THE AWESOME GUITAR GAME

Project Report

Embedded System Design
CSEE 4840

Spring 2012 Semester

Academic supervisor: Professor Stephen Edwards

Imré Frotier de la Messeliere (imf2108)

Front page picture source: imf2108.

Acknowledgements

I wish to thank Professor Stephen Edwards for all his help throughout this project
and for making this work an instructive and enjoyable experience.

Contents

Introduction

1 Overview of the project and its objectives

1.1

1.2

Revised version of the Project proposal
1.1.1 Project Introduction
1.1.2 ProjectDesign
1.1.3 Milestones
Objectives of the project

2 Project Design Document

2.1
22
23

24

25

Abstracto
Project Design Introduction,
Hardware Implementation
2.3.1 AlteraDE2FPGA
2.3.2 Game Guitar and input controller
2.3.3 Audio format and memory dimensioning
234 Videocontroller
Software Implementation,
2.4.1 The NIOS program: game loop and event handling
242 Beattracking e
2.4.3 Representationof thenotes
Milestones e e

3 Milestones of the Project

3.1
3.2
33
34
3.5

Milestone 1: March27th
Milestone 2: April 10th L L.
Milestone 3: April 24th L
Final run, partone: May 23rd
Final run, part two: September 30th

4 Discussion of the architectural and timing design

4.1

4.2

43

4.4

Architecturaldesign oL oo
4.1.1 MATLABcode
412 PYTHONcode
413 NIOSIICcode
4.14 QUARTUS VHDLcode
Timing design L
4.2.1 Extractionofthebeats
Correct timing of thebeats
4.3.1 Use of interruptions to indicate that the guitar has been pressed
Additional tracksof study oL
4.4.1 Alternative beats handling system
442 Storageofthesong
443 Playingthesong
4.4.4 Video display using sprites

17
17
17
17
17
17

Hardware

5.1 FPGA e
52 GameGuitar. e
5.3 VGAdisplay e
Experiences and issues in implementation

6.1 Playingthesong.
6.2 Storageusingthe SDRAM
6.3 Bugssolving
6.4 Merging several parts of the project

Summary including lessons learned

7.1 Summary of the project L.
7.2 Lessonslearned
7.3 Some advice for future projects

Listing of all source code

8.1 MATLABsourcecodeuu.o...
8.2 PYTHONssourcecode ou.no...
83 Csourcecode e e e
84 VHDLsourcecode

Conclusion
Bibliography

Annexes

MATLAB sourcecode i
beatavg.m
beatm
calclistftrsom
chromagram_Em oo
chromagram_IFm
chromagram_Pm Lo L.
chrombeatftrs.m
chromnorm.m
chrompwr.m e
chromrot.m
chromxcorrrm
coverDistMxLists.m
coverTestlists.m
distmatriXwrite.m e e e e e e e
fexistm
fft2chromamx.m
ffmelmx.m
history-bragg-autoco.m
history-golddust-xcorrm L
hz2octs.m
ifgramm.
ifptrackm
listfileread.m

34
34
34
36

37
37
37
37
37

39
39
39
40

41
41
42
42
42

45

46

listfilewrite.m 54

localmax.m 55
mkblips.m . .. L. 55
mp3read.m e 55
mymkdirm 59
octs2hz.m L e 60
EMPOIN .« o o v vt e e e e e e e 60
testlistm L 61
eSEM . . . L . e e e e e 63
PYTHON sourcecode, 63
tOHEXAITAY.PY - -« o v v o o e e e 63
encode.py 63
randomize.py oo e e 64
shortest_time_dist.py 64
Csourcecode e 65
HelloWorld.c 65
VHDL sourcecode 67
AWESOME_GUITAR.qpf 67
AWESOME_GUITAR.QWS v v oo e e e e oo 67
AWESOME_GUITAR_TOPdpf 67
AWESOME_GUITAR_TOPjdi 68
AWESOME_GUITAR_TOPqsf 68
AWESOME_GUITAR_TOPsof 68
counter.vhd L 68
CPULOCD + v v v e e e e e e e e e e e e e e e e 68
cpu.vhd . . .o 68
cpu_jtag_debug_module.vhdo 69
cpu_jtag_debug_module_wrapper.vhdo 69
cpu_ociram_default_contents.mif 69
cpu_rf_rammif L 69
cpu_test_ bench.vhd Lo oo 69
DebounceCounter.vhd L. 69
debouncer.vhd 69
de2_i2c_av_config.v 70
de2_i2c_controller.v 72
de2_sram_controller.vhd oo, 74
de2 _sram_controller hw.tel 74
de2 wm8731 audio.vhd 75
guitar_top.vhd Lo 75
InputController.vhd 77
InputController_hw.tcl 80
InputController_inst.vhd oL 80
InputController2_inst.vhd oL oL 81
InputController3_inst.vhd o oL 82
InputController4_inst.vhd oL 83
InputControllerS_inst.vhd Lo 84
InputController6_inst.vhd oo 85
jtag_uart.vhd Lo oL 86
nios_system.bsf oo 86
nios_system.ptf 86

NOS_SYSteM.QIP « « -+« o v o e e e e 86

NIOS_SYSTEMLSOPC . & v v v v v v e e e e e e e e e e 87
nios_system_generation_script 87
nios_system_log.txt Lo 87
nios_system.ptf.pre_generation_ptf 0oL L. 88
nios_system_setup_quartus.tcl 88
pulser.vhd 88
sopc_builder_log.txt 89
stam.vhd L 89
timer.vhdo 90
timer.vhdl 93
timer_hw.tcl 94
timer_inst.vhd 94

Introduction

This report gives an account of my work during the Embedded System Design
class of the Spring 2012 semester. It focuses on the description of my class project: the
Awesome Guitar Game, aka TAGG. I have worked on this project all semester long,
beginning with the Project Proposal and the Project Design documents, then learning
the necessary skills to realize it throughout the laboratory assignments of the class, and
finishing by implementing the project itself.

The Awesome Guitar Game is based on the same principle as in the famous "Guitar
Hero" video game series[32]. TAGG is an interactive game where the user can play a
game guitar to match up the notes as displayed on the screen. The display continuously
reflects that the note has been or has not been correctly played. Most of the technical
aspects of this project have been realized based on Professor Stephen Edwards’ class
documentation and tutorials[23].

In section 1 of the report, I shall present an overview of the project and its ob-
jectives. Then, in section 2, I will give more information about the project design
document. Section 3 will be dedicated to the milestones of the project and section 4 to
a discussion of the architectural and timing design. Section 5 focuses on the hardware
used in this project. Then section 6 will be related to the experiences and issues in im-
plementation, while section 7 will be a summary of the project, including the lessons
that I learned. Finally, section 8 contains a listing of all source code.

1 Overview of the project and its objectives

In this section, I shall present an overview of my project, including a revised version
of my project proposal.

1.1 Revised version of the Project proposal
1.1.1 Project Introduction

In this project, I implement an interactive game where the user can play a game
guitar to match up the notes as displayed on the screen. The game principle is the same
as in the famous "Guitar Hero" video game series[32].

1.1.2 Project Design

I implement the project using an Altera DE2 board, a game guitar, a VGA display
and a pair of speakers.

Altera DE2 Development and Education board and Game Guitar

(altera.com/education/univ/ima; s/b 2.jpg: i14.ebayimg.com/01/i/001/22/73/0b2412.JPG)

When the user starts the game, the screen displays a stream of notes. If the user
presses the correct button at the correct instant, his score is increased. To make the user
even more involved, the display will reflect that the note has been correctly played. The
implementation is done on VHDL and C. I have five buttons on the game guitar which
are connected to the GPIOs of the FPGA.

1.1.3 Milestones

Please refer to section 3: Milestones of the Project.

1.2 Objectives of the project
The global objectives of the project are:
e building the hardware for the Game Guitar,

e developing the VHDL and C software,

e having the game running.

More precisely, these objectives can be described as follows:

Build the hardware for the Game Guitar

Detect the input of the game guitar

Extract the beats of a song

Ask for the correct key presses, based on the beats

Analyze the correctness of the key presses of the player

Keep track of the score

10

2 Project Design Document

In this section, I present the detailed project design documents, which are a revised
version of the project design document submitted earlier during the year.

2.1 Abstract

This document describes my preliminary project design implementation based on
my research at the time when this document was due. In this project, I implement
an interactive game where the user can play a game guitar to match up the notes as
displayed on a screen. The expected music will be played in the background and the
score will grow higher whenever the user presses the correct key. For this project, |
will use an Altera DE2 board, a NIOS II processor, a game guitar, a VGA display and
a pair of speakers.

2.2 Project Design Introduction

This game is inspired by the Guitar Hero video game series [32]. I use a Guitar
Hero controller for PlayStation 2 to serve as the "game guitar", it has 5 colored buttons
as well as a button to simulate the action on the guitar string. When the user starts
the game, he will hear the music. The screen will display a stream of notes. If the
user presses the correct button at the correct instant, his score is increased. To make the
user even more involved, the display will reflect that the note has been correctly played.

The implementation of this project will be done on an Altera DE2 board. I will use
a NIOS II software processor as the central element of my design, and will write pro-
grams in C for this processor. The processor will interact with modules implemented
in VHDL.

2.3 Hardware Implementation
2.3.1 Altera DE2 FPGA

The Altera DE2 FPGA will be used to include a NIOS II processor, that will interact
with several controllers.

Altera DE2 Development and Education board

(altera.c ges 2.jpg)

11

It is the central point of my design as it:
e gets the user input through the game guitar,
e contains all the information needed for the game.

The NIOS interacts through an Avalon Bus with the controllers.

2.3.2 Game Guitar and input controller

Game Guitar

(i14.ebayimg.com/01/i/001/22/73/0b2412.JPG)

As said before, I use a Guitar Hero controller for PlayStation 2 as my game guitar.
The game guitar is used to get the user input in an enjoyable way for the player. When
this document was first released, I didn’t know at that point how the guitar would be
connected to the FPGA board. So I would open it and figure that out during the first
milestone.

The controller will take the input from the the 5 buttons and when the string button
is pressed it updates a memory location assigned to it with the color button pressed
and sends an interruption to the processor. The interruption is caught and the click is
processed. The processor then clears the memory location and the interruption. I will
filter for the button bouncing effect at the controller level, not at software level.

The connection from the guitar to the board will be one of following solutions:

1. Using a custom cable that maps every button on a single wire using GPIOs
2. Reusing whatever I could find in the guitar: USB, RS 232 or whatever I will find
inside the guitar
2.3.3 Audio format and memory dimensioning

WARNING: This part did not make it to the final version of the project. However,
it has involved a consequent amount of work. This is why I wish to keep mentioning it
here.

The song is stored in the SDRAM in Binary format. It is sampled down from a
sampling rate of 44.1Khz to 8 Khz in order to reduce the memory requirements for

12

each song. I tested that the song still sounds good at a sampling rate of 8Khz. Every
sample is represented on a 8 bits scale. The total memory requirements of a 3 minutes
song are 1.44 MB(3*60*1*8000 bytes). This order of magnitude suggests that we use
the SDRAM (I need more than the SRAM and less than the SDCARD.). I will therefore
be able to store a few songs.

I will use the SRAM to store the sprites and the beats. I will have at maximum 5
sprites of 32x32x8 bit (monochromatic sprites): Skbytes. The size of the beats binary
stream is not fixed as of now. More details are given at the end of this document in the
section “Representation of the notes”.

2.3.4 Video controller

WARNING: This part did not make it to the final version of the project. However,
it has involved a consequent amount of work. This is why I wish to keep mentioning it
here.

The video controller is in charge of displaying the sprites on the screen. It is con-
trolled by the processor with the following commands:

e Add a sprite with as parameter the color and the id
e Clear the sprite list

The video controller has a dedicated SRAM for the sprite. I will take as a model the
video controller in the Nintendo NES. I aim at a sprite stack of size 4 (4 sprites in the
same line maximum). I will have 4 custom sprites for the project: for the note, the note
pressed, the note rightly pressed and the background. I will have sprites for the text
and numbers in the same fashion than LAB2.

2.4 Software Implementation
2.4.1 The NIOS program: game loop and event handling

The program that runs on the NIOS processor will be in charge of the Main Game
loop, which is a concept that is generally used in video games. It will rely on a timer
either as an Avalon Peripheral or a component of the NIOS processor if available to
ensure a constant frame rate.

Meanwhile, the program could be interrupted to deal with key presses. Every time
a key is pressed, a visual feedback is given for the few next frames and the new score
is immediately computed.

WARNING: The following part did not make it to the final version of the project.
However, it has involved a consequent amount of work. This is why I wish to keep

mentioning it here.

The graphical interface will look like the following:

13

SCORE: 20

14

Every iteration of the main loop, I will update the display by computing the new
positions of the falling notes.

2.4.2 Beat tracking

The instants at which the notes appear on the screen are not random events.They
are synchronized with the beats in the song so as to give a more natural effect.The beats
of the song are extracted by a Beat Tracking Algorithm I implemented in Matlab. [35]
These beat instances are saved as a .txt file for further usage. They are extracted once
and for all so that we do not need to use Matlab when running my game.

2.4.3 Representation of the notes

WARNING: This part did not make it to the final version of the project. However,
it has involved a consequent amount of work. This is why I wish to keep mentioning it
here.

After having run the beat tracking algorithm on Matlab we obtain a text file that
contains n notes n;, with ¢ in [0;n — 1]. Each note is characterized by a color and a
timestamp when it is played. To transfer the beats in the FPGA, we will convert this
text file into a binary format.

I built it inspired by domain specific binary format such as ILDA for laser shows [31].

The binary "stream" associated with a song is made of a header (metadata) and the
notes. The header contains:

e the id of the song on 1 byte,

e the number of notes in the song on 2 bytes. 2 bytes seem reasonable based on
the number of beats we detect per song in matlab (roughly 400 so 256 = 1 byte
is too low).

Following the header we have the notes. Each note is characterized by:

e its "color” on 1 byte. I take more than 3 bits (which is the minimal bound to
represent the 5 colors of my guitar’s buttons) since I might add new information
later. I also go for it to remain consistent with the rest: every field is made of one
or more bytes

e its timestamp on m bytes

I haven’t yet determined m but to do it I will do some experiments. I will start by
finding u integer such as ¢/2% < tin < t/2% — 1 with ¢,,;,, the minimum space in
seconds between two following beats in the note list and ¢ a constant which represents
the maximum length of a song we permit in seconds. I will then choose m such as the
multiple of 8 (a byte) 8*m that comes after u. If it happens not to be precise enough in
practice, I will increase the value of m.

To compute the binary stream from the output of the Matlab algorithm:
e [set the song id and write it in one byte.

e I discretise all the timestamps to the closer multiple of #/2%m and store these
values.

15

e Once it is done, I know the number of notes; I write it in the binary stream in two
bytes.

e [write the notes one by one in the binary stream following the right format.

2.5 Milestones

Please see section 3: Milestones of the Project.

16

3 Milestones of the Project

In this section, I provide the details of the three milestones of the project.

3.1 Milestone 1: March 27th
e [will buy and construct the game guitar.
e [shall detect key inputs with the game guitar.
o [will play a song (raw sound format) from a SD card in the FPGA.

e [will develop a program to build a script of a given song. This means, to produce
a file that contains the notes and their corresponding positions for this particular
song.

e [shall finally make a prototype of the base game engine in Java.

3.2 Milestone 2: April 10th

o | will work on the sprites and study how to do graphics and how to encode the
sound efficiently (how many bits, how much information I can store...).

e The Java game prototype will integrate the work on scripts from the first mile-
stone.

o I shall have designed the game internal functioning to ensure a constant frame
rate (on paper).

e [will have started implementing the game.

3.3 Milestone 3: April 24th
e [shall finalize the game.
e [will develop an algorithm to compute the score.

e [shall improve the performance of the game and work on the graphics.

3.4 Final run, part one: May 23rd
o | finished coding the VHDL files.

e [finished coding the C files.

3.5 Final run, part two: September 30th
e [finished writing the project report.

e [finished creating the project presentation.

17

4 Discussion of the architectural and timing design

In this section, I present the final version of the Awesome Guitar Game.

4.1 Architectural design
4.1.1 MATLAB code

This code extracts the beats out of a song. It comes from LabRosa. It is run and
stored beforehand in the project. More precisely, given a mp3 song, the MATLAB code
extracts the beats of the song and stores them in a text file. This text file is then being
processed by a PYTHON code that converts it to a format recognizable in C.

Here is an excerpt of the README for LabROSA-coversongID.
"See http://labrosa.ee.columbia.edu/projects/coversongs/ for more info."
"Key functions:

e t=tempo(d,sr); estimates the tempo in BPM of audio waveform d at sample rate
st

e b = beat(d,sr); estimates the beat times (in sec) of audio waveform d at sample
rate sr

o glist = calclistftrs(querylistfilename); calculates beat-synchronous chroma fea-
ture matrices for all the wav or mp3 files listed, one per line, in the named file,
returning a list of calculated feature files, then...

e R = coverTestLists(qlist); compares each feature file named in the glist against
every item and returns R as a square matrix of distance between each pair."

4.1.2 PYTHON code

This code stores into a new format the songs that have been preprocessed through
MATLAB so that they may be readable inside the VHDL project:

o toHexArray.py

e encode.py

randomize.py

shortest_time_dist.py

4.1.3 NIOSII C code
The main code of the NIOS II[1 2][| 1] C program is the following:

e hello_world.c

18

It enables to control the beats and to keep track of the score of the user. The related
console serves as a visual display for the game where the player can see which note he
is supposed to play and what his current score is.

I set the displayed key each time val is incremented.

static void irghandler (void % context, alt_u32 id)
val ++;
key = 1;
TOWR_8DIRECT (INPUTCONTROLLER_INST_BASE, 0, 0); // reset request
}

This is where I store the beats I extracted earlier with MATLAB:
int beats[] = {0x00b4,0x00c8,0x00£0,0x0116,0x0141,0x016a,0x0193,0x01bb,

é;u';b 71, 0x4b98, 0x4bc0, 0x4be6, 0x4c0d, 0x4c33, 0x4c5d, 0x4c82, Oxdcad, Oxdcd7};

This is the interruption detection function:
static void input_isr (voids context, alt_u32 id){

valz++;

TOWR_16DIRECT (INPUTCONTROLLER_INST_BASE, 0,0);

return;

}
The following is part of the main():
int main() {
This is how I register the interruptions:
IOWR_8DIRECT (INPUTCONTROLLER_INST_BASE, 0, 0);
alt_irg register (INPUTCONTROLLER_INST_IRQ, NULL, (voidx)irghandler); // register the irg
This is the beats counter:

int counter = 0;

This indicates the success or failure to press the correct key on time:
int flag = 0;

This stores the value of the current key:

int val_buffer = val;
int key_buffer = floor (rand(5));

This keeps track of the score:

int score = 0;

We have now reached the core of the game:
while (counter<540) {

If the correct key still hasn’t been pressed:

if (flag!=1){
if (val>val_buffer) {

This is the case of a successful key press:

if (key==key_buffer) {
flag = 1;
score = score+l;
printf ("SUCCESS: SCORE %d",score);}}}

if (beat_counter>=(beats[counter])*3) {

That is the case of a failure to match a note in time:

if (flag == 0){

printf ("FAIL: SCORE %d",score);}

I then reset the variables:

flag = 0;
val_buffer = val;

19

The game asks for a new specific key press:
key_buffer = floor (l+rand()%5);
printf ("PRESS %d",key_buffer);
counter=counter+1;
i
The game is finished once all the beats have been read:

printf ("FINISHED!") ;

return 0; }

20

4.1.4 QUARTUS VHDL code

Here I present the different sets of modules in my VHDL project[30][29][36][3] on
QUARTUS[A][13][14] [101[16][25][26]

These are the architecture files of the project[15][5][24]:

® nios_system.sopc

e nios_system.vhd

This is the main module of the project:

e guitar_top.vhd

Here is a closer look at its contents:

entity guitar_top is

port (
signal CLOCK_50 : in std_logic;

SRAM_DQ : inout std_logic_vector (15 downto 0);
SRAM_ADDR : out std_logic_vector (17 downto 0);

This stores the current key:

KEY : in std_logic_vector (3 downto 0);

SRAM_UB_N,

SRAM_OE_N : out std_logic ;

These are the links to the Game Guitar:
GPIO_0, - GPIO Connection 0
GPIO_1 : inout std_logic_vector (35 downto 0) - GPIO Connection 1
)i

end guitar_top;
architecture datapath of guitar_top is

signal reset_n :std_logic;
signal new_res:std_logic;

signal audio_clock : unsigned(l downto 0) := "00";
signal counter : unsigned(15 downto 0);
begin

process (CLOCK_50)
begin
if rising_edge (CLOCK_50) then
if counter = x"ffff" then

reset_n <= ’'1’;
else

reset_n <= '0’;
counter <= counter + 1;
end if;

end if;

end process;

process (CLOCK_50)
begin
if rising_edge (CLOCK_50) then
audio_clock <= audio_clock + "1";
end if;
end process;

nios : entity work.nios_system port map (
clk => CLOCK_50,
reset_n => reset_n,
SRAM_ADDR_from_the_sram => SRAM_ADDR,
SRAM_CE_N_from_the_sram => SRAM_CE_N,
SRAM_DQ_to_and_from_the_sram => SRAM DQ,
SRAM_LB_N_from_the_sram => SRAM_LB_N,
SRAM_OE_N_from_the_sram => SRAM OE_N,
SRAM_UB_N_from_the_sram => SRAM UB_N,
SRAM_WE_N_from_the_sram => SRAM_WE_N,

