 5 shows an example of “HELLO” on the LCD.

7

Figure 2: The Calculator’s JTAG connector (Courtesy of Professor Edwards)

8

Figure 3: The Calculator’s Atmel Microcontroller
1

9

Figure 4: Calculator LCD Layout
2

Figure 5: An Example of Characters on the LCD

10

4.3 Keyboard

 The calculator keyboard works by assigning each key to unique combination

of a column number and a row number, where the key represents where the

column and row intersect. When a key is pressed, the two separated column and

row wires are shorted together, indicating the correct key. Using this information,

we can find the precise key that is entered by a user. Refer to Figure 6 and 7 for

the calculator keyboard layout.

Figure 6: Calculator Keyboard Layout

2

Figure 7: Calculator Keyboard

11

5 Software Architecture

 The functions we used in our RPN calculator program include keyboard_key(),

and keyboard_get_entry(struct). The first method, keyboard_key(), scans the

keyboard to see what key(s) is being pressed. The keyboard_get_entry(struct)

method then returns the number that has been input and the operation key that was

pressed. These are both used in the main method of the RPN calculator lab to

receive instructions from the keyboard to make the calculator function.

6 Software Details

6.1 Lab 1: Getting Started: Hello World (Figure 8)

 In the first lab of four, we were introduced to the importance of embedded

programming for the 10 billion+ prevalent processor chips in our cell phones,

computers, and mp3 players. Our task was to create a function in C that takes an

integer argument and displays it in decimal form on the calculator LCD screen.

For this task, we wrote a helper function in hello.c, the calculator’s main class,

lcd_display_int.

 First, we count the number of digits in the number to be displayed. Then, we

print every digit in the appropriate LCD space up to the number of digits in the

number to be displayed. We reserved the first LCD space for if the number was

negative for the “-“ character. If the number was 0, then we printed a “0”

character in the second LCD space. At the time, it seemed obvious that we would

have to count the number of digits before printing the digits, but looking back, we

realized that it was not necessary to count the digits first if at all if we decided to

print the number aligned to the right side of the calculator. Most calculators that

are used today display numbers aligned to the right side, so going back, we would

have followed that convention.

12

int lcd_display_int (int toDisplay) {

 int digits = 0;

 int x = abs(toDisplay);

 while (x != 0) {

 x = x/10;

 digits++;

 }

 if (toDisplay < 0) {

 lcd_put_char7('-', 0);

 }

 if (toDisplay == 0) {

 lcd_put_char7(‘0’, 1);

 int i;

 for (i=1; i<=digits; i++) {

 lcd_put_char7((abs(toDisplay)%10)+48, digits-i+1);

 toDisplay = toDisplay/10;

 }

 return 0;

}

Figure 8: Our Solution for Lab 1 in hello.c

6.2 Lab 2: Listening to the Keyboard (Figure 9 and 10)

 In this lab our task was to scan the keyboard to check if any key was being

pressed. Initially all of the columns and rows are set to 1. The way to know if a

key was pressed is if a row reads 0 when we have set a column to 0 which means

that the contacts have made contact and have shorted. In our program, within the

keyboard_key method, we created a for loop in which a row is set to low and then

another for loop goes through each row to check if any reads 0. While no key is

pressed the display shows the number 99 in the last two spaces of the display.

When a key is pressed the column number of the key is displayed in place of the

first 9 and the row number is displayed in place of the second 9 on the display.

13

int keyboard_key () {

 int column;

 int row;

 for (column=0; column<7; column++) {

 keyboard_column_low(column);

 for (row=0; row<6; row++) {

 if (!keyboard_row_read(row)) {

 keyboard_column_high(column);

 return (column*10)+row;

 }

 }

 keyboard_column_high(column);

 }

 return -1;

 }

Figure 9: Our Solution for Lab 2, keyboard.c

14

int main()

{

 // Disable the watchdog timer

 *AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

 lcd_init();

 keyboard_init();

 for (;;) {

 int x = keyboard_key();

 if (x == -1) {

 lcd_put_char7('0' + 9, 10);

 lcd_put_char7('0' + 9, 11);

 } else {

 int columnNumber = x/10;

 int rowNumber = x%10;

 lcd_put_char7('0' + columnNumber, 10);

 lcd_put_char7('0' + rowNumber, 11);

 }

 }

 return 0;

