Programming a
Calculator

-Ashley Kling (ask2203), Joseph Thompson (jot2102), Phillip Godzin (pgg2105)

T h o H P 2 0 b . HP 20b Business Consultant @j

e Oiriginally 2 line display

"N | YR pv

e Useris able to toggle RPN - RS
on and off Cshfll IRR| NPV,

e Calculator is often | N EE
repurposed and T
reprogrammed due to open R) L

software.

e uses Atmel AT91SAM7L128
30 MHz processor

Figure 2-1. ATE1SAMTLIZE S Block Disgram

i

g

T - |
= s] == AT DR g,
T — TAD R o
T (=L et T
2Tkl e,
[Eora]
= T S
AT - s
WT = o oy 0Dl PG o
—— |
e —
L - b
e AT - L= vl mge
- = -
- Pl -
o
(B '
- Soan
L EE e L P - A
:.:JT_':_ —f] & Iy S T
F- TR
\ el Srash
i == e R
Sy
WImD [=1 [=—, 5,1
T e
Pl Dad
st | i
1! Srerrsein
Rl it
==l
AEE
i
=it
o
& F (- PG —
oT=D
T e
e o =
L el |
O 2 D Tt
Tod - =
ROS3d D =
230 [=
s £l = o
G- whan e I
Il‘”'l-’:-!:t'\-l - - EEI
LD ool S =
- -
L Hz EE
[=] - [
Sl EaETO il =
A e L =
Fm = =]
™ i
ot =
' '
Tiir b= LEART -
e o] -
=
cTa
an =

Reverse Polish Notation

e First commercially available in 1963
e Parenthesis and brackets are unnecessary

e Instead has operations follow the numbers
they are operating on

Features of RPN

e Makes use of a stack to store operands
e Each operator only works on two numbers

e Automatic storage of results allows for more
complicated operations

e Operations cause calculations to occur
Immediately

image of kdfp from: http://www.chezfred.org.uk

Exa m I e image of hp 35 from: http://www.thimet.
de/calccollection/calculators/HP-35/Contents.htm

(1+2)*3+4 1s 1,2+3*4+ . Evaluate to 13.
1+2*(3+4) turns to 1,2,3,4+*+ . Evaluate to 15

More on the stacks

/\‘+ :

B
A A+ B
4 4 4(A + B)

image from: http://www.theteacher.
info/websites/ocr/WebPages/F453 Advanced/ConvertPolish/ConvertPolish.html

Here is a demonstration of the stacks for the
operation 4(A+B).

isplay

D

Lab 1

e Number appears on right side

Ive

e Create a counter to keep track of negat

void display(int num) La b 1
{

clearScreen(); //gets rid of any current values on the screen
int temp = num;
const int ASCII = 48; // the ASCII value of 0 to be able to use numbers as chars
inti = 0; // used for index
int remainder = 0O; // holds a single digit
/[If the number is 0, print it out and exit
if (temp == 0){
lcd_put_char7('0', 11);
return;
Y
/l Turns a negative number into a positive number
if (num < 0)
num = -num;
while(num!=0)
{
remainder = num % 10; // the last digit of num
lcd_put_char7(remainder + ASCII, 11-i); // places digit in rightmost available index
num = num/10; // Divides number by 10 for the next iteration
i++;
Y
/I If the original number is negative, place a minus sign at the index immediately to the left of the first
digit
if (temp < 0)
lcd_put_char7('-', 11-i);

Lab 2

To figure out what is pressed:

e Set all columns high

e Set column you want to test low

e Loop through rows. If a row is low, that is the
button being pressed

e The pressed key's row and column numbers
are returned

Other implementations:

e 2d matrix for integers
e Defined operations above the 2d matrixes

ROWT o

ROW3 o

ROWS o

ROW[:5)

couas <

ONOFF

: I% PMT
—oﬂi_) —o_sﬁ N _Oﬂii_ i _0_834_ —o_sgs_) —o_sgs_
- 1 i 7] "]
caa | o CshFI| = IRR | o Npv | omw Bond| san ¥ [=
- 1] | | 1]
coxt =) INPUT | =Mw ()] A=) | m= +/-]| .o <_
=52] i . i
coz _sme Up | sas 7 _sm= S 9 sz
. — O—l — Dj — Oj — Dj — O—l
e | == DOWN | Swee 4 | == 5| == € | == X
-] 1] 1]
cou _O_sgg SHIFT _o_sga 1] _o_“EE 2 _o_”ﬁﬂ 3 _O_"’EE -
- 1 |] =]
b A2 ON/CE [= 0 | == | = = | == +
o 1] 1]