21

These are the links to Game Guitar key presses:

SWITCH_1_to_the_InputController_inst => GPIO_0(0),
SWITCH_2_to_the_InputController_inst => GPIO_0(1) ,
SWITCH_3_to_the_InputController_inst => GPIO_0(2) ,
SWITCH_4_to_the_InputController_inst => GPIO_0(3),
SWITCH_5_to_the_TInputController_inst => GPIO_0(4)

)i
end datapath;

These modules enable to get the key presses from the user:
e counter.vhd

e DebounceCounter.vhd

e debouncer.vhd

e pulser.vhd

These are the key features of the file counter.vhd:

entity counter is

port
(
-Synchronous reset

reset : in std_logic;
clk: in std_logic;

do: out unsigned(31 downto 0);
di : in unsigned (31 downto 0)

)i

end counter;

architecture arl of counter is

signal value : unsigned(31 downto 0);
begin

process (clk)

begin

if (rising_edge (clk)) then
The value of the counter is modified at each time click:
if(reset='1")

then

value <= dij;

else

value <= value -1;

end if;

end if;

end process;
do <= value;
end arl;

~copy value to the output

Now, I present the key features of debouncer.vhd:

entity debouncer is

port
clk : in
key_in :
key_out :
reset :

(
std_logic;
in std_logic;
out std_logic;
in std_logic

)i
end debouncer;

architecture arl of debouncer is

"states" defines the different configurations that describe the current state of a but-
ton and its next state:

type states is (ZERO, ZERO_TO_ONE, ONE, ONE_TO_ZERO);

"states" thus enables me to define “state” and “next_state”:

signal state, next_state : states;
signal do : unsigned(18 downto 0);
signal reset_counter: std_logic; -to reset the counter
begin

22

CO: entity work.DebounceCounter port map (

clk => clk,
reset => reset_counter,
do => do);

-FSM Strandard next_state => state
process (clk)
begin
if (rising_edge (clk)) then
if(reset="1")
then
state <= ZERO;
else
state <= next_state;
end if;
end if;
end process;

This is the computation of the next state:

process (state,key_in,do)
begin
next_state <= state;

This is the case of the ZERO state:

-Signal generated: reset => 1, key_out => 0
when ZERO =>
reset_counter <= ’1’;
key_out <= ’17;
if (key_in = ’0")
then
next_state <= ZERO_TO_ONE;

This is the case of the ZERO_TO_ONE state:

-Signal generated: reset => 0, key_out => 0
when ZERO_TO_ONE =>
reset_counter <= '0’;
key_out <= "17;
if (do >= 500_000)
then
next_state <= ONE;

This is the case of the ONE state:

-Signal generated: reset => 1, key_out => 1
when ONE =>
reset_counter <= '17;
key_out <= '0';
if (key_in = "17)
then
next_state <= ONE_TO_ZERO;

end if;

23

This is the case of the ONE_TO_ZERO state:

-Signal generated: reset => 0, key_out => 1
when ONE_TO_ZERO =>
reset_counter <= ’0’;
key_out <= ’0’;
if (do >= 500_000)
then
next_state <= ZERO;
end if;
end case;
end process;

end arl;

I now present the main features of DebounceCounter.vhd:
entity DebounceCounter is

port (
-Synchronous reset
reset : in std_logic;
clk: in std_logic;
do: out unsigned(18 downto 0)
)i

end DebounceCounter;
architecture arl of DebounceCounter is

signal value : unsigned(18 downto 0);
begin

process (clk)

begin

if (rising_edge (clk)) then

The value of the counter is modified at each time click:
if (reset='17)

then

value <= (others => ’0');

else

value <= value + 1;

end if;

end if;

end process;

do <= value; -copy value to the output
end arl;

Finally, these are the key features of pulser.vhd. When the input signal switches to
1, it generates a pulse:

entity pulser is

port
(

clk : in std_logic;
key_in : in std_logic;
key_out : out std_logic;
reset : in std_logic

)i
end pulser ;

architecture Al of pulser is

"states" defines the different configurations that describe the pulse:
type states is (ZERO, ONE_PULSE, ONE_STANDBY);

"states" thus enables me to define “state’” and “next_state”:

signal state, next_state : states;
begin

-FSM Strandard next_state => state
process (clk)
begin
if (rising_edge (clk)) then
if (reset="1")
then
state <= ZERO;
else
state <= next_state;
end if;
end if;
end process;

24

This is the computation of the next state:

process (state,key_in)
begin
next_state <= state;

case state is

This is the case of the ZERO state:

-Signal generated 0
when ZERO =>
key_out <= ’17;
if (key_in = ’0")
then
next_state <= ONE_PULSE;
end if;

This is the case of the ONE_PULSE state:

-Signal generated 1
when ONE_PULSE =>
keyiout <='0";

next_state <= ONE_STANDBY;

This is the case of the ONE_STANDBY state:

-Signal generated: -
when ONE_STANDBY =>
key_out <= "1’;

if (key_in = ’17)

then

next_state <= ZERO;

end if;

end case;

end process;

end Al;

The complete links between the uses of all these files are described more precisely
in the following paragraphs, which present the input controllers.

Moreover, these modules convert the key presses from the user to interruptions:

InputController.vhd

InputController_inst.vhd

InputController2_inst.vhd

InputController3_inst.vhd

InputController4_inst.vhd

InputController5_inst.vhd

I use five instances of the InputController vhdl file. I created them following the
tutorial[|] from the class website. There is one input controller per button of the Game
Guitar. In each of these files the counter, debouncer and pulser vhdl files are called in
oreder to detect key presses and thus send an interruption signal.

25

entity InputController is

port (
-Avalon

clk : in std_logic;

reset_n : in std_logic;

read : in std_logic;

write : in std_logic;

chipselect : in std_logic;

address : in unsigned(9 downto 0);
readdata : out unsigned(15 downto 0);
writedata : in unsigned(15 downto 0);
inter : out std_logic;

These are the 5 switches of the Game Guitar

SWITCH_1 : in std_logic;
SWITCH_2 : in std_logic;
SWITCH_3 : in std_logic;
SWITCH_4 : in std_logic;
SWITCH_5 : in std_logic

)i

end InputController;

architecture rtl of InputController is

"states" defines the different configurations of the input controller:
type states is (IDLE, PRESSED,WAITST);
"states" thus enables me to define “state” and “next_state”:

signal state, next_state : states;
signal we:std_Logic;
signal reset:std_logic;

signal counter: integer;

The following is a bunch of signals for the button. The button clicks are first debounced
and then pulsed.

The naming follows this convention:

— Initial SWITCH_1: this is the original signal.
Here is a first signal example: - -

— Debounced DSWITCH_1: The debouncing has been applied.
Here is the new version of our example:

— Pulsed PSWITCH_1: The pulser has been applied in order to avoid redundant in-
terruption.

26

This is the final version of our example:

—-Switch 1
signal DSWITCH_1:std_logic;
signal PSWITCH_l:std_logic;
-Switch 2
signal DSWITCH_2:std_logic;
signal PSWITCH_2:std_logic;
-Switch 3
signal DSWITCH_3:std_logic;
signal PSWITCH_3:std_logic;
-Switch 4
signal DSWITCH_4:std_logic;
signal PSWITCH_4:std_logic;
--Switch 5
signal DSWITCH_5:std_logic;

signal PSWITCH_5:std_logic;

This is the debouncer:

component debouncer is port (

clk : in std_logic;
key_in : in std_logic;
key_out : out std_logic;
reset : in std_logic

)i

end component debouncer;

This is the pulser:

component pulser is port (

clk : in std_logic;
key_in : in std_logic;
key_out : out std_logic;
reset : in std_logic

)i

end component pulser;
begin

~Reset

reset <= not reset_n
-Write enable

we <= '1’ when chipselect =’1’ and write='1’ else '0’';

These are the mappings of the debouncer:

D1: debouncer port map(clk,SWITCH_1,DSWITCH_1,reset);

D2: debouncer port map(clk,SWITCH_2,DSWITCH_2, reset);

27

D3: debouncer port map (clk, SWITCH_3,DSWITCH_3, reset);
D4: debouncer port map(clk, SWITCH_4,DSWITCH_4,reset);

D5: debouncer port map(clk,SWITCH_5,DSWITCH_5, reset);

"states" thus enables me to define “state” and “next_state”:

P1l: pulser port map(clk,DSWITCH_1,PSWITCH_1,reset);
P2: pulser port map(clk,DSWITCH_2,PSWITCH_2,reset);
P3: pulser port map(clk,DSWITCH_3,PSWITCH_3,reset);
P4: pulser port map(clk,DSWITCH_4,PSWITCH_4,reset);

PS: pulser port map(clk,DSWITCH_5,PSWITCH_S, reset);

-FSM Strandard next_state => state
process (clk)

begin

if (rising_edge (clk)) then
if (reset_n='0")

then

state <= IDLE;

else

state <= next_state;

if (state = PRESSED) then
counter <=0;

else counter <=counter +1;

end if;

end if;
end if;

end process;

~Combinational process
process (state, SWITCH_1,we)

begin

-By default reset the interuption signal
inter <= '0';

next_state <= state;

case state is

Here I am waiting for a button click:

when IDLE =>
inter <='07;

if (PSWITCH_1 = ’0’ or PSWITCH_2 = '0’ or PSWITCH_3 = 0’ or PSWITCH_4 = ’0’ or PSWITCH_5 = '0’)
then

next_state <= PRESSED;

end if;

A button has been pressed. I stay into this PRESSED state until the interuption has
been cleared.

when PRESSED =>
inter <='17;

if (we="1")

28

then
next_state <= WAITST;

end if;

when WAITST =>
inter <='0";

if (counter > 30000)
then

next_state <= IDLE;

end if;
end case;
end process;

end rtl;

This is the main organization of all the instances of InputController:

entity InputController_inst is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGI

signal SWITCH_3 : IN STD_LOGI

signal SWITCH_4 : IN STD_LOGI

signal SWITCH_5 : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : IN STD_LOGIC;

signal clk : 1IN STD_LOGIC;

signal read : 1IN STD_LOGIC;

signal reset_n : 1IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i
end entity InputController_inst;

architecture europa of InputController_inst is
component InputController is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : IN STD_LOGIC;

signal SWITCH_4 : IN STD_LOGIC;

signal SWITCH_S : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : IN STD_LOGIC;

signal clk : 1IN STD_LOGIC;

signal read : 1IN STD_LOGIC;

signal reset_n : 1IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i
end component InputController;

signal internal_inter : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);
begin

—the_InputController, which is an e_instance
the_InputController : InputController2
port map (

inter => internal_inter,

readdata => internal_readdata,

SWITCH_1 => SWITCH_I,

SWITCH_2 => SWITCH_2,

SWITCH_3 => SWITCH_3,

SWITCH_4 SWITCH_4,

SWITCH_5 => SWITCH_S,

address => address,

29

chipselect => chipselect,
clk => clk,

read => read,

reset_n => reset_n,
write => write,
writedata => writedata

)i

-vhdl renameroco for output signals
inter <= internal_inter;

-vhdl renameroo for output signals
readdata <= internal_readdata;

end europa;

The last sets of files are mostly pre-written files already available in the class labs.

Here are the files for the sram[34]:
e de2 sram_controller.vhd

e sram.vhd

And here is the file for the video display[33] and the audio:
e de2_i2c_av_config.v

e de2 i2c_controller.v

e de2 wm&731_audio.vhd

e jtag_uart.vhd

These are other files, which are related to the cpu:
e cpu.vhd

e cpu_jtag_debug_module.vhd

e cpu_jtag_debug_module_wrapper.vhd

e cpu_test_bench.vhd

This is an additional file related to my early tests of the audio of the game:

e lab3_audio.vhd

30

4.2 Timing design

In this subsection, I present the Timing design of the project[27].

4.2.1 Extraction of the beats

The extraction of the beats is done using LabRosa[35]. It is run and stored before-
hand in the project. More precisely, given a mp3 song, the MATLAB code extracts the
beats of the song and stores them in a text file. This text file is then being processed by
a PYTHON code that converts it to a format recognizable in C.

Here is an excerpt of the README for LabROSA-coversongID.
"See http://labrosa.ee.columbia.edu/projects/coversongs/ for more info."

"Key functions:

e t=tempo(d,sr); estimates the tempo in BPM of audio waveform d at sample rate
st

e b = beat(d,sr); estimates the beat times (in sec) of audio waveform d at sample
rate sr

o glist = calclistftrs(querylistfilename); calculates beat-synchronous chroma fea-
ture matrices for all the wav or mp3 files listed, one per line, in the named file,
returning a list of calculated feature files, then...

e R = coverTestLists(qlist); compares each feature file named in the glist against
every item and returns R as a square matrix of distance between each pair."

4.3 Correct timing of the beats

The beats are stored inside the main C program:
int beats[] = {0x00b4,0x00c8,0x00£0,0x0116,0x0141,0x016a,0x0193,0x01bb,

0x4b71, 0x4b98, 0x4bc0, 0x4be6, 0x4c0d, 0x4c33, 0x4c5d, 0x4c82, Oxdcad, OxdcdT);

They are then accessed at each incrementation of the counter:

int main() {
int counter = 0;

int flag = 0;
int val_buffer = val;
int key_buffer = floor(rand(5));

int score = 0;
while (counter<540) {

if (flag!=1){

if (val>val_buffer) {

if (key==key_buffer) {

flag = 1;

score = score+tl;

printf ("SUCCESS: SCORE %d",score);}}}

if (beat_counter>=(beats[counter])«3){

if (flag == 0){
printf ("FAIL: SCORE %d",score);}

flag = 0;
val_buffer = val;
key_buffer = floor (L+rand()%5);

printf ("PRESS %d",key_buffer);

counter=counter+1;

}

31

}
printf ("FINISHED!");

return 0; }

4.3.1 Use of interruptions to indicate that the guitar has been pressed

The interruptions implementation tutorial by Professor Stephen Edwards is avail-
able at [1].

// I set the displayed key each time val is incremented.

static void irghandler (void » context, alt_u32 id
val ++;
key = 1;
IOWR_8DIRECT (INPUTCONTROLLER_INST_BASE, 0, 0); // reset request
}

static void input_isr (voids context, alt_u32 id){
valz++;
IOWR_16DIRECT (INPUTCONTROLLER_INST_BASE, 0,0);

return;

}

The interruptions are then exploited inside the main() by using "alt_irq_register":
int main() {

TOWR_8DIRECT (INPUTCONTROLLER_INST_BASE, 0, 0);

alt_irg_register(INPUTCONTROLLER_INST_IRQ, NULL, (voids)irghandler); // register the irg

int counter = 0;

int flag = 0;

int val_buffer
int key_buffer

val;
floor (rand(5));

int score = 0;
while (counter<540) {

if (flag!=1)(

if (val>val_buffer)

if (key==key_buffer) {

flag = 1;

score = score+l;

printf ("SUCCESS: SCORE %d",score);}}}

if (beat_counter>=(beats[counter])3) {

if (flag == 0){
printf ("FAIL: SCORE %d",score);}

flag = 0;
val_buffer = val;
key_buffer = floor (l+rand()%5);

printf ("PRESS 3d",key_buffer);
counter=counter+1;
}
}
printf ("FINISHED!");

return 0; }

4.4 Additional tracks of study
4.4.1 Alternative beats handling system

This next set of files did not make it to the final version of the project. However, It
has been a consequent track of study which I wish to mention. The timer files were a
custom timing function [had design to keep track of the occurences of the beats directly
inside the VHDL code. The sixth instance of InputController was to send a notification
when a beat was appearing. However, I decided to deal with the beats directly in the
NIOS II C code in the end. The files related to this particular track of study are the
following:

e InputController6_inst.vhd

32

e timer.vhd

e timer.vhdl

4.4.2 Storage of the song

Concerning the storage of the song, I first used the SDRAM[28]. The beats con-
troller and the music controller still had to be synchronized. Then, I tried to use the
flash memory[2] instead. The beats controller and the music controller still had to be
synchronizedas well.

4.4.3 Playing the song

For this part, I reused my work of the lab3 assignment where I dealt with playing
audio sounds.

4.4.4 Video display using sprites

There was some early work done on the display of sprites. I included the resluting
files in the "ADDITIONAL TRACKS OF STUDY" folder of the final project.

33

5 Hardware

In this section, I give a closer look at the hardware that was used in the project.

5.1 FPGA
The main hardware of the project is the FPGA[7][8][9][6].

Altera DE2 Development and Education board

(altera 2 2.pg)

5.2 Game Guitar

I have customized a Guitar Hero controller to become the Game Guitar.

Game Guitar

(i14.ebayimg.com/01/i/001/22/73/0b2412.JPG)

34

Connexion between the two band wires of the FPGA
(imf2108)

Front view of the connexion between the second band wire of the FPGA and the

ethernet port of the Game Guitar
(imf2108)

Back view of the connexion between the second band wire of the FPGA and the
ethernet port of the Game Guitar

(imf2108)

35

Front view of the connexion of the ethernet cable to the Game Guitar
(imf2108)

Back view of the connexion of the ethernet cable to the Game Guitar
(imf2108)

5.3 VGA display

The VGA dispaly I used for this project is one of the displays that are available
in the Embedded Systems laboratory. This is where I use the console of the NIOS II
interface.

VGA display

(cclonline. i /MediaPool/PRQ1d111fvkKq4fqdrRmYg-3d-3d_LargeProductimage.jpg)

36

6 Experiences and issues in implementation

In this section, I present the experiences and issues in implementation, including
the difficult parts.

6.1 Playing the song

At the beginning of the project, I ran tests with 1 second samples form a song in
the VHDL code of lab3. However, it was hard to make oneself a sure opinion of the
result as the playtime was so short.

I had thought about several ways to store the song:

e Store it in the SDRAM
e Store it in the Flash memory

e Use a raw sound from an external source

After trying all three possibilities, I decided to use the last one. This decision was
based on project time constraints.

6.2 Storage using the SDRAM

WHen implementing the SDRAM, I had to work on a step by step basis. First of
all, I followed the tutorial for the SDRAM setup. Once the SDRAM had been added to
the project, I still had write on it and read it. These two parts were the trickiest ones. |
had to carefully study of the memory locations where indexed so that each element of
the song would fit inside the SDRAM without any risk of overlapping or gaps. I thus
had to run tests ot understand which address I was accessing and how many bits I was
reading or writing when I was using a specific address.

6.3 Bugs solving

It was generally difficult to trace the source of a crash, especially in VHDL. The
debugging information was scarce so it required a lot of time to locate the source of a
bug. It often involved backtracking the source of the crash through multiple files.

Debugging was easier using C. However, missing libraries were often an issue, and
finding these libraries was not always a solution to some of the problems that I wanted
to solve. This was especially true when I was dealing with the time element of this
project.

6.4 Merging several parts of the project

Merging several parts of the project was always tricky. Generally, I was working
on two aspects of the project at the same time. So when both of them were done, it was
time to join them so that the project could continue to go on. What I did was to take the
more complex of the two works, and progressively add the elements of the other one
inside it.

I first added all the new files. Then I modifiedd the files that were common to both
these work by adding the lines of code of the second work that were absent from the

37

first one. This often implied a consequent debugging phase, due to the apparition of
bugs that were specific to the coexistence of these two works in the same project.

38

7 Summary including lessons learned

In this section, I provide a summary of the project as well as a listing of what
lessons I learned during this project. I also give some advice for future projects.

7.1

Summary of the project

The global objectives of the project have been fulfilled:

building the hardware for the Game Guitar,
developing the VHDL and C software,

having the game running.

More precisely, these features are available in the final version of the project:

7.2

Hardware of the Game Guitar

Detection of the input of the game guitar

Extraction of the beats of a song

Asking for the correct key presses, based on the beats
Analysis of the correctness of the key presses of the player

Keeping track of the score

Lessons learned
Start the project as early as possible.

Do not venture into too many directions at once; it is more efficient to stay fo-
cused on a limited number of tasks.

Code and debug small step per small step.

When a specific track of study progressively seems to be a dead end, find a new
solution as early as possible.

Synchronize all the parts of the project as soon as possible.

Carefully plan ahead when to come to the Embedded Systems laboratory in order
to have an available workstation and always keep in mind that other students need
these workstations as well so it is imperative to share ressources. That way, all
projects make progress and the mood in the laboratory is much more enjoyable.

Make regular copies of the global projects in order to be able to go back to a
previous version in case the current one get corrupted by a bug too difficult to
find quickly.

Do not hesitate to ask the teaching Assistants for information when starting to
study a new programming language.

39

e Be very careful with the SOPC builder.

e The most important lesson of all: enjoy your project!

Enjoy the Awesome Guitar Game!
(imf2108)

7.3 Some adyvice for future projects

e If it is your first time coding with VHDL or C, be very careful in the first days of
the project and regularly test your work.

e AsIsaid previously, future students should keep in mind that other students need
the workstations of the Embedded Systems laboratory as well so it is imperative
to share ressources. That way, all projects make progress and the mood in the
laboratory is much more enjoyable.

e Do not hesitate to refer repeatedly to the previous years projects and projects
reports [17][18][19][20][21][22]. They contain very valuable information from
students who already saw an Embedded System Design project through.