}

Figure 10: Our Solution for Lab 2, main.c

15

6.3 Lab 3: Entering and Displaying Numbers (Figures 11, 12, and 13)

 In lab 3, we enabled the calculator to display entered numbers. The infinite

loop in the code keeps the calculator running to find the button that the user

pushes. Different buttons correspond to different meanings, translated by

keyboard_key. Main (see Figure 13) first initializes a struct entry that consists of a

number and an operation. Our function keyboard_get_entry is then called to fill

the struct. Figure 12 shows the code for our keyboard_get_entry function. The

way our solution works is to store the entered digits as an array of integers until

the user enters an operation or the INPUT button. When this happens, we call on

our helper function get_number (see Figure 11) that converts the array of integers

into a full number, which is returned to fill the result struct. The operation button

that the user enters is the operation that fills the result structure. The ‘+/-‘ button

used to negate or de-negate numbers is also used. Each time the button is pushed,

the integer “negative” is switched from 0 to 1 or from 1 to 0. Each time the user

pushes the backspace button, the last digit that they entered is removed from the

number. If the user enters an operation or INPUT before entering a number, the

struct is filled with INT_MAX.

int get_number(int storedNumber[], int lcdPosition, int negative) {

 int number = 0;

 int i;

 for (i = 0; i < lcdPosition; i ++) {

 number = number*10 + storedNumber[i];

 }

 if (negative) {

 number = number * -1;

 }

 return number;

}

Figure 11: Our Solution for Lab 3, Helper Function in keyboard.c

16

void keyboard_get_entry(struct entry *result) {

 int a;

 int didOnce = 0;

 int lcdPosition = 0;

 int storedNumber[10];

 int number;

 int negative = 0;

 lcd_put_char7('0', 1);

 for (;;) {

 while (didOnce != 2) {

 a = keyboard_key();

 if ((didOnce==0) && (a=='0' || a=='1' || a=='2' || a=='3' || a=='4' || a=='5' ||

a=='6' || a=='7' || a=='8' || a=='9')) {

 if (a=='0' && storedNumber[0] == 0) {

 didOnce = 1;

 } else {

 lcd_put_char7(a, lcdPosition +1);

 storedNumber[lcdPosition] = a - '0';

 lcdPosition++;

 didOnce = 1;

 }

 }

 if (a==-1 && didOnce==1) {

 didOnce = 0;

 }

 if (a=='\b' && didOnce == 0) {

 if (lcdPosition > 0) {

 lcd_put_char7(' ', lcdPosition);

Figure 12: Our Solution for Lab 3, keyboard.c

17

 lcdPosition = lcdPosition-1;

 storedNumber[lcdPosition] = 0;

 didOnce = 1;

 }

 }

 if (storedNumber[0] == 0) {

 lcd_put_char7('0', 1);

 }

 if ((didOnce==0) && (a=='+' || a=='-' || a=='*' || a=='/')) {

 if (lcdPosition == 0) {

 number = INT_MAX;

 lcd_print_int(number);

 didOnce = 2;

 }

 else {

 lcd_put_char7(a, 11);

 result->operation = a;

 didOnce = 1;

 }

 }

 if (a=='\r' && didOnce==0) {

 didOnce == 2;

 number = get_number(storedNumber, lcdPosition, negative);

 result->number = number;

 lcd_put_char7('E', 11);

 }

 if (a=='~' && didOnce == 0 && (storedNumber[0] !=0)) {

Figure 12: Our Solution for Lab 3, keyboard.c

18

 if (!negative) {

 lcd_put_char7('-', 0);

 negative = 1;

 didOnce = 1;

 } else {

 lcd_put_char7(' ', 0);

 negative = 0;

 didOnce = 1;

 }

 }

 if (lcdPosition > 9) {

 lcd_init();

 lcd_put_char7('E', 0);

 lcd_put_char7('E', 1);

 didOnce = 2;

 }

 }

 }

}

Figure 12: Our Solution for Lab 3, keyboard.c

19

#include "AT91SAM7L128.h"

#include "lcd.h"

#include "keyboard.h"

int main()

{

 struct entry entry;

 // Disable the watchdog timer

 *AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

 lcd_init();

 keyboard_init();

 keyboard_get_entry(&entry);

 return 0;

}

int keyboard_key(){

 int row, col;

 for (col = 0 ; col < NUM_COLUMNS ; col++) {

 keyboard_column_low(col);

 for (row = 0 ; row < NUM_ROWS ; row++)

 if (!keyboard_row_read(row)) {

 keyboard_column_high(col);

 return keyboard_keys[col][row];

 }

 keyboard_column_high(col);

 }

 return -1;

}

Figure 13: Our Solution for Lab 3, main and keyboard_key

20

6.4 Lab 4: An RPN Calculator (Figure 14)

 Our goal for lab 4 was to make our calculator work as an RPN calculator. The

calculator functions are all written right into the main method shown in Figure 14

below. The first thing we have in our code is the max stack size being defined as

10. In our infinite for loop, the first check, in the form of a while loop, is that the

index on the stack is still within the stack. If the index goes past the stack size it

returns an error message “Overflow” and moves the index back so you can input

the last number again without saving it into the stack or just editing the two

previous numbers in the stack.