Lab 2- Finding Pressed Keys

int keyboard_key()
{
intc = 0;
intr=0;

for(c; c<7; ct++)
{
r=0;
keyboard_column_low(c);
for(r; r<6; r++)
{
if('keyboard_row_read(r))
{
return key[c][r];
}
}
keyboard_column_high(c);
Y
return NOTHING; // Nothing pressed

}

Lab 2- Other

#define X 99 // Nothing important is pressed
Il The following buttons are pressed
#define INPUT 16

#define NEGATE 19

#define RETURN 20

#define DIVIDE 15

#define MULTIPLY 14

#define SUBTRACT 13

#define PLUS 12

#define EQUALS 11

/12D matrix representing the rows and columns of the keyboard
int const key[7][6] = {

XXX X, X, XY,

XXX X, X, XY,

{INPUT, X, X, NEGATE, RETURN, X},

{X, 7, 8,9, DIVIDE, X},

{X, 4, 5, 6, MULTIPLY, X},

{X, 1, 2, 3, SUBTRACT, X},

{X, 0, X, EQUALS, PLUS, X}

I3

Lab 3 - Storing number and operation

e Used a boolean to differentiate between a number
and a function being pressed

e The number and operation pressed are stored in a
structure

e |[f the +/- key is pressed, a variable that is initially 1
IS multiplied by -1, then later the number is
multiplied by that variable

e If no number is pressed before an operation is
pressed, the max integer is returned.

e Numbers that are entered are printed on screen as
they are pressed

Lab 3

void keyboard _get entry(struct entry *result)

{

int num_pressed = 0; //boolean to see if an operation was pressed before a number
int pos = 1; //determines if number is positive or negative: mult by -1 when +/- is
pressed
int tempOp ="
result->operation ="'"; //Initially no operation
result->number = 0;
int keyPressed; //Stores the current key being pressed
while(((*result).operation =="")) //While operation + input has not been pressed
{
keyPressed = keyboard_key();
if(keyPressed == NEGATE) //toggle sign of the number
pos *= -1;
if(keyPressed >= 0 && keyPressed < 10 && (*result).number < INT_MAX/ 10)
//Inumber is being pressed
{
result->number = (*result).number * 10 + keyPressed;
num_pressed = 1; // a number has been pressed

}

else if (keyPressed >= PLUS && keyPressed <= DIVIDE) //operation being pressed
{

}
if(keyPressed == INPUT){
result->operation = tempOp; //only set the operation once input has been pressed
if(num_pressed == 0) //no number has been pressed
result->number = INT_MAX;
else
result->number = (*result).number * pos;

tempOp = keyPressed; //store operation

}
if((*result).number != INT_MAX)

lcd_print_int((*result).number);
else if ((*result).number == INT_MAX){
lcd_put_char7('M',9);
lcd_put_char7('A',10);
lcd_put_char7('X',11);

Lab 4

e One pointer to the open space in an array
with the lowest index
o used to emulate a stack, in which numbers, both
iInputted and calculated are stored

o to stay true to the original implementation of the
calculator, the array has a size of 4

e +, - * and/ functions implemented
o when a function is pressed, the operation is

Immediately applied to the two numbers nearest to
the stack pointer

keyboard get entry is changed to accommodate a number and input being
pressed without an operation pressed

else if (keyPressed >= INPUT && keyPressed <= DIVIDE) //operation being pressed
{
result->operation = keyPressed;
if(num_pressed == 0) //no number has been pressed
result->number = INT_MAX;
else
result->number = (*result).number * pos;

Populating stack and executing
operations:

In main.c: void executeOp(int op, int stack[], int stack_size)
. _ {
!nt S:aCE[ES]_, i int num1 = stack[stack_size-2];
Int stack_size = 0; int num2 = stack[stack_size-1];
while(stack_size < 6){ int result = 0-
keyboard_get_entry(&entry); i (op == PLUS)
if(entry.number != INT_MAX) result = num1+numa2:
{ else if (op == SUBTRACT)

stack[stack_size] = entry.number;

stack size++: result = num1-num2;

else if (op == MULTIPLY)

} = * 0
if(entry.operation != INPUT) e|Sr: Tfu(ll:)p Qirg:VT;rEn)z |

execute_Op(entry.operatlon, stack, result = num1/numz2;
stack_size); A4
stack_size--;

i stack[stack_size] = result;
lcd_print_int(result);

Skills Gained

e Ability to communicate semi-effectively
e Dividing problems into independent chunks
e Integration of hardware and software

e \Working with colleagues who possess
varying levels of programming skill

e Check your wires!