40

8 Listing of all source code

Here is a complete listings of every file I wrote for the project. It includes C source,
VHDL source, and things such as .mhs files. I did not include any file that was gener-
ated automatically. I mad sure of that by applying "rm -rf db incremental_db .rpt .done
.summary .smsg .pin .qdf .pof" beforehand. I did not include the .bak files either.

8.1 MATLAB source code
e beatavg.m
e beat.m
e calclistftrs.m
e chromagram_E.m
e chromagram_IF.m
e chromagram_P.m
e chrombeatftrs.m
e chromnorm.m
e chrompwr.m
e chromrot.m
e chromxcorr.m
e coverDistMxLists.m
e coverFtrExLists.m
e coverTestLists.m
e distmatrixwrite.m
e fexist.m
o fft2chromamx.m
o fft2melmx.m
e history-bragg-autoco.m
e history-golddust-xcorr.m
e hz2octs.m
e ifgram.m
e ifptrack.m
e listfileread.m

o listfilewrite.m

41

8.2

8.3

8.4

localmax.m
mkblips.m
mp3read.m
mymkdir.m
octs2hz.m
tempo.m
testlist.m

test.m

PYTHON source code
toHexArray.py

encode.py

randomize.py

shortest_time_dist.py

C source code

hello_world.c

VHDL source code
AWESOME_GUITAR .qpf
AWESOME_GUITAR.qws
AWESOME_GUITAR_TOP.dpf
AWESOME_GUITAR_TOPjdi
AWESOME_GUITAR_TOP.qsf
AWESOME_GUITAR_TOP.sof
counter.vhd

cpu.ocp

cpu.vhd
cpu_jtag_debug_module.vhd

cpu_jtag_debug_module_wrapper.vhd

cpu_ociram_default_contents.mif

cpu_rf_ram.mif

cpu_test_bench.vhd
DebounceCounter.vhd
debouncer.vhd
de2_i2c_av_config.v
de2_i2c_controller.v
de2_sram_controller.vhd
de2_sram_controller_hw.tcl
de2_wm8731 _audio.vhd
guitar_top.vhd
InputController.vhd
InputController_hw.tcl
InputController_inst.vhd
InputController2_inst.vhd
InputController3_inst.vhd
InputController4_inst.vhd
InputControllerS_inst.vhd
InputController6_inst.vhd
jtag_uart.vhd

nios_system.bsf
nios_system.ptf
nios_system.qip
nios_system.sopc
nios_system.vhd
nios_system_generation_script
nios_system_log.txt
nios_system.ptf.pre_generation_ptf
nios_system_setup_quartus.tcl
pulser.vhd
sopc_builder_log.txt

sram.vhd

43

timer.vhd
timer.vhdl
timer_hw.tcl

timer_inst.vhd

44

Conclusion

Once again, I wish to thank Professor Stephen Edwards for all his help through-
out this entire project and for making this class a very enjoyable experience. It has
been most instructive and gave me more insight in dealing with some specific types of
hardware.

In the end, I have designed a video game that enables the user to match the notes
that are asked from him on a VGA display using a game guitar while his score is being
modified based on how successful he is. Coding and debuging this software has been a
really entertaining activity. It enabled me to discover VHDL, reinforce my skills in C,
and continue to use MATLAB and PYTHON.

Using, modifying and building hardware by myself has also been a very enjoyable
experience. This gave a “hands-on” feel to the project that enabled to see the physical
effects of my work. As a matter of fact, it was the first time I was welding again since
middle school.

Right now, this project enables the player to match the required notes using the
game guitar I designed, all the while following instructions and his score using a VGA
display. For students who will take this class in the future and who wish to do do a
project based on this one, here are some hints on what to work on, using my work as
a basis. The first element worth implementing is a more developed visual interface for
the game, using sprites. It would also be nice to have several different songs available
instead of just one. Finally, another cool feature would be to introduce a multiplayer
mode.

45

Bibliography
[1] Tutorial: Creating peripherals with interrupts in altera’s sopc builder author =.

[2] S29al032d; 32 megabit cmos 3.0 volt-only flash memory; 4 m x 8-bit uniform sec-
tor; 4 m x 8-bit/2 m x 16-bit boot sector; data sheet preliminary. (S29AL032D_00;
Revision A; Amendment 5), Sep 2005.

[3] Avalon memory-mapped interface specification. (3.3), May 2007.
[4] Quartus ii version 7.2 handbook. (Volume 3: Verification), May 2007.

[5] Pong P. Chu. Embedded sopc design with nios ii processor and vhdl examples.
2011.

[6] Altera Corporation. Cyclone ii device handbook. (Volume 1).

[7] Altera Corporation. De2 development and education board.

[8] Altera Corporation. De2 development and education board. (3.3).

[9] Altera Corporation. De2 development and education board; user manual.
[10] Altera Corporation. Introduction to the quartus(®) ii software. (Version 7.2).
[11] Altera Corporation. Nios ii processor reference handbook.

[12] Altera Corporation. Nios ii software developer’s handbook.

[13] Altera Corporation. Quartus ii version 7.2 handbook. (Volume 2: Design Imple-
mentation and Optimization).

[14] Altera Corporation. Quartus ii version 7.2 handbook. (Volume 1: Design and
Synthesis).

[15] Altera Corporation. Quartus ii version 7.2 handbook. (Volume 4: SOPC Builder).
[16] Altera Corporation. Quick start guide for quartus ii software.
[17] cs.columbia.edu/ sedwards/classes/2006/4840/index.html.

[18] cs.columbia.edu/ sedwards/classes/2007/4840/index.html.

[19] cs.columbia.edu/ sedwards/classes/2008/4840/index.html.

[20] cs.columbia.edu/ sedwards/classes/2009/4840/index.html.

[21] cs.columbia.edu/ sedwards/classes/2010/4840/index.html.

[22] cs.columbia.edu/ sedwards/classes/2011/4840/index.html.

[23] cs.columbia.edu/ sedwards/classes/2012/4840/index.html.

[24] Stephen A. Edwards. Introduction to the altera sopc builder.
[25] Stephen A. Edwards. Quartus ii introduction using vhdl design.

[26] Stephen A. Edwards. Quartus ii simulation with vhdl designs.

46

[27] Stephen A. Edwards. Timing considerations with vhdl-based designs.

[28] Stephen A. Edwards. Using the sdram memory on altera’s de2 board with vhdl
design.

[29] Stephen A. Edwards. Writing vhdl for rtl synthesis. Columbia University, January
2011.

[30] esd.cs.ucr.edu/labs/tutorial/.
[31] http://www.laserist.org/.
[32] hub.guitarhero.com/.

[33] Texas Instruments. 9900; tms9918a/tms9928a/tms9929a; video display proces-
sors. 1982.

[34] Inc. Integrated Circuit Solution. Is42s8800/is42s88001 is42s16400/is42s164001;
2(1)m words x 8(16) bits x 4 banks (64-mbit); synchronous dynamic ram.

[35] labrosa.ee.columbia.edu/projects/coversongs/.

[36] Mark Zwolinski. Digital system design with vhdl. Pearson/Prentice-Hall, Jan-
uary 2004.

47

Annexes

Here are the C and VHDL source files I wrote or modified. I did not include any
automatically-generated files in this report. I mad sure of that by applying "rm -rf db
incremental_db .rpt .done .summary .smsg .pin .qdf .pof" beforehand. I did not include
the .bak files either.

MATLAB source code

beatavg.m

function X = beatavg(Y,bts)
X = beatavg (Y,bys)
Calculate average of columns of Y according to grid defined
% (real-valued) column indices in vector bts.
% For folding spectrograms down into beat-sync features.
% 2006-09-26 dpwelee.columbia.edu

s oe

% beat-based segments
$bts = beattrack(d,sr);

nbts = length (bts);

bttime = mean (diff (bts));

% map beats to specgram slices
ncols = size(Y,2);

coltimes = [0: (ncols-1)];

cols2beats = zeros(nbts, ncols);

btse = [bts,max(coltimes)];

for b = linbts

cols2beats(b,:) = ((coltimes >= btse(b)) & (coltimes < btse(b+1)))*1/(btse (b+1l)-btse(b));
end

% The actual desired output
X = Y x cols2beats’;

beat.m

function [b,onsetenv,D,cumscore] = beat (d,sr, startbpm, tightness, doplot)
[b, onsetenv,D, cumscore] = beat (d, sr, startbpm, tightness, doplot)

b returns the times (in sec) of the beats in the waveform d, samplerate sr.
startbpm specifies the target tempo. If it is a two-element

vector, it is taken as the mode of a tempo search window, with

the second envelope being the spread (in octaves) of the

search, and the best tempo is calculated (with tempo.m).

tightness controls how tightly the start tempo is enforced

within the beat (default 6, larger = more rigid); if it is a

two-element vector the second parameter is alpha, the strength

of transition costs relative to local match (0..1, default 0.7).

doplot enables diagnostic plots; if it has two elements, they

are the time range (in sec) for the diagnostic plots.

onsetenv returns the raw onset detection envelope

D returns the mel-spectrogram,

a0 dp

G o do @0 g0 db o op

a0 dp de

e

% cumscore returns the per-frame cumulated dynamic-programming score.
% 2006-08-25 dpwelee.columbia.edu
% uses: localmax
% Copyright (c) 2006 Columbia University.
%
% This file is part of LabROSA-coversongID
% LabROSA-coversongID is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 2 as
% published by the Free Software Foundation.
% LabROSA-coversongID is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%

You should have received a copy of the GNU General Public License
along with LabROSA-coversongID; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

a0 de de de

s a0

See the file "COPYING" for the text of the license.

if nargin < 3; startbpm = 0; end
if nargin < 4; tightness = 0; end
if nargin < 5; doplot = 0; end

if length(startbpm) == 2
temposd = startbpm(2);
startbpm = startbpm(1);

else

temposd = 0;

end

if length(tightness) == 2

alpha = tightness(2);

48

tightness = tightness(1);

else

alpha = 0.8

end

if tightness == 0; tightness = 6; end

% Have we been given an envelope (nonnegative waveform)
if min(d) >= 0
onsetenv = d;
sgsrate = sr;
disp([’beat: treating input as onset strength envelope’]);
else
onsetenv = [];
end

% debug/plotting options
plotlims = [];
if length(doplot) > 1
% specify zoom-in limits too
plotlims = doplot;
doplot = 1;
end
if doplot > 0; debug = 1; else debug = 0; end

% Select tempo search either with startbpm = 0 (means use defaults)
% or startbpm > 0 but temposd > 0 too (means search around startbpm)
% If onsetenv is empty, have to run tempo too to convert waveform
% to onsetenv, but we might not use the tempo it picks.
if startbpm == 0 | temposd > 0 | length (onsetenv) ==

if startbpm ==
tempomean = 120;
else

tempomean = startbpm;
end

if temposd
temposd = 0.7;
end

% Subfunction estimates global BPM; returns ’onset strength’
% waveform onsetenv
% If we were given an onsetenv as input, will use that
t,xcr,D,onsetenv, sgsrate = tempo(d, sr,tempomean, temposd, onsetenv, debug) ;

% tempo.m returns the top-2 BPM estimates; use faster one for
% beat tracking
if (startbpm == 0 | temposd > 0)
startbpm = max (t ([1 2]));

end
if debug ==
% plot the mel-specgram
tt = [l:length(onsetenv)]/sgsrate;

subplot (411)

imagesc(tt, [1 40],D); axis xy
subplot (412)

plot (tt, onsetenv);

end

end

% convert startbpm to startpd
startpd = (60xsgsrate)/startbpm;
%disp ([’ startpd=’,num2str (startpd)]);

pd = startpd;

% Smooth beat events
templt = exp (-0.5% ((-pd:pd/ (pd/32)).2));
localscore = conv(templt,onsetenv);
localscore = localscore (round(length (templt)/2)+[1:length (onsetenv)]);
% DP version:
% backlink(time) is index of best preceding time for this point
% cumscore (time) is total cumulated score to this point

backlink = zeros(1l,length(localscore));
cumscore = zeros(1l,length(localscore));

% search range for previous beat
prange = round(-2+pd) :-round (pd/2) ;

% Skewed window
txwt = exp(-0.5x((tightnessxlog(prange/-pd)).2));

starting = 1;
for i = l:length(localscore)

timerange = i + prange;

% Are we reaching back before time zero?
zpad = max (0, min(l-timerange (1), length (prange)));
% Search over all possible predecessors and apply transition
% weighting
scorecands = txwt .x [zeros(l,zpad),cumscore(timerange (zpad+l:end))];

49

% Find best predecessor beat

Vv, XX = max (scorecands);

% Add on local score

cumscore (i) = alpha*vv + (l-alpha)xlocalscore(i);

% special case to catch first onset
% if starting 1 & localscore(i) > 100xabs (vv)
if starting 1 & localscore(i) < 0.0lsmax(localscore);

backlink (i) = -1;
else
backlink (i) = timerange (xx);

% prevent it from resetting, even through a stretch of silence
starting = 0;
end

end

%%%% Backtrace

% Cumulated score is stabilized to lie in constant range,
% so just look for one near the end that has a reasonable score
medscore = median (cumscore (localmax (cumscore)));

bestendx = max(find(cumscore .* localmax(cumscore) > 0.5*medscore));
b = bestendx;

while backlink(b(end)) > 0
b = [b,backlink(b(end))];
end

b = fliplr(b);

% return beat times in secs
b = b / sgsrate;

% Debug visualization
if doplot == 1
subplot (411)
hold on;
plot ([b;b], [0;40] *ones (1, length (b)), w’);
hold off;
subplot (412)
hold on;
plot ([b;bl, [-5;20] *ones (1, length (b)), g’);
hold off;

% redo 3rd pane as xcorr with templt
subplot (413)
tt = [l:length(localscore)]/sgsrate;
plot (tt, localscore) ;

hold on; plot ([b;b], [min(localscore);max (localscore)]+ones (1,length(b)),’g’); hold off

if length(plotlims) > 0
for i = 1:3;

subplot (4,1,1)

ax = axis;

ax([1 2]) = plotlims;
axis(ax);
end
end
end

calclistftrs.m

This is a file that I did not modify from its original version.

chromagram_E.m

function Y = chromagram_E (d,sr, fftlen,nbin, f_ctr, f_sd)

Y = chromagram_E (d, sr, fftlen, nbin)

Calculate a "chromagram" of the sound in d (at sampling rate sr)

Use windows of fftlen points, hopped by ffthop points

Divide the octave into nbin steps

Weight with center frequency f_ctr (in Hz) and gaussian SD f_sd (in octaves)
2006-09-26 dpwelee.columbia.edu

e

E3

B

if nargin < 3; fftlen = 2048; end
if nargin < 4; nbin = 12; end

if nargin < 5; f_ctr = 1000; end

if nargin < 6; f_sd = 1; end

fftwin = fftlen/2;
ffthop = fftlen/4; % always for this

D = abs (specgram(d, fftlen, sr, fftwin, (Eftwin-ffthop)));

A0 = 27.5; % Hz
A440 = 440; % Hz

f_ctr_log = log(f_ctr/A0) / log(2);

50

CM = fft2chromamx (fftlen, nbin, sr, A440, f_ctr_log, f_sd);
% Chop extra dims
CM = CM(:,1: (fftlen/2)+1);

Y = CM«D;

chromagram_IF.m

This is a file that I did not modify from its original version.

chromagram_P.m

function Y = chromagram_P (d,sr, fftlen,nbin, f_ctr, f_sd)

Y = chromagram_E (d, sr, fftlen, nbin)

Calculate a "chromagram" of the sound in d (at sampling rate sr)

Use windows of fftlen points, hopped by ffthop points

Divide the octave into nbin steps

Weight with center frequency f_ctr (in Hz) and gaussian SD f_sd (in octaves)
2006-09-26 dpwe@ee.columbia.edu

o o0 oo

G0 @0 oo

if nargin < 3; fftlen = 2048; end
if nargin < 4; nbin = 12; end

if nargin < 5; f_ctr = 1000; end

if nargin < 6; f_sd = 1; end

fftwin = fftlen/2;
ffthop = fftlen/4; % always for this

D = abs (specgram(d, fftlen,sr, fftwin, (fFftwin-ffthop)));
[nr,nc] = size(D);

A0 = 27.5; % Hz
2440 = 440; % Hz

f_ctr_log = log(f_ctr/A0) / log(2);

CM = fft2chromamx (fftlen, nbin, sr, A440, f ctr_log, f_sd);
% Chop extra dims
CM = CM(:,1:(fftlen/2)+1);

% Keep only local maxes in freq
Dm = (D > D([1,[l:nr-1]],:)) & (D >= D([[2:nr],nr],:));
Y = CMx (D.*Dm);

chrombeatftrs.m

function [F,bts] = chrombeatftrs(d,sr,f_ctr,f_sd,type)
% [F,bts] = chrombeatftrs(D,SR,F_CTR,F_SD, TYPE)
% F returns a feature vector of beat-level chroma features (12
% rows X n time step columns). bts returns the times of all the
% beats.
% New version separates out chroma calculation

TYPE selects chroma calculation type; 1 (default) uses IF;
2 uses all FFT bins, 3 uses only local peaks (a bit like Emilia).
2006-07-14 dpwelee.columbia.edu

a0 dp dp

% Copyright (c) 2006 Columbia University.
% This file is part of LabROSA-coversongID
% LabROSA-coversongID is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
% LabROSA-coversongID is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
% You should have received a copy of the GNU General Public License
along with LabROSA-coversongID; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
% See the file "COPYING" for the text of the license.

% oo do e oe

a0 de de ae

E3

g0 @ oo

if nargin < 3; f_ctr = 1000; end
if nargin < 4; f_sd = 1; end
if nargin < 5; type = 1; end

tempomean = 240;
temposd = 1.5;

% Try beat tracking now for quick answer
bts = beat (d,sr, [tempomean temposd], [6 0.8],0);

% Calculate frame-rate chromagram
fftlen = 2 (round(log(sr*(2048/22050))/log(2)));
nbin = 12;

if type == 2
Y = chromagram_E(d, sr, fftlen,nbin, f_ctr, f_sd);
elseif type == 3

51

Y = chromagram_P (d,sr,fftlen,nbin,f_ctr, f_sd);

Y = chromagram_IF (d,sr,fftlen,nbin, f_ctr, f_sd);
ffthop = fftlen/4;

sgsrate = sr/ffthop;

F = beatavg(Y,btsssgsrate);

chromnorm.m
function [N,S] = chromnorm(F)
% [N,S] = chromnorm (F)
% Normalize each column of a chroma ftrvec to unit norm
% so cross-correlation will give cosine distance
% S returns the per-column original norms, for reconstruction

a0

2006-07-14 dpwe@ee.columbia.edu
[nchr, nbts] = size(F);

S = sqrt(sum(F.2));

N = F./repmat (S+(S

chrompwr.m

function Y = chrompwr (X,P)
Y = chrompwr (X,P) raise chroma columns to a power, preserving norm
% 2006-07-12 dpweCee.columbia.edu

E3

[nbins,nframes] = size(X);

% norms of each input col
CMn = repmat (sqrt (sum(X.2)),nbins,1);
CMn(CMn == 0) = 1;

% normalize each input col, raise to power
CMp = (X./CMn).PE;

% norms of each resultant column
CMpn = repmat (sqrt (sum(CMp.2)),nbins,1);
CMpn (CMpn == 0) = 1;

% rescale cols so norm of output cols match norms of input cols
Y = CMn.x (CMp./CMpn) ;

chromrot.m

function Y = chromrot (X,N)
% Y = chromrot (X, N)
% Rotate each column of chroma feature matrix X down by N
% semitones.
% 2006-07-15 dpwelee.columbia.edu

[nr,nc] = size(X);

Y = X(l+rem([0: (nr-1)]+N+nr,nr), :);

chromxcorr.m

function r = chromxcorr (A,F,L)
r = chromxcorr (A, F, L)
Cross-correlate two chroma ftr vecs in both time and
transposition
Both A and F can be long, result is full convolution
(length(A) + length(F) - 1 columns, in F order) .
L is the maximum lag to search to - default 100.
of shorter, 2 = by length of longer
Optimized version.
2006-07-14 dpweClee.columbia.edu

de dp oo

e

E3

G0 @ oo o

% Copyright (c) 2006 Columbia University.

This file is part of LabROSA-coversongID

LabROSA-coversongID is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as

published by the Free Software Foundation.