 Once in the while loop, keyboard_get_entry(&entry) is run. The program then

checks for a number having been pressed before INPUT and makes sure that

INT_MAX is not accidentally saved into the stack by returning an “ERROR”

message and letting you input a new number. In the else portion the program goes

into another if statement that once again makes sure that INT_MAX isn’t saved

into the stack and moves the index back one so that after inputting more than two

numbers, the user can just press multiple operation keys and still have it work

correctly with the previous numbers. If the number returned was not INT_MAX

then the number is saved into the stack.

 The next thing that comes up is the switch which then goes into the specific

case according to the operation key pressed and manipulates the numbers. The

number is then printed instantaneously and the program should then go back to

the beginning of the for loop and continue running smoothly through the while

loop and continuing to run once keyboard_get_entry return its struct from the user

input.

21

#include "AT91SAM7L128.h"

#include "lcd.h"

#include "keyboard.h"

#define STACK_SIZE 10

int main() {

 *AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

 lcd_init();

 keyboard_init();

 struct entry entry;

 int stack[STACK_SIZE];

 int index = 0;

 lcd_put_char7('0', 11);

 for (;;) {

 while (index < STACK_SIZE) {

 keyboard_get_entry(&entry);

 if (entry.number == INT_MAX && entry.operation == '\r') {

 lcd_print7("ERROR");

 } else {

 if (entry.number == INT_MAX) {

 index--;

 lcd_print_int(stack[index]);

 } else {

 stack[index] = entry.number;

 }

Figure 14: Our Solution for Lab 4, main

22

 if (index > 1) {

 switch (entry.operation) {

 case '\r':

 break;

 case '+':

 index--;

 stack[index] = stack[index] + stack[index+1];

 break;

 case '-':

 index--;

 stack[index] = stack[index] - stack[index+1];

 break;

 case '*':

 index--;

 stack[index] = stack[index] * stack[index+1];

 break;

 }

 } else {

 lcd_print7("ERROR");

 }

 lcd_print_int(stack[index]);

 index++;

 }

 }

 lcd_print7("Overflow");

 index = 9;

 }

}

Figure 14: Our Solution for Lab 4, main

23

7 Lessons Learned

 The most important lesson we learned over the course of this semester was the

importance of taking advantage of guidance when you have it. Even though we

were allowed equal access to the computer lab and calculators as other groups,

our group fell a little short of time for completing the final fourth lab. While it

was not procrastination or a lack of concentration that caused this, we do believe

that it was our lack of fully taking advantage of the guidance the class offered.

This behavior included not being able to go to class because of sickness,

accidentally sleeping through a class, and not asking for help as often as we

should when we could. As a consequence, we had to borrow a calculator from

Professor Edwards after the last lab session and finish the last lab outside of class.

Although we finished in the end, it took several more hours outside of class than it

would have taken in class to finish the fourth and final lab.

 We also learned the power of thinking through the design of the code on paper

before coding it onto the computer. For some of the labs, because we began

writing code before planning anything out, we wouldn’t realize very inefficient

problems in our code until much later. When we were stuck and had to debug, we

would often lose track of where and what we were doing because we had no

direction in the beginning.

8 Criticisms of the Course

 There aren’t too many things that can be criticized about the course. Professor

Edwards’ website was very helpful in providing the sufficient resources to begin

the course. As people enter the lab with mixed computer science experience, it

was a little harder for those unfamiliar with C to complete each of the labs. This is

not to say a bad thing, however, as we learn the most when we are the most

24

challenged. The “Shotgun Intro to C” presentation was an especially helpful

resource for getting through the labs. More so than anything, however, the active

supervision and accessible help of Professor Edwards and Yoonji was what really

made the lab valuable and worthwhile. The release of the next lab pushed those

who hadn’t finished yet to hurry up while giving those ahead of the game another

“game” to play. Each group worked at a different pace, and the handling of this

fact was handled quite well, from our group’s perspective. Ultimately, the purpose

of the lab was to challenge us in the realm of computer science while giving us a

little bit of experience with C. The class accomplished this goal well and we look

forward to more awesome computer science projects in the future.

9 References

[1] At91 arm thumb-based microcontroller preliminary. Online

http://www.atmel.com/dyn/resources/prod_documents/doc6257.pdf,

February 2008.

[2] Hp-20b business consultant financial calculator manual. Online

http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b

_Online_Manual.pdf.

[3] Hp-20b. Online http://en.wikipedia.org/wiki/HP_20b.