% LabROSA-coversongID is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

% You should have received a copy of the GNU General Public License

along with LabROSA-coversongID; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA

02110-1301 USA

a0

a dp

e

E3

G de de o de e

E3

52

% % See the file "COPYING" for the text of the license.
if nargin < 3; L = 100; end

[nchr,nbtsl] = size(a);
nchr2,nbts2 = size(F);

if nchr = nchr2
error (chroma sizes dont match’);
end

r = zeros (nchr, 2+L+1);

for i = l:nchr
rr 0;
for j = l:inchr
rr = rr + xcorr(F(l+rem(j+i-2,nchr),:),A(3,:),L);
end
r(i,:) = rr;
end

% Normalize by shorter vector so max poss val is 1

r = r/min(nbtsl,nbts2);

coverDistMxLists.m

This is a file that I did not modify from its original version.

coverTestLists.m
This is a file that I did not modify from its original version.

distmatrixwrite.m

function distmatrixwrite (matrix,rownames,colnames, filename,tag)
% distmatrixwrite (matrix, rownames,colnames, filename, tag)
Write a distance matrix
2006-08-06 dpweCee.columbia.edu

if nargin < 5
tag = ‘dpweDefault’;
end

fid = fopen(filename, 'w’);

fprintf (fid, '%s n’, tag);

usecolnames = zeros (length (colnames));
nn = 0;
for i = 1:length(rownames);

nn = nntl;
fprintf (fid, ’%d t%s n’, nn, rownamesi);

% if this name also occurs as a col, remember we don’t need it
usecolnames (strcmp (colnames, rownames(i))) = nn;

end

for i = l:length(colnames);
if usecolnames (i) == 0
nn = nn+l;
fprintf(fid, ’%d t%s n’, nn, colnamesi);
usecolnames (i) = nn;
end
end

% Matrix heading
fprintf (fid, "Q/R’);

for i = l:length(usecolnames);
fprintf (fid, ’%$d’, usecolnames(i));

end
fprintf(fid, ’ n’);

% Rows of matrix
for i = l:size(matrix,1);
fprintf(fid, ’%d’, i);
fprintf (fid, ’ t%f’, matrix(i,:));
fprintf(fid, ' n’);
end

fexist.m

function E = fexist (F)
E = fexist (F) returns 1 if file F exists, else 0
2006-08-06 dpwelee.columbia.edu

a0

E3

53

x = dir(F);

E = length(x);

fft2chromamx.m

This is a file that I did not modify from its original version.

fft2melmx.m

This is a file that I did not modify from its original version.

history-bragg-autoco.m

This is a file that I did not modify from its original version.

history-golddust-xcorr.m

This is a file that I did not modify from its original version.

hz2octs.m

function octs = hz2octs (freq, A440)

octs = hz2octs (freq, A440)

Convert a frequency in Hz into a real number counting

the octaves above A0. So hz2octs (440) = 4.0

Optional A440 specifies the Hz to be treated as middle A (default 440).
2006-06-29 dpwelee.columbia.edu for fft2chromamx

ae ae

EOES

if nargin < 2; A440 = 440; end

% A4 = A440 = 440 Hz, so AO = 440/16 Hz
octs = log(freq./(R440/16))./log(2);

ifgram.m

This is a file that I did not modify from its original version.

ifptrack.m

This is a file that I did not modify from its original version.

.
listfileread.m
function [L,N] = listfileread (F)
[L,N] = listfileread(F) Read a list of per-line items

F is a file containing a list of items, one per line.
Return L as a cell array, with one item per line, N as the
number of items.

If F is not found, return empty L and N == -1 (instead of 0).
2006-08-06 dpwelee.columbia.edu for MIREX 06

d dp de

a0 ae

@

N o= -1;
L= 11;

if fexist(F) == 1
fid = fopen (F);
nitems = 0;
while 1

tline = fgetl(fid);
if ischar(tline), break, end

nitems = nitems+1l;
Lnitems = tline;
end
fclose (fid);

N = nitems;

54

listfilewrite.m

function N = listfilewrite (L, F)
N = listfilewrite(L, F) Write a list of items to a file
L is a cell array of strings. Write to file F, one per line.
N returns the number of items successfully written.
2006-08-06 dpweCee.columbia.edu for MIREX 06

EE

fid = fopen(F, 'w’);
nit = length(L);
for i = l:nit
fprintf (fid, '%s n’, Li);

end

fclose (fid);

localmax.m

function m = localmax(x) % return 1 where there are local maxima in x (columnwise).
% don’t include first point, maybe last point

[nr,nc] = size(x);
if nr ==
1x = nc;
elseif nc == 1
1x = nr;
x =x';
else
1x = nr;
end
if (nr == 1) || (nc == 1)
m= (x> [x(1),x(1:(1x-1))]) & (x >= [x(2:1x),1+x(1x)]);
if nc ==
% retranspose
m=m';
end
else
% matrix
1x = nr;
mo= (x> [x(1,:);x(1:(1x=1),:)]) & (x >= [x(2:1x,:);1+x(1x,:)]);
end

mkblips.m

function d = mkblips(b,sr,1)

% d = mkblips (b, sr,1)
% Make a blip track at the set of times in b (in sec). Output
% waveform has sampling rate sr (default 8000) and length 1
% samples (default: long enough to contain all blips).
% 2006-05-02, 2006-09-30 dpwelee.columbia.edu
if nargin < 2
st = 8000;
end
if nargin < 3
1=0;
end
% 100ms pip @ 2khz
tdur = 0.1;

fblip = 2000;

tt = (0:round(tdurxsr))’;

x = tt.xexp(-tt/((tdurxsr)/10)).xcos (2+pistt/sr*fblip)/200;
1x = length(x);
bsamp = round (b#sr);
% remove beats that would run off end

if1>0

bsamp = bsamp (bsamp < (1-1x));

else

1 = max (bsamp) +1x;

end

d = zeros(l,1);

for bb = bsamp
d(bb+[1:1x]) = d(bb+[1:1x]) + x;

end

55

mp3read.m

function [Y,FS,NBITS,OPTS] = mp3read (FILE, N, MONO, DOWNSAMP, DELAY)
MP3READ Read MP3 audio file via use of external binaries.
Y = MP3READ (FILE) reads an mp3-encoded audio file into the
vector Y just like wavread reads a wav-encoded file (one channel
per column). Extension ".mp3" is added if FILE has none.
Also accepts other formats of wavread, such as
Y = MP3READ (FILE,N) to read just the first N sample frames (N
scalar), or the frames from N(1) to N(2) if N is a two-element vector.
Y = MP3READ (FILE,FMT) or Y = mp3read(FILE,N,FMT)
with FMT as ’native’ returns intl6 samples instead of doubles;
FMT can be ’double’ for default behavior (to exactly mirror the
syntax of wavread) .

G de de o de oo

a0 dp de

e

E3

[Y,FS,NBITS,OPTS] = MP3READ(FILE...) returns extra information:
FS is the sampling rate, NBITS is the bit depth (always 16),
OPTS.fmt is a format info string; OPTS has multiple other
fields, see WAVREAD.

G de de o de o

SIZ = MP3READ (FILE,’size’) returns the size of the audio data contained
in the file in place of the actual audio data, returning the
2-element vector SIZ=[samples channels].

a ap

e

E3

[Y...] = MP3READ(FILE,N,MONO,DOWNSAMP,DELAY) extends the
WAVREAD syntax to allow access to special features of the
mpgl23 engine: MONO = 1 forces output to be mono (by
averaging stereo channels); DOWNSAMP = 2 or 4 downsamples by
a factor of 2 or 4 (thus FS returns as 22050 or 11025
respectively for a 44 kHz mp3 file);

To accommodate a bug in mpgl23-0.59, DELAY controls how many
"warm up" samples to drop at the start of the file; the
default value of 2257 makes an mp3write/mp3read loop for a 44
kHz mp3 file be as close as possible to being temporally
aligned; specify as 0 to prevent discard of initial samples.
For later versions of mpgl23 (e.g. 1.9.0) this is not needed;
a flag in mp3read.m makes the default DELAY zero in this case.

G e 9o o0 op oe o

o dp

e

E3

[Y...] = MP3READ(URL...) uses the built-in network
functionality of mpgl23 to read an MP3 file across the
network. URL must be of the form ’'http://...’ or
‘ftp://...’. ’size’ and OPTS are not available in this mode.

G0 de de G0 op oe o

o ap

Example:
To read an mp3 file as doubles at its original width and sampling rate:
[Y,FS] = mp3read(’pianc.mp3’);

To read the first 1 second of the same file, downsampled by a

factor of 4, cast to mono, using the default filename

extension:

[Y,FS4] = mp3read(’piano’, FS/4, 1, 4);

e

E3

G de de o de oo

Note: Because the mp3 format encodes samples in blocks of 26 ms (at
44 kHz), and because of the "warm up" period of the encoder,

the file length may not be exactly what you expect, depending

on your version of mpgl23 (recent versions fix warmup) .

de dp de

E3

Note: requires external binaries mpgl23 and mp3info; you
can find binaries for several platforms at:
http://labrosa.ee.columbia.edu/matlab/mp3read.html

G0 o0 dp oe oe

See also mp3write, wavread.

% SHeader: /Users/dpwe/matlab/columbiafns/RCS/mp3read.m,v 1.6 2009/12/08 16:35:23 dpwe Exp dpwe
% 2003-07-20 dpweCee.columbia.edu This version calls mpgl23.

2004-08-31 Fixed to read whole files correctly

2004-09-08 Uses mp3info to get info about mp3 files too

2004-09-18 Reports all mp3info fields in OPTS.fmt; handles MPG2LSF sizes

+ added MONO, DOWNSAMP flags, changed default behavior.

2005-09-28 Fixed bug reading full-rate stereo as lch (thx bjoerns@vik.dk)
2006-09-17 Chop off initial 2257 sample delay (for 44.1 kHz mp3)

so read-write loop doesn’t get progressively delayed.

You can suppress this with a 5th argument of 0.

2007-02-04 Added support for FMT argument to match wavread

Added automatic selection of binary etc. to allow it

to work cross-platform without editing prior to

submitting to Matlab File Exchange

2007-07-23 Tweaks to ’size’ mode so it exactly agrees with read data.
2009-03-15 Added fixes so 'http://...’” file URLs will work.

2009-03-26 Added filename length check to http: test (thx fabricio guzman)

e

G0 de de oo o de o ap

a ap

e

E3

s ae

% find our baseline directory
path = fileparts (which (‘mp3read’));

% $%3%% Directory for temporary file (if needed)
% % Try to read from environment, or use /tmp if it exists, or use CWD
tmpdir = getenv (’ TMPDIR');

if isempty (tmpdir) || exist (tmpdir,’file’)==
tmpdir = ’/tmp’;

end

if exist (tmpdir,’file’)

tmpdir = ”;

end

% ensure it exists

$if length(tmpdir) > 0 && exist (tmpdir,’file’)==
mkdir (tmpdir) ;

end

56

w

%%%%%% Command to delete temporary file (if needed)
rmemd = ‘rm’;

%%%%%% Location of the binaries - attempt to choose automatically
%$%%%%% (or edit to be hard-coded for your installation)

ext = lower (computer);
if ispc
ext = ‘exe’;

rmemd = ‘del’;
end

% mpgl23-0.59 inserts silence at the start of decoded files, which
we compensate. However, this is fixed in mpgl23-1.9.0, so

% make this flag 1 only if you have mpgl23-0.5.9

MPG123059 = 0;

mpgl23 = fullfile(path, ["mpgl23.’,ext]);

mp3info = fullfile (path, ['mp3info.’,ext]);

E3

%%%%% Check for network mode
if length(FILE) > 6 && (strcmp(lower (FILE(1:7)),’http://’) == 1
|| strcmp(lower (FILE(1:6)), ftp://"))
% mp3info not available over network
OVERNET = 1;
else
OVERNET = 0;
end

%%%%% Process input arguments
if nargin < 2
N = 0;
end

% Check for FMT spec (per wavread)
FMT = ’double’;

if ischar (N)

FMT = lower (N);
N = 0;

end

if length(N) == 1
% Specified N was upper limit

N = [1N];
end
if nargin < 3
forcemono = 0;
else

% Check for 3rd arg as FMT
if ischar (MONO)
FMT = lower (MONO) ;

MONO = 0;

end

forcemono = (MONO = 0);
end

if nargin < 4
downsamp = 1;

else
downsamp = DOWNSAMP;
end
if downsamp = 1 && downsamp = 2 && downsamp = 4
error (DOWNSAMP can only be 1, 2, or 4');
end
% process DELAY option (nargin 5) after we’ve read the SR
if strcmp (FMT, ’native’) == 0 && strcmp (FMT,’double’) == 0 && ...
strcmp (FMT, ' size’) ==
error (['FMT must be ”native” or “double” (or ”size”), not ”',FMT,”"]1);
end
%%%%%% Constants
NBITS=16;

$%%%% add extension if none (like wavread)
path, file,ext = fileparts (FILE);
if isempty (ext)
FILE = [FILE, ’.mp3'];
end

if OVERNET
%$%%%%% Probe file to find format, size, etc. wusing "mp3info" utility
emd = [/ ,mp3info, '™ -r m -p "$Q %u 3b 3%r %v * 3C %e 3E 3L %0 %o %p" "/, FILE,’"’];

% Q = samprate, u = #frames, b = #badframes (needed to get right answer from %u)
% r = bitrate, v = mpeg version (1/2/2.5)

$ C = Copyright, e = emph, E = CRC, L = layer, O = orig, o = mono, p = pad

w = mysystem(cmd) ;

% Break into numerical and ascii parts by finding the delimiter we put in
starpos = findstr(w,’*');

nums = str2num(w(l: (starpos - 2)));

strs = tokenize(w((starpos+2):end));

SR = nums (1) ;
nframes = nums(2);
nchans = 2 - strcmp(strs6, ‘mono’);
layer = length(strsd);
bitrate = nums(4)*1000;
mpgv = nums (5) ;
% Figure samples per frame, after
% http://board.mp3-tech.org/view.php3?bn=agora_mp3techorgskey=1019510889
if layer == 1
smpspfrm = 384;

57

elseif SR < 32000 && layer ==3

smpspfrm 576;

if mpgv 1

error (‘SR < 32000 but mpeg version = 1');
end

else

smpspfrm = 1152;

end

OPTS.fmt.mpgBitrate = bitrate;
OPTS.fmt.mpgVersion = mpgv;
% fields from wavread’s OPTS
OPTS. fmt.nAvgBytesPerSec = bitrate/8;
OPTS.fmt.nSamplesPerSec = SR;
OPTS. fmt.nChannels = nchans;
OPTS.fmt.nBlockAlign = smpspfrm/SR+bitrate/8;
OPTS. fmt.nBitsPerSample = NBITS;
OPTS. fmt .mpgNFrames = nframes;
OPTS. fmt .mpgCopyright = strsl;
OPTS.fmt .mpgEmphasis = strs2;
OPTS.fmt.mpgCRC = strs3;
OPTS.fmt.mpgLayer = strs4;
OPTS.fmt.mpgOriginal = strs5;
OPTS. fmt .mpgChanmode = strsé6;
OPTS. fmt .mpgPad = strs7;
OPTS. fmt .mpgSampsPerFrame = smpspfrm;
else
% OVERNET mode
OPTS = [];
% guesses
smpspfrm = 1152;

SR = 44100;
nframes = 0;
end

if SR == 16000 && downsamp ==

error (‘mpgl23 will not downsample 16 kHz files by 4 (only 2)7);
end

% process or set delay
if nargin < 5

if MPG123059 mpgl23delay44kHz = 2257; % empirical delay of lame/mpgl23 loop

mpgl23delaylékHz = 1105; % empirical delay of lame/mpgl23 loop for 16 kHz sampling

if SR == 16000
rawdelay = mpgl23delayl6kHz;

else
rawdelay = mpgl23delay44kHz; % until we know better
end
delay = round(rawdelay/downsamp);
else
% seems like predelay is fixed in mpgl23-1.9.0
delay = 0;
end
else
delay = DELAY;
end
if downsamp
downsampstr = ”;
else
downsampstr = [/ -’,num2str (downsamp)];
end

FS = SR/downsamp;

if forcemono == 1
nchans = 1;
chansstr = '/ -m';
else
chansstr = ”;
end

% Size-reading version
if strcmp (FMT,’size’) ==

Y = [floor (smpspfrmsnframes/downsamp) -delay, nchans];
else

% Temporary file to use

tmpfile = fullfile(tmpdir, [’tmp’,num2str (round(1000*rand(1l))),’ .wav’']);
skipx = 0;

skipblks = 0;

skipstr = ”;

sttfrm = N(1)-1;

% chop off transcoding delay?
$sttfrm = sttfrm + delay; % empirically measured
no, we want to xdecode* those samples, then drop them

so delay gets added to skipx instead

s a0

if sttfrm > 0
skipblks = floor (sttfrmsdownsamp/smpspfrm);
skipx = sttfrm - (skipblks+smpspfrm/downsamp);
skipstr = [’ -k ’, num2str (skipblks)];
end
skipx = skipx + delay;

lenstr = ”;
endfrm = -1;

58

decblk = 0;
if length(N) > 1
endfrm = N(2);

if endfrm > sttfrm
decblk = ceil ((endfrm+delay) *downsamp/smpspfrm) - skipblks + 10;

% we read 10 extra blks (+10) to cover the case where up to 10 bad

% blocks are included in the part we are trying to read (it happened)
lenstr = [’ -n /, num2str (decblk)];

% This generates a spurious "Warn:
% to the last sample by index

requested..." if reading right

(or bad blks), but no matter.
end

% Run the decode
cmd=[’"',mpgl23,’"’, downsampstr, chansstr,
* -q -w "', tmpfile,’" "/, FILE,’"'];
sw =
mysystem (cmd) ;

skipstr, lenstr, ...

% Load the data

Y = wavread (tmpfile);

% % pad delay on to end, just in case
% Y = [Y; zeros(delay,size(Y,2))];
% % no, the saved file is just longer

if decblk > 0 && length(Y) < decblk+smpspfrm/downsamp
% This will happen if the selected block range includes >1 bad block

disp([’Warn: requested ', num2str (decblkssmpspfrm/downsamp),’ frames,
end
% Delete tmp file
mysystem([rmemd,’ "/, tmpfile,’"’1);
% debug
% disp([’sttfrm=',num2str(sttfrm),’ endfrm=’,num2str (endfrm),”’

% Select the desired part
if skipx+endfrm-sttfrm > length(Y)
endfrm = length (Y)+sttfrm-skipx;
end

if endfrm > sttfrm
Y = Y(skipx+(1l:(endfrm-sttfrm)),:);
elseif skipx > 0
Y = Y((skipx+l):end,:);
end
% Convert to int if format = ’native’
if strcmp (FMT,’native’)
Y = intl6((215)+Y);
end

end

32 PP 25050 B

function w =
% Run system command;

mysystem (cmd)

report error; strip all but last line

s,w = system(cmd);
if s =0
error([’unable to execute ’,cmd,’ (',w,’)"]);
end
% Keep just final line
w = w((l+max ([0, findstr(w,10)])):end);
% Debug
%disp(lcmd,’ -> 7,/ %", w,"*x"]);
% 5% %

function a = tokenize(s,t)

% Break space-separated string into cell array of strings.

% Optional second arg gives alternate separator (default ' ')
% 2004-09-18 dpwelee.columbia.edu

if nargin < 2; t =/ ’; end
a = 1[1;
p=1;
n=1;
1 = length(s);
nss = findstr([s(p:end),t]l,t);
for ns = nss
% Skip initial spaces (separators)
if ns == p
p = p+l;
else
if p <=1
an = s(p:(ns-1));
n = n+l;
p = ns+l;
end
end
end
.
mymkdir.m

function r = mymkdir (dir)
mymkdir (dir)
% Ensure that dir exists by creating all its parents as needed.

e

r o=

59

skipx=',num2str (skipx),’

returned ’,num2str (length(Y))]);

delay=',num2str (delay),’ len=',num2str(length(Y))]);

% 2006-08-06 dpwelee.columbia.edu

[x,m,i] = fileattrib(dir);
if x ==
pdir,nn,ee,vv = fileparts (dir);
mymkdir (pdir);
disp([’creating ’,dir,’ ..."1);
mkdir (pdir, nn);

end

octs2hz.m

function hz = octs2hz (octs,A440)
hz = octs2hz (octs,A440)

E3

% Convert a real-number octave
% into a frequency in Hzfrequency in Hz into a real number counting
% the octaves above AO0. So hz2octs(440) = 4.0.
% Optional A440 specifies the Hz to be treated as middle A (default 440).
% 2006-06-29 dpweCee.columbia.edu for fft2chromamx
if nargin < 2; A440 = 440; end
% A4 = R440 = 440 Hz, so A0 = 440/16 Hz
hz = (R440/16) .x(2.6cts);
tempo.m
function [t,xcr,D,onsetenv,sgsrate] = tempo (d,sr,tmean,tsd,onsetenv,debug)
% [t,xcr,D,onsetenv,sgsrate] = tempo(d,sr,tmean, tsd,onsetenv,debug)
% Estimate the overall tempo of a track for the MIREX McKinney
% contest.
% d is the input audio at sampling rate sr. tmean is the mode
% for BPM weighting (in bpm) and tsd is its spread (in octaves).
% onsetenv is an already-calculated onset envelope (so d is
% ignored). debug causes a debugging plot.
% Output t (1) is the lower BPM estimate, t(2) is the faster,
% t(3) is the relative weight for t(l) compared to t(2).
% xcr is the windowed autocorrelation from which the BPM peaks were picked.
% D is the mel-freg spectrogram
% onsetenv is the "onset strength waveform", used for beat tracking
% sgsrate is the sampling rate of onsetenv and D.
% % 2006-08-25 dpwe@ee.columbia.edu
% uses: localmax, fft2melmx
% Copyright (c) 2006 Columbia University.
% % This file is part of LabROSA-coversongID
% % LabROSA-coversongID is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 2 as
% published by the Free Software Foundation.
% % LabROSA-coversongID is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% % You should have received a copy of the GNU General Public License
% along with LabROSA-coversongID; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
% 02110-1301 USA
% % See the file "COPYING" for the text of the license.

if nargin < 3; tmean = 120; end
if nargin < 4; tsd = 3.0; end

if nargin < 5; onsetenv = []; end
if nargin < 6; debug = 0; end

sro = 8000;
% specgram: 256 bin @ 8kHz = 32 ms / 4 ms hop

swin = 256;

shop = 32;

% mel channels

nmel = 40;

% sample rate for specgram frames (granularity for rest of processing)
sgsrate = sro/shop;

% autoco out to 4 s

acmax = round(4xsgsrate);

D = 0;

if length (onsetenv) 0
% no onsetenv provided - have to calculate it

% resample to 8 kHz
if (sr = sro)
gg = gcd(sro,sr);
d = resample(d,sro/gg,sr/gg);
sr = sro;

60

D = specgram(d, swin, sr, swin, swin-shop) ;

% Construct db-magnitude-mel-spectrogram
mlmx = f£ft2melmx (swin,sr,nmel);
D = 20+logl0 (max (le-10,mlmx (:,1: (swin/2+1))«abs(D)));

% Only look at the top 80 dB
D = max (D, max (max(D))-80);

% The raw onset decision waveform
mm = (mean(max(0,diff(D")")));
eelen = length (mm);

% dc-removed mm
onsetenv = filter([1 -1], [1 -.99],mm);

end % of onsetenv calc block
¢ Find rough global period
% Only use the 1lst 90 sec to estimate global pd (avoid glitches?)

maxdur = 90; % sec
maxcol = min(round(maxdur*sgsrate),length (onsetenv));

xcr = xcorr (onsetenv(l:maxcol),onsetenv(l:maxcol),acmax);

% find local max in the global ac
rawxcr = xcr (acmax+1+[0:acmax]);

% window it around default bpm
xcrwin = exp(-.5x((log((60xsgsrate./ ([0:acmax]+0.1) /tmean))/log (2) xtsd).2));
XCr = rawxcr.xXcrwin;

xpks = localmax (xcr);
% will not include any peaks in first down slope (before goes below
% zero for the first time)
xpks (1:min (find (xcr<0))) 0;
% largest local max away from zero
maxpk = max (xcr (xpks));

% 2?2 then period is shortest period with a peak that approaches the max
$maxpkthr = 0.4;

$startpd = -1 + min(find((xpks.*xcr) > maxpkthrsmaxpk));

%startpd = -1 + (find((xpks.*xcr) > maxpkthrsmaxpk));

% no, just largest peak after windowing
startpd = -1 + find((xpks.*xcr) == max (xpks.#xcr));

% ?2Choose acceptable peak closest to 120 bpm
%[vv,spix] = min(abs(60./(startpd/sgsrate) - 120));
$startpd = startpd(spix);

% No, just choose shortest acceptable peak

startpd = startpd(1);

t = 60/ (startpd/sgsrate);
% Choose best peak out of .33 .5 2 3 x this period
candpds = round([.33 .5 2 3]+startpd);
candpds = candpds (candpds < acmax);
[vv,xx] = max (xcr(l+candpds));
startpd2 = candpds (xx) ;
vvm = xcr(l+startpd);
pratio = vvm/ (vvm+vv);

t = [60/(startpd/sgsrate) 60/ (startpd2/sgsrate) pratiol;

% ensure results are lowest-first
if £(2) < t(l)

t([1l 2]) = £([2 1]);
t(3) = 1-t(3);
end

if debug > 0

% Report results and plot weighted autocorrelation with picked peaks
disp([’Global bt pd = ’,num2str(t(1)),’ @ ’,num2str(t(3)),’ / ’,num2str(t(2)),’ bpm’]);

subplot (414)
plot ([0:acmax],xcr,’~b’, ...
0:acmax, xcrwinsmaxpk, ' -r’, ...
startpd startpd, [min(xcr) max(xcr)l, ’
startpd2 startpd2, [min(xcr) max(xcr)],
grid;

end

% Read in all the tempo settings

% for i = 1:20; £ = fopen([’mirex-beattrack/train/train’,num2str(i),’-tempo.txt’]); r(i,:) = fscanf(f,

61

’

testlist.m

function [R,S,T] = testlist (queryflist,testflist,pwr,norm, metric,xcr,verb);
% [R,S,T] = testlist(queryflist,testflist,pwr,norm, metric,xcr,verb);
% Takes a list of query files and compares each one to all
% of a list of test files.
% R returns a matrix of score values, each row is a query, each
% column is one of the test elements.
% S is a local normalization index; T is the best alignment time skew.
% pwr is power to raise chroma vectors to (dflt 1).
% norm is the normalization mode for the xcorr (0 = none, 1 = by shorter)
% metric is the metric used (1 = peak xcorr, 2 = peak filtered xcorr)
% xcr = 1 means fast cross-correlation (default 0)
% verb > 0 means provide progress update
% 2006-07-27 dpweCee.columbia.edu
if nargin < 3; pwr = 1; end
if nargin < 4; norm = 1; end
if nargin < 5; metric = 1; end

if nargin < 6; xcr = end

if nargin < 7; verb = 0; end

[tsongs,ntsongs] = listfileread(testflist);
gsongs, ngsongs = listfileread(queryflist);

% Now run through the queries
for g = l:ngsongs

gline = gsongsg;

if (verb > 0)

disp([datestr(rem(now,1),’HH:MM:SS’), ' ', ’'doing song
end

,num2str(q),’ ', gline]);

Q = load(gline);
Q.F = chromnorm(chromapwr (Q.F,pwr));

maxlag = 800;

for i = l:ntsongs
if (verb > 0)
disp([’..versus ’, tsongsil);
end

a0

o de

P = load(tsongsi);
P.F = chromnorm(chromapwr (P.F,pwr));

if xer ==

r = chromxcorr2(Q.F, P.F, norm);

else

% fast version of xcor

r = chromxcorr2fast (Q.F, P.F, norm, maxlag);
end

mmr = max (max (r));
bestchrom = find(max(r')
besttime = find(max(r)

if metric == 1
R(q,i) = mmr;
S(g,i) = mean(mean (r(:,max (besttime-100,1):min(besttime+100,size(r,2)))));

elseif metric ==

% Look for rapid variation - do HPF along time of best chrom
fxc = filter([1 -1], [1 -.9], r(bestchrom, :)-mean (r(bestchrom,:)));
% chop off first bit - onset transient for

% start-in-the-middle

fxc(1:50) = min(fxc);
%
R(qg,i) = max(fxc);

refpt = maxlag;

besttime = find(fxc == max (fxc))-refpt;

T(g,i) = besttime;

if verb > 0

disp([datestr(rem(now,1),’HH:MM:SS’), ' ..versus ', tsongsi,’ ',num2str(max(fxc)),’ @ ’,num2str (besttime)])
end

S(q,i) = sqrt (mean (£xc (max (besttime+refpt-100,1) imin (besttime+refpt+100, length (£fxc))).2));

if (0) % not wanted for submission version - self included in lists
% scoring - find largest entry in each row (query)
vv,xx = max (R’);
tt = l:length(xx);

aa = (xx == tt);

62

disp([’Simple max: acc = ’',num2str(mean(aa),3),’ ’,num2str(aa)]);

vv,xx = max((R./S)");

aa = (xx == tt);
disp([’Ratio max: acc = ’,num2str(mean(aa),3),’ ’,num2str(aa)l);
end

test.m

function [] = test (B,d6,sr6)

figure();
hold

for i = l:length(B)
counter = floor (4xrand(1l));

if (counter ==0)

’"PRESS A’

elseif (counter == 1)

’"PRESS B’

elseif (counter == 2)

’"PRESS C’

elseif (counter == 3)

’PRESS D’

end
plot ([mod(i,2)+i,mod (i+1,2)+i+1], [mod(i,2),mod(i+1,2)]);
sound (d6 ((B(1i)*sr6): ((B(i)+1)+sreé)),sr6)
end

end

PYTHON source code
toHexArray.py

#Encode a song into binary format
from struct import *
import sys

#Usage notice

if len(sys.argv)=
print """usage:
python encode.py filel file2
filel => name of the input file
filel => name of the output file

exit ()

#Arguments acquiring
filein = sys.argv[1l]
fileout = sys.argv[2]

#open the file that contains the notes
£ = open(filein)

lines = f.readlines()

f.close ()

for i in range(len(lines)):
lines[i] = hex(int(lines[i]))+str("")

num = len(lines)

#open the binary file for write
g = open (fileout, "w")
g.write(",".join(lines))

#close binary stream

g.close ()

63

encode.py

#Encode a song into binary format
from struct import x
import sys

#Usage notice

if len(sys.argv)=
print """usage:
python encode.py filel file2 id

filel => name of the input file
file2 => name of the output binary file
id => id of the song

exit ()

#Arguments acquiring

filein = sys.argv(1]
fileout = sys.argv(2]
id_song = sys.argv[3]

#Resolution computing

NBYTE = 2

MAX_LENGTH = 60.0%4 #4 minutes

res = int ((2#%+ (NBYTE«8)) / MAX_LENGTH)

#open the file that contains the notes
£ = open(filein)

lines = f.readlines()

£.close ()

#get the number of notes
num = len(lines)

#open the binary file for write

g = open(fileout, "w")

#write the id of the song, the number of notes
c = character(l byte), h = short(2 bytes)
id_song = int (id_song)

g.write (pack ("B", id_song))

g.write (pack ("h", num))

#Iterating through the beats

for i in range(len(lines)):
color = int(lines[i].split()[0])
time = float (lines[i].split()[1])
val = timexres #timestamp value
g.write (pack ("Bh",color,val))

#close binary stream
g.close ()

randomize.py

#Insert random notes in front of every line
import sys
import random

#Acquire the notes

f = open(sys.argv[l])
lines = f.readlines()
f.close ()

#Add the random notes
for i in range(len(lines)):
lines[i]=str(random.randrange (0,4))+" "+lines[i]

#Write the resulting list
f = open(sys.argv[1],"w")
f.write("".join(lines))
f.close()

shortest_time_dist.py

#Compute the shortest time length
#between two consecutive notes in
#a song

#

import sys
import random

#Acquire the notes

£ = open(sys.argv[l])
lines = f.readlines()
f.close()

64

dist = 87439873298473298 #a lot

for i in range(len(lines)-1):

cur = float(lines[i].split()[1].rstrip()) #current note
nex = float (lines[i+1].split () [1].rstrip()) #next note
if nex - cur < dist:

dist = nex - cur

print "shortest distance "+str(dist)

C source code

Hello World.c

/[

* "Hello World" example.

*

+ This example prints ’'Hello from Nios II’ to the STDOUT stream. It runs on
* the Nios II ’standard’, ’full_featured’, ’fast’, and ’low_cost’ example

* designs. It runs with or without the MicroC/0S-II RTOS and requires a STDOUT
« device in your system’s hardware.

* The memory footprint of this hosted application is 69 kbytes by default

» using the standard reference design.

*

« For a reduced footprint version of this template, and an explanation of how
% to reduce the memory footprint for a given application, see the

* "small_hello_world" template.

*

*/

#include <system.h>
#include <stdio.h>

#include <io.h>

#include <sys/alt_irg.h>
#include <alt_types.h>

#include <time.h>

#include <unistd.h>

#ifdef __unix_

include <unistd.h>

#elif defined _WIN32

include <windows.h>

#define sleep(x) Sleep (1000 * x)
#endif

volatile int val = 0;
volatile int key = 0;

// for beats
volatile int beat_counter = 0;

// I set the displayed key each time val is incremented.

static void irghandler (void * context, alt_u32 id)

{

val ++;

key = 1;

IOWR_8DIRECT (INPUTCONTROLLER_INST_BASE, 0, 0); // reset request
}

static void irghandler2 (void * context, alt_u32 id)

{

val ++;

key = 2;

IOWR_8DIRECT (INPUTCONTROLLER2_INST_BASE, 0, 0); // reset request
)

static void irghandler3 (void » context, alt_u32 id)

{

val ++;

key = 3;

IOWR_8DIRECT (INPUTCONTROLLER3_INST_BASE, 0, 0); // reset request
}

static void irghandler4 (void * context, alt_u32 id)

{

val ++;

key = 4;

IOWR_8DIRECT (INPUTCONTROLLER4_INST_BASE, 0, 0); // reset request
}

static void irghandler5 (void * context, alt_u32 id)

{

val ++;

key = 5;

IOWR_8DIRECT (INPUTCONTROLLER5_INST_BASE, 0, 0); // reset request
)

static void irghandler6 (void context, alt_u32 id)

{

beat_counter = beat_counter+2;//2 coups de clock

IOWR_8DIRECT (INPUTCONTROLLER6_INST_BASE, 0, 0); // reset request
}

65

volatile int valz = 0;

typedef struct notef{
int color ;

int timestamp;
}note;

int beats[] = {

0x00b4d, 0x00c8, 0x00£0, 0x0116, 0x0141, 0x016a, 0x0193, 0x01bb, 0x01e3, 0x020a, 0x0232, 0x025a, 0x0281, 0x02a8, 0x02d1,
0x02fa, 0x0321, 0x0348, 0x0370, 0x039a, 0x03c1, 0x03eb, 0x0414, 0x043a, 0x0463, 0x048a, 0x04b3, 0x04da, 0x0503, 0x052b,
0x0553, 0x057a, 0x05a2, 0x05ca, 0x05£2, 0x061a, 0x0642, 0x066a, 0x0692, 0x06ba, 0x06e2, 0x0709, 0x0731, 0x0759, 0x0781,
0x07a8, 0x07d0, 0x07£8, 0x0820, 0x0848, 0x0872, 0x0898, 0x08bd, 0x08e4, 0x090c, 0x0933, 0x095a, 0x0981, 0x09ac, 0x09d7,
0x0a00, 0x0a25, 0x0a4c, 0x0a75, 0x0a9c, 0x0ac4, Ox0aef, 0x0b17, 0x0b40, 0x0b68, 0x0b8f, 0x0bb6, 0x0bde, 0x0c06, 0x0c2£,
0x0c56, 0x0c7e, 0x0ca6, 0x0cce, 0x0cE6, 0x0dle, 0x0d45, 0x0d70, 0x0d98, 0x0dcO, 0x0ded, 0x0elc, 0x0e34, 0x0e5c, 0x0e85,
0Ox0Oeac, 0x0ed4, 0x0efb, 0x0£24, 0x0f4b, 0x0£71, 0x0£98, 0x0fc2, 0x0feb, 0x1014, 0x103c, 0x1064, 0x108b, 0x10b3, 0x10db,
0x1103,0x112b,0x1153, 0x117b, 0x11a2,0x1lch, 0x11£2, 0x121a, 0x1243, 0x126c, 0x1292, 0x12bb, 0x12e2, 0x130a, 0x1332,
0x135a,0x1382, 0x13aa, 0x13d1, 0x13£9,0x1421, 0x144a, 0x1471,0x1499, 0x14c2, 0x14e8, 0x1510, 0x153a, 0x1560, 0x1588,
0x15b0, 0x15d9, 0x15£f, 0x1628, 0x164f,0x1677,0x169f, 0x16c7, Oxl6ee, 0x1717, 0x173f, 0x1768, 0x178F, 0x17b9, 0x17df,
0x1808, 0x182e, 0x1856, 0x187e, 0x18a6, 0x18cd, 0x18£6, 0x191d, 0x1945, 0x196d, 0x1995, 0x19bd, 0x19e6, 0x1a0d, 0x1a36,
0xlaSe, 0x1a85, Oxlaad, Oxladd, Oxlafc, 0x1b23, 0x1bdc, 0x1b73, 0x1b9c, Oxlbcd, Oxlbec, 0x1cld, Ox1lc3b, 0x1c64, Oxlc8e,
0x1cb3, 0xlcdb, 0x1d03, 0x1d2b, 0x1d53, 0x1d78, 0x1d9c, 0x1dbf, Ox1de2, Oxlela, Oxle32, 0xle5b, Ox1le8l, Oxleaa, Oxledd,
0x1£01,0x1£31, 0x1£5a, 0x1£83, 0x1faa, Ox1fdl, 0x1££9, 0x2022, 0x204a, 0x2071, 0x2099, 0x20c1, 0x20e9, 0x2111, 0x2139,
0x2160,0x2188, 0x21b0, 0x21d9, 0x2200, 0x2228, 0x2250, 0x2279, 0x22a2, 0x22ca, 0x22£2, 0x2318, 0x2340, 0x2366, 0x238b,
0x23b4, 0x23e0, 0x2407, 0x2430, 0x2458, 0x2480, 0x24a8, 0x24d0, 0x24£7, 0x251e, 0x2546, 0x256e, 0x2596, 0x25bd, 0x25e2,
0x260c, 0x2635, 0x265d, 0x2685, 0x26ac, 0x26d4, 0x26£d, 0x2725, 0x274d, 0x2775, 0x279d, 0x27c4, 0x27ed, 0x2814, 0x283c,
0x2864, 0x288d, 0x28b4, 0x28dd, 0x2904, 0x292d, 0x2955, 0x297¢, 0x29a3, 0x29ca, 0x29£3, 0x2alc, 0x2a43, 0x2a6b, 0x2a91,
0x2ab9, 0x2ae2, 0x2b0b, 0x2b32, 0x2b5c, 0x2b82, 0x2ba9, 0x2bd0, 0x2bfa, 0x2c20, 0x2cda, 0x2c72, 0x2c9b, 0x2ccl, Ox2cea,
0x2d10, 0x2d38, 0x2d61, 0x2d8a, 0x2db0, 0x2dd9, 0x2e00, 0x2e29, 0x2e50, 0x2e78, 0x2eal, 0x2ec8, 0x2e£0, 0x2£18, 0x2£40,
0x2£68, 0x2£8f, 0x2£b7, 0x2£de, 0x3007, 0x3030, 0x3058, 0x307e, 0x30a5, 0x30cd, 0x30£5, 0x311d, 0x3144, 0x316c, 0x3194,
0x31bb, 0x31ed, 0x320d, 0x3235, 0x325d, 0x3286, 0x32ae, 0x32d7, 0x32£d, 0x3323, 0x334c, 0x3373, 0x339¢, 0x33c4, 0x33ec,
0x3416, 0x343c, 0x3463, 0x348c, 0x34bd, 0x34dc, 0x3504, 0x352d, 0x3554, 0x357c, 0x35a2, 0x35ca, 0x35£1, 0x361b, 0x3645,
0x366a, 0x3692, 0x36ba, 0x36e2, 0x370a, 0x3733, 0x375a, 0x3782, 0x37ab, 0x37d3, 0x37£9, 0x3820, 0x3847, 0x386e, 0x3896,
0x38c0, 0x38e9, 0x3912, 0x393a, 0x3963, 0x398a, 0x39b1, 0x39db, 0x3a02, 0x3a2a, 0x3a52, 0x3a79, 0x3aa2, 0x3aca, 0x3af2,
0x3blc, 0x3b48, 0x3b6c, 0x3b91, 0x3bb8, 0x3be0, 0x3c08, 0x3c31, 0x3c59, 0x3c80, Ox3ca8, 0x3cd0, 0x3c£8, 0x3d1f, 0x3d49,
0x3d70, 0x3d96, Ox3dbe, 0x3de5, 0x3e0e, 0x3e36, 0x3eSe, 0x3e86, 0x3eae, Ox3ed6, Ox3efe, 0x3£26, 0x3fde, 0x3£76, 0x3£9F,
0x3fc7,0x3fee, 0x4015, 0x403d, 0x4065, 0x408d, 0x40b4, 0x40dc, 0x4104, 0x412c, 0x4154, 0x417d, 0x41a5, Ox4lcc, 0x41£3,
0x421b, 0x4242, 0x426b, 0x4293, 0x42bb, 0x42e3, 0x430b, 0x4333, 0x435a, 0x4381, 0x43aa, 0x43d2, 0x43£9, 0x4422, 0x444a,
0x4472,0x449%a, 0x44c2, Oxd4ea, 0x4512, 0x4539, 0x4562, 0x458a, 0x45b1, 0x45d8, 0x4601, 0x4629, 0x4654, 0x467b, 0x46al,
0x46c9,0x46£0,0x4718, 0x4740, 0x4768,0x4791, 0x47ba, 0x47el, 0x4808, 0x482f, 0x4857, 0x487e, 0x48a7, 0x48d0, 0x48£8,
0x4920,0x4947,0x496e, 0x4996, 0x49be, 0x49e6, 0x4a0c, 0x4a35, 0x4a5d, 0x4a84, Oxdaac, 0x4ads, Oxdafd, 0x4b23, 0x4b49,
0x4b71, 0x4b98, 0x4bc0, 0x4be6, 0x4c0d, 0x4c33, 0x4c5d, 0x4c82, Oxdcad, OxdcdT};

static void input_isr (void* context, alt_u32 id)
{

valz++;

IOWR_16DIRECT (INPUTCONTROLLER_INST_BASE, 0,0);
return;

}

int main()

{

TOWR_8DIRECT (INPUTCONTROLLER_INST_BASE, 0, 0);

IOWR_8DIRECT (INPUTCONTROLLER2_INST_BASE, 0, 0);

IOWR_8DIRECT (INPUTCONTROLLER3_INST_BASE, 0, 0);

IOWR_8DIRECT (INPUTCONTROLLER4_INST_BASE, 0, 0);

IOWR_8DIRECT (INPUTCONTROLLER5_INST_BASE, 0, 0);

IOWR_8DIRECT (INPUTCONTROLLER6_INST_BASE, 0, 0);

printf("main() started ");

alt_irq_register(INPUTCONTROLLER_INST_IRQ, NULL, (voids)irghandler); // register the irg
alt_irq_register (INPUTCONTROLLER2_INST_IRQ, NULL, (voidx)irghandler2); // register the irqg
alt_irqg register(INPUTCONTROLLER3_INST_IRQ, NULL, (void«)irghandler3); // register the irqg

alt_irqg register(INPUTCONTROLLER4_INST_IRQ, NULL, (void«)irghandler4); // register the irqg

alt_irq register (INPUTCONTROLLERS_INST_IRQ, NULL, (voids)irghandler5); /

~

register the irg

alt_irq register (INPUTCONTROLLER6_INST_IRQ, NULL, (voids)irghandler6é); /

~

register the irg

// value from the buffer may be displayed, no worries
printf("Hello from Nios IT!");

int counter = 0;
printf ("GO")

int flag = 0;

int val_buffer = val;

int key_buffer = floor(rand(5));
int score = 0;

while (counter<540) {

if (flag!=1){
if (val>val_buffer) {

score = score+l;
printf ("SUCCESS: SCORE %d",score);}}}
// rajouter booleen pour afficher succes qu’une seule fois

if (beat_counter>=(beats[counter])*3) {

if (flag == 0){

66

printf ("FAIL: SCORE %d",score);}

flag = 0;
val_buffer = val;
key_buffer = floor (l+rand()%5);

printf ("PRESS 3d",key_buffer);
counter=counter+1;

}

}

printf ("FINISHED

while (counter<541) {

if (counter>0) {

set_timer (0,beats[counter]«40 — beats[counter—1]%40);}
else{

set_timer (0,beats [counter]«40);

)

launch_timer () ;

while (1) {

if (timer_expired() ==1)

break;

}

if (flag == 0){

printf ("FAIL");}

printf (" [%d] %d ",counter, beats[counter]x40);
counter=counter+l;

} return 0; }

VHDL source code
AWESOME_GUITAR.qpf

Copyright (C) 1991-2007 Altera Corporation
Your use of Altera Corporation’s design tools, logic functions
and other software and tools, and its AMPP partner logic
functions, and any output files from any of the foregoing
(including device programming or simulation files), and any
associated documentation or information are expressly subject
to the terms and conditions of the Altera Program License
Subscription Agreement, Altera MegaCore Function License
Agreement, or other applicable license agreement, including,
without limitation, that your use is for the sole purpose of
programming logic devices manufactured by Altera and sold by
Altera or its authorized distributors. Please refer to the
applicable agreement for further details.

B SR

QUARTUS_VERSION = "7.2"
DATE = "15:48:30 April 05, 2012"

Revisions

PROJECT_REVISION = "AWESOME_GUITAR_TOP"

AWESOME_GUITAR.qws

[ProjectWorkspace]
ptn_Childl=Frames

[ProjectWorkspace.Frames]
ptn_Childl=ChildFrames

[ProjectWorkspace.Frames.ChildFrames]
ptn_Childl=Document -0
ptn_Child2=Document -1
ptn_Child3=Document-2
ptn_Child4=Document-3

[ProjectWorkspace.Frames.ChildFrames.Document-3]
ptn_Childl=ViewFrame-0

[ProjectWorkspace.Frames.ChildFrames.Document-3.ViewFrame-0]
DocPathName=guitar_top.vhd
DocumentCLSID={ca385d57-a4c7-11d1-a098-0020affad3£2}
IsChildFrameDetached=False
IsActiveChildFrame=False
ptn_Childl=StateMap

[ProjectWorkspace.Frames.ChildFrames.Document-3.ViewFrame-0.StateMap]

AFC_IN_REPORT=False

67

AWESOME_GUITAR_TOP.dpf

<?xml version="1.0" encoding="UTF-8"?2>

<pin_planner>
<pin_info>

</pin_info>

<buses>

</buses>
<group_file_association>
</group_file_association>
<pin_planner_file_specifies>
</pin_planner_file_specifies>

</pin_planner>

AWESOME_GUITAR_TOP.jdi

This file has not been modified from its original version.

AWESOME_GUITAR_TOP.qsf

This file has not been modified from its original version.

AWESOME_GUITAR_TOP:sof

This file has not been modified from its original version.

counter.vhd

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter is
port

(
~Synchronous reset

reset : in std_logic;
clk: in std_logic;

do: out unsigned(31 downto 0);
di : in unsigned (31 downto 0)

)i

end counter;

architecture arl of counter is

signal value : unsigned(31 downto 0);
begin

process (clk)

begin

if (rising_edge (clk)) then
if (reset="1")

then

value <= di;

else

value <= value -1;

end if;

end if;

end process;

do <= value; -copy value to the output
end arl;

cpu.ocp

This file has not been modified from its original version.

68

cpu.vhd

This file has not been modified from its original version.

cpu_jtag_debug_module.vhd

This file has not been modified from its original version.

cpu_jtag_debug_module_wrapper.vhd

This file has not been modified from its original version.

cpu_ociram_default_contents.mif

This file has not been modified from its original version.

cpu_rf_ram.mif

This file has not been modified from its original version.

cpu_test_bench.vhd

This file has not been modified from its original version.

DebounceCounter.vhd

-19 bit counter
-19 bits since it needs to count to 20 ms
- 20 ms = 500 000 % tclock *2
- and 2%x19 = 524 288

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity DebounceCounter is

port
(-Synchronous reset
reset : in std_logic;
clk: in std_logic;
do: out unsigned(18 downto 0)

)i

end DebounceCounter;
architecture arl of DebounceCounter is

signal value : unsigned(18 downto 0);
begin

process (clk)

begin

if (rising_edge (clk)) then
if (reset="1")

then

value <= (others => '0');

else

value <= value + 1;

end if;

end if;

end process;

do <= value; -copy value to the output
end arl;

debouncer.vhd

-Debouncer module
—-TODO include reset
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity debouncer is

port

69

clk : in std_logic;

key_in : in std_logic;
key_out : out std_logic;
reset : 1in std_logic

)i
end debouncer;

architecture arl of debouncer is
type states is (ZERO, ZERO_TO_ONE, ONE, ONE_TO_ZERO);
signal state, next_state : states;
signal do : unsigned(18 downto 0);
signal reset_counter: std_logic; -to reset the counter
begin

CO0: entity work.DebounceCounter port map (

clk => clk,
reset => reset_counter,
do => do);

-FSM Strandard next_state => state
process (clk)
begin
if (rising_edge (clk)) then
if (reset="1")
then
state <= ZERO;
else
state <= next_state;
end if;
end if;
end process;

-Computation of the next state
process (state,key_in,do)
begin
next_state <= state;
case state is
-State ZERO
-Signal generated: reset => 1, key_out => 0
when ZERO =>
reset_counter <= ’17;
key_out <= ’17;

if (key_in = "0")

then

next_state <= ZERO_TO_ONE;
end if;

-State ZERO_TO_ONE
-Signal generated: reset => 0, key_out => 0
when ZERO_TO_ONE =>
reset_counter <= ’0’;
key_out <= '17;
if (do >= 500_000)

then

next_state <= ONE;

end if;

-State ONE

-Signal generated: reset => 1, key_out => 1
when ONE =>

reset_counter <= '1’;

key_out <= '0’;

if (key_in = ’17)

then

next_state <= ONE_TO_ZERO;

end if;

-State ONE_TO_ZERO

-Signal generated: reset => 0, key_out => 1

when ONE_TO_ZERO =>
reset_counter <= ’0’;
key_out <= r0’;

if (do >= 500_000)
then

next_state <= ZERO;
end if;

end case;

end process;

end arl;

de2_i2c_av_config.v
/%

* I2C bus control for initializing the audio and video chips on the DE2 board
*

* Adapted by Stephen A. Edwards, Columbia University, sedwards@cs.columbia.edu
*/
module de2_i2c_av_config(iCLK, iRST_N, I2C_SCLK, I2C_SDAT);

// From host

70

input iCLK;
input iRST_N;

// I2C bus

output I2C_SCLK;
inout I2C_SDAT;

// Internal Registers/Wires
reg [15:0] mI2C_CLK_DIV;
reg [23:0] mI2C_DATA;
reg mI2C_CTRL_CLK;
reg mI2C_GO;
wire mI2C_END;
wire mI2C_ACK;
reg [15:0] LUT_DATA;
reg [5:0] LUT_INDEX;
reg [3:0] mSetup_ST;

// Clock frequencies
parameter CLK_Freq = 50000000; // 50 MHz
parameter I2C_Freq = 20000; // 20 kHz

parameter LUT_SIZE = 50;

// Audio Data Index
parameter SET_LIN_L = 0;
parameter SET_LIN_R = 1;
parameter SET_HEAD_L = 2;
parameter SET_HEAD_R = 3;
parameter A_PATH_CTRL = 4;
parameter D_PATH_CTRL = 5;
parameter POWER_ON = 6;
parameter SET_FORMAT 7
parameter SAMPLE_CTRL 8;
parameter SET_ACTIVE = 9;
// Video Data Index
parameter SET_VIDEO = 10;

// I2C Control Clock
always (posedge iCLK or negedge iRST_N)
begin
if (1iRST_N)
begin
mI2C_CTRL_CLK <= 0;
mI2C_CLK_DIV <= 0;
end
else
begin
if (mI2C_CLK_DIV < (CLK_Freq/I2C_Freq)
mI2C_CLK_DIV <= mI2C_CLK_DIV+1;
else
begin
mI2C_CLK_DIV <= 0;
mI2C_CTRL_CLK <= mI2C_CTRL_CLK;

de2_i2c_controller u0 (
.CLOCK (mI2C_CTRL_CLK), // Controller Work Clock
.I2C_SCLK (I2C_SCLK), // I2C CLOCK
.I2C_SDAT (I2C_SDAT), // I2C DATA
.I2C_DATA (mI2C_DATA), // DATA: [SLAVE_ADDR, SUB_ADDR, DATA]
.GO(mI2C_GO), // GO transfor
-END (mI2C_END), // END transfor
.ACK (mI2C_ACK), // ACK
-RESET (iRST_N)
)i

// Configuration control
always (posedge mI2C_CTRL_CLK or negedge iRST_N)
begin
if (1iRST_N)
begin
LUT_INDEX <=
mSetup_ST <=
mI2C_GO <= 0;
end
else
begin
if (LUT_INDEX<LUT_SIZE)
begin
case (mSetup_ST)
0: begin
if (LUT_INDEX<SET_VIDEO)
mI2C_DATA <= 8’h34,LUT_DATA;
else
mI2C_DATA <= 8’'h40, LUT_DATA;
mI2C_GO <= 1;
mSetup_ST <= 1;
end
1: begin
if (mI2C_END)
begin
if (!mI2C_ACK)
mSetup_ST <= 2;
else
mSetup_ST <= 0;

0;
0;

71

mI2C_GO <= 0;

end

end

2: begin

LUT_INDEX <= LUT_INDEX+1;
mSetup_ST <= 0;

end

endcase

// Configuration data LUT
always
begin
case (LUT_INDEX)
// Budio Config Data
SET_LIN_L : LUT_DATA <= 16’h001A;
SET_LIN_R : LUT_DATA <= 16’h021A;
SET_HEAD_L : LUT_DATA <= 16’h047B;
SET_HEAD_R : LUT_DATA <= 16’h067B;
A_PATH_CTRL : LUT_DATA <= 16'h08F8;
D_PATH_CTRL : LUT_DATA <= 16'hO0A06;
POWER_ON : LUT_DATA <= 16"h0C00;
SET_FORMAT : LUT_DATA <= 16’h0E01;
SAMPLE_CTRL : LUT_DATA <= 16'h1002;
SET_ACTIVE : LUT_DATA <= 16’h1201;
// Video Config Data

SET_VIDEO+0 : LUT_DATA <= 16’h1500;
SET_VIDEO+l : LUT_DATA <= 16’h1741;
SET_VIDEO+2 : LUT_DATA <= 16’h3al6;
SET_VIDEO+3 : LUT_DATA <= 16’h5004;
SET_VIDEO+4 : LUT_DATA <= 16’hc305;
SET_VIDEO+5 : LUT_DATA <= 16’hc480;
SET_VIDEO+6 : LUT_DATA <= 16’h0e80;
SET_VIDEO+7 : LUT_DATA <= 16’h5020;
SET_VIDEO+8 : LUT_DATA <= 16’h5218;
SET_VIDEO+9 : LUT_DATA <= 16’h58ed;
SET_VIDEO+10 : LUT_DATA <= 16’h77c5;

SET_VIDEO+11
SET_VIDEO+12
SET_VIDEO+13
SET_VIDEO+14
SET_VIDEO+15
SET_VIDEO+16
SET_VIDEO+17

LUT_DATA <= 16’h7c93;
LUT_DATA <= 16’h7d00;
LUT_DATA <= 16’hd048;
LUT_DATA <= 16’hd5a0;
LUT_DATA <= 16’hd7ea;
LUT_DATA <= 16’he43e;
LUT_DATA <= 16’hea0f;

SET_VIDEO+18 : LUT_DATA 16'h3112;
SET_VIDEO+19 : LUT_DATA <= 16’h3281;
SET_VIDEO+20 : LUT_DATA 16”h3384;

SET_VIDEO+21
SET_VIDEO+22
SET_VIDEO+23

LUT_DATA <= 16’h37A0;
LUT_DATA <= 16’he580;
LUT_DATA <= 16’he603;

SET_VIDEO+24 : 16/he785;
SET_VIDEO+25 : 16/1h5000;
SET_VIDEO+26 : 16/h5100;
SET_VIDEO+27 : 16/1h0050;
SET_VIDEO+28 : 16/1h1000;
SET_VIDEO+29 16/1h0402;
SET_VIDEO+30 16”h0b00;
SET_VIDEO+31 16"h0a20;

SET_VIDEO+32 LUT_DATA <= 16’h1100;
SET_VIDEO+33 : LUT_DATA <= 16'h2b00;
SET_VIDEO+34 : LUT_DATA <= 16’h2c8c;

SET_VIDEO+35 : LUT_DATA <= 16’h2df2;
SET_VIDEO+36 : LUT_DATA <= 16’h2eee;
SET_VIDEO+37 : LUT_DATA <= 16’h2ff4;
SET_VIDEO+38 : LUT_DATA <= 16’h30d2;
SET_VIDEO+39 : LUT_DATA <= 16’h0e05;
default : LUT_DATA <= 16’hxxxx;
endcase
end

endmodule

de2_i2c_controller.v

/7
// Copyright (c) 2005 by Terasic Technologies Inc.

// Permission:

// Terasic grants permission to use and modify this code for use

// in synthesis for all Terasic Development Boards and Altrea Development
// Kits made by Terasic. Other use of this code, including the selling,
// duplication, or modification of any portion is strictly prohibited.

// Disclaimer:

// This VHDL or Verilog source code is intended as a design reference
// which illustrates how these types of functions can be implemented.

// It is the user’s responsibility to verify their design for

// consistency and functionality through the use of formal

// verification methods. Terasic provides no warranty regarding the use
// or functionality of this code.

72

// Terasic Technologies Inc

// 356 Fu-Shin E. Rd Sec. 1. JhuBei City,
// HsinChu County, Taiwan

// 302

// web: http://www.terasic.com/
// email: support@terasic.com

// Major Functions:i2c controller

// Revision History

// Ver :| Ruthor :| Mod. Date :| Changes Made:
// V1.0 :| Joe Yang :| 05/07/10 :| Initial Revision

module de2_i2c_controller (
CLOCK,

12C_SCLK, // 12C CLOCK
I2C_SDAT, // I2C DATA
I2C_DATA, // DATA: [SLAVE_ADDR, SUB_ADDR, DATA]
GO, // GO transfor

END, // END transfor

W_R, // W_R

ACK, // ACK

RESET,

// TEST

SD_COUNTER,

SDO

)i

input CLOCK;
input [23:0] I2C_DATA;
input GO;
input RESET;
input W_R;
inout I2C_SDAT;
output I2C_SCLK;
output END;
output ACK;

// TEST
output [5:0] SD_COUNTER;
output SDO;

reg SDO;
reg SCLK;

reg END;

reg [23:0] SD;

reg [5:0] SD_COUNTER;

wire I2C_SCLK = SCLK | (((SD_COUNTER >= 4) & (SD_COUNTER <=
wire I2C_SDAT = SDO ? 1’bz : 0;

reg ACKl, ACK2, ACK3;
wire ACK = ACKL | ACK2 | ACK3;

//-I2C COUNTER

always (negedge RESET or posedge CLOCK)
begin
if (!RESET)
SD_COUNTER = 6’b111111;
else
begin
if (GO == 0)
SD_COUNTER = 0;
else
if (SD_COUNTER < 6’b111111)
SD_COUNTER = SD_COUNTER + 1;
end
end

always @ (negedge RESET or posedge CLOCK)
begin
if (!RESET)
begin
SCLK = 1
SDoO = 1;
ACKL = 0
ACK2 = 0;

0

ACK3

case (SD_COUNTER)

6’d0 : Dbegin ACKl = 0; ACK2 = 0; ACK3 = 0; END = 0; SDO = 1; SCLK = 1;

// Start
6’dl : Dbegin SD = I2C_DATA; SDO = 0; end
67d2 : SCLK = 0;

73

30))?

CLOCK

0);

// Slave Address

6'd3 SD[23];
6’ d4 sD[22];
6’d5 sD[21];
6’d6 sD[20];
67d7 = SD[19];
67d8 SD[18];
67d9 SD[17];
6d10 : SDO = SD[16];
6’dll : SDO = 1'bl; //ACK
// Sub-address
6’dl2 : begin SDO = SD[15]; ACKl = I2C_SDAT; end
6’dl3 : SDO = sD[14];
67dl4 : SD[13];
67dl5 : sD[12];
67dl6 : = sD[11];
67dl17 : SD[10];
67d18 : SD[9];
67d19 : SD[8];
67d20 : 1’bl; // ACK
// Data
67d21 : begin SDO = SD[7]; ACK2 = I2C_SDAT; end
67d22 : 1i
67d23 : 1i
6/d24 : SDO = SD[4];
67d25 : SDO = SD[3];
6/d26 : SDO = SD[2];
67d27 : = sD[1];
6"d28 : = sDp[0];
67d29 : = 1'bl; // ACK
// Stop
67d30 : begin SDO = 1’b0; SCLK = 1’b0; ACK3 = I2C_SDAT; end
67d31 : SCLK = 1'bl;
6’d32 : begin SDO = 1’bl; END = 1; end
endcase
end
endmodule

de2_sram_controller.vhd

library ieee;
use ieee.std_logic_1164.all;

entity de2_sram_controller is

port (
signal chipselect : in std_logic;
signal write, read : in std_logic;
signal address : in std_logic_vector (17 downto 0);
signal readdata : out std_logic_vector (15 downto 0);
signal writedata : in std_logic_vector (15 downto 0);
signal byteenable : in std_logic_vector(l downto 0);

signal SRAM_DQ : inout std_logic_vector (15 downto 0);
signal SRAM_ADDR : out std_logic_vector (17 downto 0);
signal SRAM_UB_N, SRAM_LB_N : out std_logic;

signal SRAM_WE_N, SRAM_CE_N : out std_logic;

signal SRAM_OE_N : out std_logic

)i

end de2_sram_controller;

architecture dp of de2_sram_controller is
begin

SRAM_DQ <= writedata when write = ’1’ else (others => '2’);
readdata <= SRAM_DQ;
SRAM_ADDR <= address;
SRAM_UB_N <= not byteenable(1);
SRAM_LB_N <= not byteenable (0);
SRAM_WE_N <= not write;
SRAM_CE_N <= not chipselect;
SRAM_OE_N <= not read;

de2_sram_controller_hw.tcl

TCL File Generated by Component Editor 7.2 on:
Thu Apr 05 15:54:15 EDT 2012
DO NOT MODIFY

set_source_file "de2_sram_controller.vhd"
set_module "de2_sram_controller"

set_module_description ""

set_module_property "className" "de2_sram_controller"

set_module_property "group" ""

set_module_property "libraries" [list "ieee.std_logic_1164.all" "std.standard.all"]
set_module_property "synthesisFiles" "de2_sram_controller.vhd"

74

Module parameters

Interface export_0
add_interface "export_0" "conduit" "start" "asynchronous"
Ports in interface export_0
add_port_to_interface "export_0" "SRAM_DQ" "export"
add_port_to_interface "export_0" "SRAM_ADDR" "export"
add_port_to_interface "export_0" "SRAM_UB_N" "export"

add_port_to_interface "export"
add_port_to_interface "export"”
add_port_to_interface "export”

add_port_to_interface "export_0" "SRAM_CE_N" "export"

Interface avalon_slave_0

add_interface "avalon_slave_0" "avalon" "slave" "asynchronous"

set_interface_property "avalon_slave 0" "isNonVolatileStorage" "false"
set_interface_property "avalon_slave 0" "burstOnBurstBoundariesOnly" "false"
set_interface_property "avalon_slave_0" "readLatency" "0"

set_interface_property "avalon_slave_0" "holdTime" "O0"
set_interface_property "avalon_slave_0" "printableDevice" "false"
set_interface_property "avalon_slave_0" "readWaitTime" "1"
set_interface_property "avalon_slave_0" "setupTime" "0"
set_interface_property "avalon_slave_0" "addressAlignment" "DYNAMIC"
set_interface_property "avalon_slave_0" "writeWaitTime"™ "O"
set_interface_property "avalon_slave_0" "timingUnits" "Cycles"
set_interface_property "avalon_slave_0" "minimumUninterruptedRunLength" "1"
set_interface_property "avalon_slave_0" "isMemoryDevice" "true"
set_interface_property "avalon_slave_0" "linewrapBursts" "false"
set_interface_property "avalon_slave_0" "maximumPendingReadTransactions" "0"
Ports in interface avalon_slave_0 add_port_to_interface "avalon_slave_0" "chipselect"

add_port_to_interface "avalon_slave_0" "write" "write"

add_port_to_interface "avalon_slave_0" "read" "read"
add_port_to_interface "avalon_slave_0" "address" "address"
add_port_to_interface "avalon_slave_0" "readdata" "readdata"

add_port_to_interface "avalon_slave 0" "writedata" "writedata"

add_port_to_interface "avalon_slave_0" "byteenable" "byteenable"

de2_wm8731_audio.vhd

This file has not been modified from its original version.

guitar_top.vhd

- DE2 top-level module
- Stephen A. Edwards, Columbia University, sedwards@cs.columbia.edu

- From an original by Terasic Technology, Inc.
- (DE2_TOP.v, part of the DE2 system board CD supplied by Altera)

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity guitar_top is

port (
signal CLOCK_50 : in std_logic;

SRAM_DQ : inout std_logic_vector (15 downto 0);
SRAM_ADDR : out std_logic_vector (17 downto 0);
KEY : in std_logic_vector (3 downto 0);
SRAM_UB_N,
SRAM_LB_N,
SRAM_WE_N,

75

"chipselect"

SRAM_CE_N,

SRAM_OE_N out std_logic ;

GPIO_0, - GPIO Connection 0
GPIO_1 inout std_logic_vector (35 downt

)i
end guitar_top;

architecture datapath of guitar_top

signal reset_n :std_logic;
signal new_res:std_logic;

o 0) - GPIO Connection

is

signal audio_clock unsigned (1l downto 0) := "00";
signal counter : unsigned(15 downto 0);

begin

process (CLOCK_50)
begin
if rising_edge (CLOCK_50) then
if counter = x"ffff" then
reset_n <= ’'1’;
else
reset_n <= '0';
counter <= counter + 1;
end if;
end if;
end process;

process (CLOCK_50)
begin
if rising_edge (CLOCK_50) then
audio_clock <= audio_clock + "1";
end if;
end process;

nios entity work.nios_system port map (
clk => CLOCK_50,
reset_n => reset_n,
SRAM_ADDR_from_the_sram => SRAM_ADDR,
SRAM_CE_N_from_the_sram => SRAM_CE_N,
SRAM_DQ_to_and_from_the_sram => SRAM_DQ,
SRAM_LB_N_from_the_sram => SRAM_LB_N,
SRAM_OE_N_from_the_sram => SRAM_OE_N,
SRAM_UB_N_from_the_sram => SRAM_UB_N,
SRAM_WE_N_from_the_sram => SRAM_WE_N,
—SWITCH_1_to_the_InputController_inst => GPIO_0(0),
—~SWITCH_2_to_the_InputController_inst => GPIO_0(1) ,
~SWITCH_3_to_the_InputController_inst => GPIO_0(2) ,
~SWITCH_4_to_the_TInputController_inst => GPIO_0(3),
~SWITCH_5_to_the_InputController_inst => GPIO_0 (4)
SWITCH_1_to_the_InputController_inst => KEY(0),
SWITCH_2_to_the_InputController_inst o,
SWITCH_3_to_the_InputController_inst 1,
SWITCH_4_to_the_InputController_inst 1,
SWITCH_5_to_the_InputController_inst 1,
—SWITCH_1_to_the_InputController2_inst => GPIO_0(0),
—SWITCH_2_to_the_InputController2_inst => GPIO_0(1) ,
-SWITCH_3_to_the_InputController2_inst => GPIO_0(2) ,
~SWITCH_4_to_the_TInputController2_inst => GPIO_0(3),
~SWITCH_5_to_the_TInputController2_inst => GPIO_O0 (4)
SWITCH_1_to_the_InputController2_inst => ‘1’ ,
SWITCH_2_to_the_InputController2_inst => KEY (1) ,
SWITCH_3_to_the_InputController2_inst => 1’ ,
SWITCH_4_to_the_InputController2_inst => "1’
SWITCH_5_to_the_InputController2_inst => ’1’,
-SWITCH_1_to_the_InputController3_inst => GPIO_0(0),
—~SWITCH_2_to_the_InputController3_inst => GPIO_0(1) ,
-SWITCH_3_to_the_InputController3_inst => GPIO_0(2) ,
—~SWITCH_4_to_the_InputController3_inst => GPIO_0(3),
~SWITCH_5_to_the_TInputController3_inst => GPIO_O0 (4)
SWITCH_1_to_the_InputController3_inst => ‘1’ ,
SWITCH_2_to_the_InputController3_inst => ‘1’ ,
SWITCH_3_to_the_InputController3_inst => KEY(2) ,
SWITCH_4_to_the_InputController3_inst => "1’ ,
SWITCH_5_to_the_InputController3_inst => "1’,
—SWITCH_1_to_the_InputController4_inst => GPIO_0(0),
—SWITCH_2_to_the_InputController4_inst => GPIO_0(1) ,
-SWITCH_3_to_the_InputControllerd_inst => GPIO_0(2) ,
—SWITCH_4_to_the_InputControllerd4_inst => GPIO_0(3),
~SWITCH_5_to_the_InputControllerd_inst => GPIO_0 (4)
SWITCH_1_to_the_TInputControllerd_inst => /1’ ,
SWITCH_2_to_the_InputControllerd_inst => /1’
SWITCH_3_to_the_InputControllerd_inst => ‘1’ ,
SWITCH_4_to_the_InputController4_inst => KEY(3) ,
SWITCH_5_to_the_InputController4_inst => "1,
—~SWITCH_1_to_the_InputController5_inst => GPIO_0(0),
—SWITCH_2_to_the_InputController5_inst => GPIO_0(1) ,
—SWITCH_3_to_the_InputController5_inst => GPIO_0(2) ,
—SWITCH_4_to_the_InputController5_inst => GPIO_0(3),
—SWITCH_5_to_the_InputController5_ inst => GPIO_0 (4)
SWITCH_1_to_the_InputController5_inst => ‘1’ ,
SWITCH_2_to_the_InputController5_inst => ‘1’ ,
SWITCH_3_to_the_TInputController5_inst => ‘1’ ,
SWITCH_4_to_the_InputController5_inst => "1’ ,
SWITCH_5_to_the_InputController5_inst => ’1’

76

end datapath;

InputController.vhd

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity InputController is

port (

—Avalon

clk : 1in std_logic;

reset_n : in std_logic;

read : in std_logic;

write : in std_logic;

chipselect : in std_logic;

address : in unsigned(9 downto 0);
readdata : out unsigned(1l5 downto 0);
writedata : in unsigned(15 downto 0);
inter : out std_logic;

-To switches

SWITCH_1 : 1in std_logic;
SWITCH_2 : 1in std_logic;
SWITCH_3 : in std_logic;
SWITCH_4 : in std_logic;
SWITCH_S5 : in std_logic

)i

end InputController;

architecture rtl of InputController is

type states is (IDLE, PRESSED,WAITST);
signal state, next_state : states;
signal we:std_Logic;

signal reset:std_logic;

signal counter: integer;

- A bunch of signals for the button

- The button clicks are first debounced and

Pulsed
- The naming follow this convention:

- Initial SWITCH_1

- Debounced DSWITCH_1 ___~~ ——————————

then

- Pulsed PSWITCH_1 -

-Switch 1
signal DSWITCH_1:std_logic;

signal PSWITCH_1:std_logic;

77

-Switch 2
signal DSWITCH_2:std_logic;
signal PSWITCH_2:std_logic;
-Switch 3
signal DSWITCH_3:std_logic;
signal PSWITCH_3:std_logic;
—-Switch 4
signal DSWITCH_4:std_logic;
signal PSWITCH_4:std_logic;
--Switch 5
signal DSWITCH_5:std_logic;
signal PSWITCH_5:std_logic;

—Debouncer

component debouncer is port (

clk : in std_logic;
key_in : in std_logic;
key_out : out std_logic;
reset : in std_logic

)i
end component debouncer;
~Pulser

component pulser is port (

clk : in std_logic;
key_in : in std_logic;
key_out : out std_logic;
reset : in std_logic

)i

end component pulser;
begin

-Reset

reset <= not reset_n;

-Write enable

we <= '1’ when chipselect ="1"

—Debouncers

and write='1"

else '0';

Dl: debouncer port map(clk, SWITCH_1,DSWITCH_I,reset);

D2: debouncer port map (clk, SWITCH_2,DSWITCH_2, reset);

D3: debouncer port map(clk,SWITCH_3,DSWITCH_3, reset);

D4: debouncer port map(clk,SWITCH_4,DSWITCH_4,reset);

D5: debouncer port map(clk,SWITCH_5,DSWITCH_S, reset);

—Pulsers

Pl: pulser port map(clk,DSWITCH_1,PSWITCH_1,reset);

P2: pulser port map(clk,DSWITCH_2,PSWITCH_2,reset);

P3: pulser port map(clk,DSWITCH_3,PSWITCH_3, reset);

P4: pulser port map(clk,DSWITCH_4,PSWITCH_4,reset);

P5: pulser port map(clk,DSWITCH_5,PSWITCH_5, reset);

-FSM Strandard next_state => state

process (clk)
begin

if (rising_edge (clk)) then

state <= IDLE;

else

state <= next_state;

if (state = PRESSED) then
counter <=0;

else counter <=counter +1;

end if;

end if;
end if;

end process;

—Combinational process

process (state, SWITCH_1,we)

begin

-By default reset the interuption signal
inter <= '0';

next_state <= state;

case state is

-Waiting for a button click

when IDLE =>

inter <='0';

if (PSWITCH_1 = ’0’ or PSWITCH_2 = /0’ or PSWITCH_3 = ’0’ or PSWITCH_4 = '0’ or PSWITCH_5 = '0’)
then

next_state <= PRESSED;

end i

-A button has been pressed
-Stay into this state until the interuption has been cleared

when PRESSED =

inter <="1";

if (we='1")

then

next_state <= WAITST;

end if;

when WAITST

inter <='0';

if (counter > 30000)
then

next_state <= IDLE;

end if;

end case;

end process;

79

end rtl;

InputController_hw.tcl

This file has not been modified from its original version.

InputController_inst.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
-use of Altera Corporation’s design tools, logic functions and other
-software and tools, and its AMPP partner logic functions, and any
-output files any of the foregoing (including device programming or
-simulation files), and any associated documentation or information are
-expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
-including, without limitation, that your use is for the sole purpose
-of programming logic devices manufactured by Altera and sold by Altera
—or its authorized distributors. Please refer to the applicable
—agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity InputController_inst is

port (

- inputs:

signal SWITCH_1 : 1IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : IN STD_LOGI

signal SWITCH_4 : IN STD_LOGIC;

signal SWITCH_S5 : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal reset_n : IN STD_LOGIC;

signal write : 1IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

)i
end entity InputController_inst;

architecture europa of InputController_inst is
component InputController is

port (

- inputs:

signal SWITCH_1 : 1IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : IN STD_LOGIC;

signal SWITCH_4 : IN STD_LOGI

signal SWITCH_S5 : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);
signal chipselect : IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal reset_n : IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);

- outputs:
signal inter : OUT STD_LOGIC;
signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i
end component InputController;

signal internal_inter : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);
begin

—the_InputController, which is an e_instance
the_InputController : InputController2
port map (
inter => internal_inter,
readdata => internal_readdata,
SWITCH_1 => SWITCH_I,

80

SWITCH_2 => SWITCH_2,
SWITCH_3 => SWITCH_3,
SWITCH_4 => SWITCH_4,
SWITCH_5 => SWITCH_S,
address => address,
chipselect => chipselect,
clk clk,

read => read,

reset_n => reset_n,

write => write,
writedata => writedata
)i

-vhdl renameroo for output signals
inter <= internal_inter;
-vhdl renameroo for output signals
readdata <= internal_readdata;

end europa;

InputController2_inst.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
-use of Altera Corporation’s design tools, logic functions and other
~software and tools, and its AMPP partner logic functions, and any
—output files any of the foregoing (including device programming or
—-simulation files), and any associated documentation or information are
-expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
-including, without limitation, that your use is for the sole purpose
-of programming logic devices manufactured by Altera and sold by Altera
-or its authorized distributors. Please refer to the applicable
—agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_l164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity InputController2_inst is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : IN STD_LOGIC;

signal SWITCH_4 : 1IN STD_LOGIC;

signal SWITCH_S : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : 1IN STD_LOGIC;

signal clk : 1IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal reset_n : 1IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

)i
end entity InputController2_inst;

architecture europa of InputController2_inst is
component InputController2 is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : 1IN STD_LOGIC;

signal SWITCH_4 : IN STD_LOGIC;

signal SWITCH_S5 : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : 1IN STD_LOGIC;

signal clk : 1IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal reset_n : IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

)i
end component InputController2;

signal internal_inter : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);
begin

81

-the_InputController2, which is an e_instance
the_InputController2 : InputController2
port map (
inter => internal_inter,
readdata => internal_readdata,

SWITCH_1 => SWITCH_1,
SWITCH_2 SWITCH_2,
SWITCH_3 => SWITCH_3,
SWITCH_4 => SWITCH_4,
SWITCH_5 => SWITCH_S,
address => address,
chipselect => chipselect,
clk => clk,

read => read,

reset_n => reset_n,
write => write,
writedata => writedata
)i

~vhdl renamerco for output signals
inter <= internal_inter;

-vhdl renameroo for output signals
readdata <= internal_readdata;

end europa;

InputController3_inst.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved.
-use of Altera Corporation’s design tools, logic functions and other
-software and tools, and its AMPP partner logic functions, and any
-output files any of the foregoing (including device programming or
-simulation files), and any associated documentation or information are
-expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
-including, without limitation, that your use is for the sole purpose
—-of programming logic devices manufactured by Altera and sold by Altera
—or its authorized distributors. Please refer to the applicable
—agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity InputController3_inst is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : IN STD_LOGI

signal SWITCH_4 : IN STD_LOGI

signal SWITCH_5 : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);
signal chipselect : IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal read : 1IN STD_LOGIC;

signal reset_n : 1IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);

- outputs:
signal inter : OUT STD_LOGIC;
signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i
end entity InputController3_inst;

architecture europa of InputController2_inst is
component InputController3 is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGI

signal SWITCH_2 : IN STD_LOGI

signal SWITCH_3 : IN STD_LOGIC;

signal SWITCH_4 : IN STD_LOGIC;

signal SWITCH_S5 : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : IN STD_LOGIC;

signal clk : 1IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal reset_n : 1IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i

82

end component InputController3;

signal internal_inter : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);
begin

-the_InputController3, which is an e_instance
the_InputController3 : InputController3
port map (
inter => internal_inter,
readdata => internal_readdata,

SWITCH_1 => SWITCH_1,
SWITCH_2 => SWITCH_2,
SWITCH_3 => SWITCH_3,
SWITCH_4 SWITCH_4,
SWITCH_S5 SWITCH_S,
address => address,
chipselect => chipselect,
clk => clk,

read => read,

reset_n => reset_n,
write => write,
writedata => writedata
)i

-vhdl renamerco for output signals
inter <= internal_inter;

-vhdl renameroco for output signals
readdata <= internal_readdata;

end europa;

InputController4_inst.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
-use of Altera Corporation’s design tools, logic functions and other
-software and tools, and its AMPP partner logic functions, and any
-output files any of the foregoing (including device programming or
-simulation files), and any associated documentation or information are
-expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
-including, without limitation, that your use is for the sole purpose
-of programming logic devices manufactured by Altera and sold by Altera
-or its authorized distributors. Please refer to the applicable
—agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity InputControllerd_inst is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : IN STD_LOGIC;

signal SWITCH_4 : 1IN STD_LOGIC;

signal SWITCH_S5 : 1IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : 1IN STD_LOGIC;

signal clk : 1IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal reset_n : IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

)i
end entity InputControllerd_inst;

architecture europa of InputControllerd_inst is
component InputControllerd is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGIC;
signal SWITCH_2 : IN STD_LOGIC;
signal SWITCH_3 : 1IN STD_LOGIC;
signal SWITCH_4 : 1IN STD_LOGIC;
signal SWITCH_S5 : IN STD_LOGIC;
signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);
signal chipselect : IN STD_LOGIC;
signal clk : IN STD_LOGIC;
signal read : IN STD_LOGIC;
signal reset_n : IN STD_LOGIC;
signal write : 1IN STD_LOGIC;

83

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);

- outputs:
signal inter : OUT STD_LOGIC;
signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

)i
end component InputControllerd;

signal internal_inter : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);
begin

-the_InputController4, which is an e_instance
the_InputControllerd4 : InputController4d
port map (
inter => internal_inter,
readdata => internal_ readdata,

SWITCH_1 => SWITCH_1,
SWITCH_2 => SWITCH_2,
SWITCH_3 => SWITCH_3,
SWITCH_4 => SWITCH_4,
SWITCH_5 => SWITCH_5,
address => address,
chipselect => chipselect,
clk => clk,

read => read,

reset_n => reset_n,
write => write,
writedata => writedata
)i

-vhdl renameroo for output signals
inter <= internal_inter;

-vhdl renameroo for output signals
readdata <= internal_readdata;

end europa;

InputController5_inst.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
-use of Altera Corporation’s design tools, logic functions and other
-software and tools, and its AMPP partner logic functions, and any
—output files any of the foregoing (including device programming or
—-simulation files), and any associated documentation or information are
—expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
~including, without limitation, that your use is for the sole purpose
-of programming logic devices manufactured by Altera and sold by Altera
-or its authorized distributors. Please refer to the applicable
-agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity InputController5_inst is

port (

- inputs:

signal SWITCH_1 : IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGI

signal SWITCH_3 : IN STD_LOGIC;

signal SWITCH_4 : IN STD_LOGIC;

signal SWITCH_S : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : 1IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal read : 1IN STD_LOGIC;

signal reset_n : 1IN STD_LOGIC;

signal write : 1IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i
end entity InputController5_inst;

architecture europa of InputController5_inst is
component InputController5 is

port (
- inputs:

signal SWITCH_1 : IN STD_LOGIC;
signal SWITCH_2 : IN STD_LOGIC;
signal SWITCH_3 : IN STD_LOGIC;
signal SWITCH_4 : IN STD_LOGIC;
signal SWITCH_S : 1IN STD_LOGIC;

84

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);
signal chipselect : 1IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal read : 1IN STD_LOGIC;

signal reset_n : 1IN STD_LOGIC;

signal write : 1IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

- outputs:
signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i

end component InputController5;

signal internal_inter : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);

begin

~the_InputController5, which is an e_instance
the_InputController5 : InputController5

port map (

inter => internal_inter,

readdata => internal_readdata,

SWITCH_1 SWITCH_1,
SWITCH_2 => SWITCH_2,
SWITCH_3 => SWITCH_3,
SWITCH_4 => SWITCH_4,

SWITCH_5 => SWITCH_S,
address => address,
chipselect => chipselect,
clk => clk,

read => read,

reset_n => reset_n,
write => write,
writedata => writedata

)i

-vhdl renamerco for output signals
inter <= internal_inter;

~vhdl renameroo for output signals
readdata <= internal_readdata;

end europa;

InputController6_inst.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved.
~use of Altera Corporation’s design tools, logic functions and other
-software and tools, and its AMPP partner logic functions, and any
-output files any of the foregoing (including device programming or
-simulation files), and any associated documentation or information are
-expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
-including, without limitation, that your use is for the sole purpose
-of programming logic devices manufactured by Altera and sold by Altera
—or its authorized distributors. Please refer to the applicable
—agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std _logic_unsigned.all;

entity InputController6_inst is

port (

- inputs:

signal SWITCH_1 : 1IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : IN STD_LOGI

signal SWITCH_4 : IN STD_LOGI

signal SWITCH_S5 : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal reset_n : IN STD_LOGIC;

signal write : 1IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

)i
end entity InputControlleré_inst;

architecture europa of InputController6_inst is

component InputControlleré is
port (

85

- inputs:

signal SWITCH_1 : 1IN STD_LOGIC;

signal SWITCH_2 : IN STD_LOGIC;

signal SWITCH_3 : IN STD_LOGIC;

signal SWITCH_4 : IN STD_LOGIC;

signal SWITCH_S5 : IN STD_LOGIC;

signal address : 1IN STD_LOGIC_VECTOR (9 DOWNTO 0);

signal chipselect : IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal reset_n : IN STD_LOGIC;

signal write : 1IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal inter : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

)i
end component InputController;

signal internal_inter : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);
begin

-the_InputController6, which is an e_instance
the_InputController6 : InputController2
port map (
inter => internal_inter,
readdata => internal_readdata,

SWITCH_1 => SWITCH_1,
SWITCH_2 => SWITCH_2,
SWITCH_3 => SWITCH_3,
SWITCH_4 SWITCH_4,
SWITCH_5 SWITCH_5,
address => address,
chipselect => chipselect,
clk => clk,

read => read,

reset_n => reset_n,

VoV

write => write,
writedata => writedata
)i

-vhdl renameroo for output signals
inter <= internal_inter;
-vhdl renameroo for output signals
readdata <= internal_readdata;

end europa;

jtag_uart.vhd

This file has not been modified from its original version.

nios_system.bsf

This file has not been modified from its original version.

nios_system.ptf

This file has not been modified from its original version.

nios_system.qip

set_global_assignment -name SOURCE_FILE [file join $ uartus (gip_path)

/home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/de2_sram_controller_hw.tcl]

set_global_assignment -name VHDL_FILE [file join $::quartus(gip_path)

/home /user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/de2_sram_controller.vhd]

set_global_assignment -name SOURCE_FILE [file join $::quartus(gip_path)
/home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/ InputController_hw.tcl]

set_global_assignment -name VHDL_FILE [file join $::quartus(gip_path)
/home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/InputController.vhd]

set_global_assignment -name SOURCE_FILE [file join $::quartus(gip_path) /home/user3/springl2/imf2108/Desktop/InputController2_hw.tcl]

set_global_assignment -name VHDL_FILE [file join $::quartus(gip_path) /home/user3/springl2/imf2108/Desktop/InputController2.vhd]

86

set_global_assignment -name SOURCE_FILE
set_global_assignment -name VHDL_FILE
set_global_assignment -name SOURCE_FILE
set_global_assignment -name VHDL_FILE
set_global_assignment -name SOURCE_FILE
set_global_assignment -name VHDL_FILE
set_global_assignment -name SOURCE_FILE
set_global_assignment -name VHDL_FILE

nios_system.sopc

[file join $::quartus(gip_path)
[file join $::quartus(gip_path)
[file join $::quartus(gip_path)
[file join $::quartus(qip_path)
[file join $::quartus(gip_path)
[file join $::quartus(gip_path)
[file join $::quartus(gip_path)

[file join $::quartus(gip_path)

/home/user3/springl2/imf2108/Desktop/InputController3_hw.tcl]
/home/user3/springl2/imf2108/Desktop/InputController3.vhd]
/home/user3/springl2/imf2108/Desktop/InputControllerd_hw.tcl]
/home /user3/springl2/imf2108/Desktop/InputControllerd.vhd]
/home /user3/springl2/imf2108/Desktop/InputController5_hw.tcl]
/home/user3/springl2/imf2108/Desktop/InputController5.vhd]
/home/user3/springl2/imf2108/Desktop/InputController6_hw.tcl]

/home/user3/springl2/imf2108/Desktop/InputController6.vhd]

This file has not been modified from its original version.

nios_system_generation_script

This file has not been modified from its original version.

nios_system_log.txt

Altera SOPC Builder Version 7.20 Build 151

Copyright (c)
2012.05.23 22:23
2012.05.23 22:23:07

2012.05.23 22:23
2012.05.23 22:23:07
2012.05.23 22:23:07

2012.05.23 22:23:

2012.05.23 22:23:

107

(%)

:07

(%)
(%)

1999-2007 Altera Corporation.

(%)

mk_custom_sdk starting

All rights reserved.

Reading project /home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/nios_system.ptf.

(%)

Finding all CPUs

Finding all available components
Reading /home/user3/springl2/im£2108/embsyscolspr2012/WORK/AWESOME_GUITAR/ .sopc_builder/install.ptf

(*)

(*)

Found 67 components

Finding all peripherals

2012.05.23 22:23:

2012.05.23 22:23:09

2012.05.23 22:23:09 (%)
2012.05.23 109 (%)
2012.05.23 109 (%)
2012.05.23 109 (x)
2012.05.23 09 (%)
2012.05.23 22:23:10
2012.05.23 22:23:11
2012.05.23 22:23:11 (%)
2012.05.23 111 (%)
2012.05.23 (11 (w)
2012.05.23 111 (x)
2012.05.23 11 ()
2012.05.23 11 (w)
2012.05.23 11 (%)
2012.05.23 120 (%)
2012.05.23 22:23:22
2012.05.23 22:23:23
2012.05.23 22:23:30
2012.05.23 22:23:30
2012.05.23 22:23:30

(%)

(%)
(A1l
(No Libraries Built)

Finding software components

(Legacy SDK Generation Skipped)
TCL Script Generation Skipped)

(Contents Generation Skipped)

mk_custom_sdk finishing

Starting generation for system:

() Running Generator Program for cpu

(*) Checking for plaintext license.
Couldn’t query license setup in Quartus directory /opt/altera/altera7.2/quartus
Defaulting to contents of LM_LICENSE_FILE environment variable
Plaintext license not found.

Checking for encrypted license

nios_system.

(non-evaluation) .

Couldn’t query license setup in Quartus directory /opt/altera/altera7.2/quartus
Defaulting to contents of LM_LICENSE_FILE environment variable

Encrypted license found.
Creating encrypted HDL

(%)

(%)

Making arbitration and system

(top)

Generating Quartus symbol for top level:

SOF will not be time-limited.

Running Generator Program for jtag_uart

modules.

nios_system

Generating Symbol /home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/nios_system.bsf

Creating command-line system-generation script:

/home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/nios_system_generation_script

2012.05.23 22:23:30

2012.05.23 22:23:30

() Running setup for HDL simulator:

(%)

modelsim

Setting up Quartus with nios_system_setup_quartus.tcl

/opt/altera/altera7.2/quartus/bin/quartus_sh -t nios_system_setup_quartus.tcl

Info:
Running Quartus IT
Copyright (C) 1991-

and other software

functions,

Shell
2007 Altera Corporation.

and tools,

Version 7.2 Build 151 09/26/2007 SJ Full Version
All rights reserved.
Your use of Altera Corporation’s design tools,

ek ko kK ko ko ko ko kK ko ko kR kK ko Kk kK kK kK K Kk

logic functions

and its AMPP partner logic
and any output files from any of the foregoing
(including device programming or simulation files),
associated documentation or information are expressly subject

87

and any

Info: to the terms and conditions of the Altera Program License
Info: Subscription Agreement, Altera MegaCore Function License
Info: Agreement, or other applicable license agreement, including,
Info: without limitation, that your use is for the sole purpose of
Info: programming logic devices manufactured by Altera and sold by
Info: Altera or its authorized distributors. Please refer to the

fo: applicable agreement for further details.
Processing started: Wed May 23 22:23:30 2012

Command: quartus_sh -t nios_system_setup_quartus.tcl

Evaluation of Tcl script nios_system_setup_quartus.tcl was successful
Quartus II Shell was successful. 0 errors, 0 warnings

Processing ended: Wed May 23 22:23:31 2012

Elapsed time: 00:00:01

2012.05.23 22:23:31 (%) Completed generation for system: nios_system.
2012.05.23 22:23:31 (%) THE FOLLOWING SYSTEM ITEMS HAVE BEEN GENERATED:
SOPC Builder database : /home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/nios_system.ptf
System HDL Model : /home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/nios_system.vhd
System Generation Script : /home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/nios_system_generation_script

2012.05.23 22:23:31 (%) SUCCESS: SYSTEM GENERATION COMPLETED.

Press ’Exit’ to exit.

nios_system.ptf.pre_generation_ptf

This file has not been modified from its original version.

nios_system_setup_quartus.tcl

Caution: this file may be regenerated by SOPC Builder. User edits will be lost.
project_open -current_revision "/home/user3/springl2/imf2108/embsyscolspr2012/WORK/AWESOME_GUITAR/AWESOME_GUITAR.qgpf"
set_global_assignment -name VHDL_FILE altera_europa_support.vhd

project_close

pulser.vhd

~Pulser generator
~When the input signal switches to 1
-it generates a pulse

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity pulser is

port
(
clk : in std_logic;
key_in : in std_logic;
key_out : out std_logic;
reset : in std_logic

)i
end pulser ;

architecture Al of pulser is
type states is (ZERO, ONE_PULSE, ONE_STANDBY);
signal state, next_state : states;
begin

-FSM Strandard next_state => state
process (clk)
begin
if (rising_edge (clk)) then
if(reset="1")
then
state <= ZERO;
else
state <= next_state;
end if;
end if;
end process;

—Computation of the next state
process (state,key_in)
begin
next_state <= state;
case state is
-State ZERO
-Signal generated 0
when ZERO =>

88

key_out <= "1';

if (key_in = 707)

then

next_state <= ONE_PULSE;
end if;

-State ONE_PULSE
-Signal generated 1
when ONE_PULSE =>
key_out <= ’0’;
next_state <= ONE_STANDBY;
-State ONE_STANDBY
-Signal generated: -
when ONE_STANDBY =>
key_out <= "1’;
if (key_in = ’17)
then
next_state <= ZERO;
end if;
end case;
end process;
end Al;

sopc_builder_log.txt

This file has not been modified from its original version.

sram.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
—use of Altera Corporation’s design tools, logic functions and other
-software and tools, and its AMPP partner logic functions, and any
—output files any of the foregoing (including device programming or
-simulation files), and any associated documentation or information are
-expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
-including, without limitation, that your use is for the sole purpose
-of programming logic devices manufactured by Altera and sold by Altera
-or its authorized distributors. Please refer to the applicable
-agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity sram is

port (

- inputs:

signal address : 1IN STD_LOGIC_VECTOR (17 DOWNTO 0);
signal byteenable : 1IN STD_LOGIC_VECTOR (1 DOWNTO 0);
signal chipselect : IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);

- outputs:
signal SRAM_ADDR : OUT STD_LOGIC_VECTOR (17 DOWNTO 0);
signal SRAM_CE_N : OUT STD_LOGIC;
signal SRAM_DQ : INOUT STD_LOGIC_VECTOR (15 DOWNTO 0);
signal SRAM_LB_N : OUT STD_LOGIC;
signal SRAM_OE_N OUT STD_LOGIC;
signal SRAM_UB_N OUT STD_LOGIC;
signal SRAM_WE_N OUT STD_LOGIC;
signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i
end entity sram;

architecture europa of sram is
component de2_sram_controller is

port (

- inputs:

signal address : 1IN STD_LOGIC_VECTOR (17 DOWNTO 0);
signal byteenable : 1IN STD_LOGIC_VECTOR (1 DOWNTO 0);
signal chipselect : 1IN STD_LOGIC;

signal read : 1IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);

- outputs:

signal SRAM_ADDR : OUT STD_LOGIC_VECTOR (17 DOWNTO 0);
signal SRAM_CE_N : OUT STD_LOGIC;

signal SRAM_DQ : INOUT STD_LOGIC_VECTOR (15 DOWNTO 0);
signal SRAM_LB_N : OUT STD_LOGIC;

signal SRAM_OE_N : OUT STD_LOGIC;

89

signal SRAM_UB_N OUT STD_LOGIC;

signal SRAM_WE_N OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i

end component de2_sram_controller;

signal internal SRAM_ADDR : STD_LOGIC_VECTOR (17 DOWNTO 0);
signal internal SRAM_CE_N : STD_LOGIC;

signal internal SRAM_LB_N : STD_LOGIC;
signal internal SRAM_OE_N : STD_LOGIC;
signal internal SRAM_UB_N : STD_LOGIC;
signal internal SRAM WE_N : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);

begin

—~the_de2_sram_controller, which is an e_instance
the_de2_sram_controller : de2_sram_controller

internal SRAM_ADDR,
¢ internal SRAM_CE_N,
SRAM_DQ => SRAM_DQ,

SRAM_LB_N => internal SRAM_LB_N,

SRAM_OE_N internal SRAM_OE_N,
SRAM_UB_N internal SRAM_UB_N,
SRAM_WE_N internal SRAM_WE_N,

readdata => internal_readdata,
address => address,
byteenable => byteenable,
chipselect => chipselect,
read => read,

write => write,

writedata => writedata

)i

-vhdl renameroo for output signals
SRAM_ADDR <= internal_SRAM_ADDR;
-vhdl renameroo for output signals
SRAM_CE_N <= internal_SRAM_CE_N;
-vhdl renameroo for output signals
SRAM_LB_N <= internal_SRAM_LB_N;
-vhdl renameroo for output signals
SRAM_OE_N <= internal_SRAM_OE_N;
-vhdl renameroo for output signals
SRAM_UB_N <= internal SRAM_UB_N;
-vhdl renameroo for output signals
SRAM_WE_N <= internal_ SRAM_WE_N;
—-vhdl renameroo for output signals
readdata <= internal_readdata;

end europa;

timer.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved.
-use of Altera Corporation’s design tools, logic functions and other
—software and tools, and its AMPP partner logic functions, and any
—output files any of the foregoing (including device programming or
-simulation files), and any associated documentation or information are
-expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
-including, without limitation, that your use is for the sole purpose
-of programming logic devices manufactured by Altera and sold by Altera
-or its authorized distributors. Please refer to the applicable
—agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_l1l164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity timer is

port (

- inputs:

signal address : 1IN STD_LOGIC_VECTOR (2 DOWNTO 0);
signal chipselect : IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal reset_n : IN STD_LOGIC;

signal write_n : 1IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

- outputs:
signal irg : OUT STD_LOGIC;
signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i

end entity timer;

architecture europa of timer is
signal clk_en : STD_LOGIC;

90

signal control_continuous : STD_LOGIC;

signal control_interrupt_enable : STD_LOGIC;
signal control_register : STD_LOGIC_VECTOR (3 DOWNTO 0);
signal control_wr_strobe : STD_LOGIC;
signal counter_is_running : STD_LOGIC;
signal counter_is_zero : STD_LOGIC;
signal counter_load_value : STD_LOGIC_VECTOR (31 DOWNTO 0);
signal counter_snapshot : STD_LOGIC_VECTOR (31 DOWNTO 0);
signal delayed_unxcounter_is_zeroxx0 : STD_LOGIC;
signal do_start_counter : STD_LOGIC;
signal do_stop_counter : STD_LOGIC;
signal force_reload : STD_LOGIC;
signal internal_counter : STD_LOGIC_VECTOR (31 DOWNTO 0);
signal period_h_register : STD_LOGIC_VECTOR (15 DOWNTO 0);
signal period_h_wr_strobe : STD_LOGIC;
signal period_l_register : STD_LOGIC_VECTOR (15 DOWNTO 0);
signal period_l_wr_strobe : STD_LOGIC;
signal read_mux_out : STD_LOGIC_VECTOR (15 DOWNTO 0);
signal snap_h_wr_strobe : STD_LOGIC;
signal snap_l_wr_strobe : STD_LOGIC;
signal snap_read_value : STD_LOGIC_VECTOR (31 DOWNTO 0);
signal snap_strobe : STD_LOGIC;
signal start_strobe : STD_LOGIC;
signal status_wr_strobe : STD_LOGIC;
signal stop_strobe : STD_LOGIC;
signal timeout_event : STD_LOGIC;
signal timeout_occurred : STD_LOGIC;

begin

clk_en <= std_logic’ (‘1');
process (clk, reset_n)
begin
if reset_n = '0’ then
internal_counter <= std_logic_vector’ ("00000000000000000001100001101001");
elsif clk’event and clk = ’1’ then

if std_logic’ ((counter_is_running OR force_reload)) = ’1’ then
if std_logic’ ((counter_is_zero OR force_reload)) = ’1/ then
internal_counter <= counter_load_value;

else

internal_counter <= A_EXT (((std_logic_vector’ ("0") & (internal_counter))
- std_logic_vector’ ("000000000000000000000000000000001")), 32);

end if;

end if;

end if;

end process;

counter_is_zero <= to_std_logic((internal_counter =
std_logic_vector’ ("00000000000000000000000000000000")));
counter_load_value <= period_h_register & period_l_register;
process (clk, reset_n)

begin
if reset_n = ’0’ then

force_reload <= std_logic’ ("07);

elsif clk’event and clk = ’1’ then

if std_logic’ (clk_en) = 1’ then

force_reload <= period_h_wr_strobe OR period_l_wr_strobe;
end if;

end if;

end process;

do_start_counter <= start_strobe;
do_stop_counter <= ((stop_strobe) OR (force_reload)) OR
((counter_is_zero AND NOT control_continuous));
process (clk, reset_n)

begin

if reset_n = ’0’ then

counter_is_running <= std_logic’ ('07);
elsif clk’event and clk = ’1’ then

if std_logic’ (clk_en) = /1’ then

if std_logic’ (do_start_counter) = ’1’ then

counter_is_running <= Vector_To_Std_Logic
(~SIGNED (std_logic_vector’ ("00000000000000000000000000000001"))) ;

elsif std_logic’ (do_stop_counter) = ’1’ then
counter_is_running <= std_logic’ ("0');

end if;

end if;

end if;

end process;

~delayed_unxcounter_is_zeroxx0, which is an e_register
process (clk, reset_n)

begin
if reset_n = '0’ then
delayed_unxcounter_is_zeroxx0 <= std_logic’ ('0");
elsif clk’event and clk = ’1’ then

if std_logic’ (clk_en) = 1’ then
delayed_unxcounter_is_zeroxx0 <= counter_is_zero;
end if;

end if;

end process;
timeout_event <= (counter_is_zero) AND NOT (delayed_unxcounter_is_zeroxx0);

process (clk, reset_n)
begin

91

if reset_n = '0’ then
timeout_occurred <= std_logic’ ('0');
elsif clk’event and clk = ’1’ then
if std_logic’ (clk_en) = 1’ then

if std_logic’ (status_wr_strobe) = ’1’ then
timeout_occurred <= std_logic’ (0');
elsif std_logic’ (timeout_event) = 1’ then

timeout_occurred <= Vector_To_Std_Logic

(~SIGNED (std_logic_vector’ ("00000000000000000000000000000001"))) ;
end if;

end if;

end if;

end process;

irg <= timeout_occurred AND control_interrupt_enable;

-s1, which is an e_avalon_slave

read_mux_out <= ((((((A_REP(to_std_logic

((((std_logic_vector’ ("00000000000000000000000000000")

& (address)) = std_logic_vector’

("00000000000000000000000000000010")))), 16) AND period_l_register)) OR ((A_REP (to_std_logic
((((std_logic_vector’ ("00000000000000000000000000000")

& (address)) = std_logic_vector’

("00000000000000000000000000000011™)))), 16) AND period_h_register))) OR ((A_REP (to_std_logic
((((std_logic_vector’ ("00000000000000000000000000000")

& (address)) = std_logic_vector’ ("00000000000000000000000000000100")))), 16) AND snap_read_value (15 DOWNTO 0)))) OR
((A_REP (to_std_logic ((((std_logic_vector’ ("00000000000000000000000000000")

& (address)) = std_logic_vector’ ("00000000000000000000000000000101")))), 16) AND snap_read_value (31 DOWNTO 16)))) OR
((A_REP (to_std_logic

((((std_logic_vector’ ("00000000000000000000000000000")

& (address)) = std_logic_vector’

("00000000000000000000000000000001")))), 16) AND (std_logic_vector’ ("000000000000")

& (control_register))))) OR ((A_REP(to_std_logic((((std_logic_vector’ ("00000000000000000000000000000")
& (address)) = std_logic_vector’ ("00000000000000000000000000000000")))), 16) AND
(std_logic_vector’ ("00000000000000™")

& (Std_Logic_Vector’ (A_ToStdLogicVector (counter_is_running)

& A_ToStdLogicVector (timeout_occurred))))));

process (clk, reset_n)

begin

if reset_n = /0’ then

readdata <= std_logic_vector’ ("0000000000000000") ;

elsif clk’event and clk = ’1’ then

if std_logic’ (clk_en) = ’1’ then

readdata <= read_mux_out;

end if;

end if;

end process;

period_l_wr_strobe <= (chipselect AND NOT write_n) AND to_std_logic
((((std_logic_vector’ ("00000000000000000000000000000")
& (address)) = std_logic_vector’ ("00000000000000000000000000000010"))));
period_h_wr_strobe <= (chipselect AND NOT write_n) AND
to_std_logic((((std_logic_vector’ ("00000000000000000000000000000")
& (address)) = std_logic_vector’ ("00000000000000000000000000000011"))));
process (clk, reset_n)
begin
if reset_n = ’0’ then
period_l_register <= std_logic_vector’ ("0001100001101001");
elsif clk’event and clk = ’1’ then

if std_logic’ (period_l_wr_strobe) = ’1’ then
period_l_register <= writedata;

end if;

end if;

end process;

process (clk, reset_n)
begin
if reset_n = '0’ then
period_h_register <= std_logic_vector’ ("0000000000000000");
elsif clk’event and clk = ’1’ then

if std_logic’ (period_h_wr_strobe) = ’1’ then
period_h_register <= writedata;

end if;

end if;

end process;

snap_l_wr_strobe <= (chipselect AND NOT write_n) AND
to_std_logic((((std_logic_vector’ ("00000000000000000000000000000")
& (address)) = std_logic_vector’ ("00000000000000000000000000000100"))));
snap_h_wr_strobe <= (chipselect AND NOT write_n) AND
to_std_logic((((std_logic_vector’ ("00000000000000000000000000000")
& (address)) = std_logic_vector’ ("00000000000000000000000000000101"))));
snap_strobe <= snap_l_wr_strobe OR snap_h_wr_strobe;
process (clk, reset_n)
begin
if reset_n = ’0’ then
counter_snapshot <= std_logic_vector’ ("00000000000000000000000000000000™") ;
elsif clk’event and clk = ’1’ then
if std_logic’ (snap_strobe) = ’1’ then
counter_snapshot <= internal_counter;
end if;
end if;

end process;

92

snap_read_value <= counter_snapshot;
control_wr_strobe <= (chipselect AND NOT write_n) AND

to_std_logic ((((std_logic_vector’ ("00000000000000000000000000000")
& (address)) = std_logic_vector’ ("00000000000000000000000000000001"))));
process (clk, reset_n)

begin

if reset_n = '0’ then

control_register <= std_logic_vector’ ("0000");

elsif clk’event and clk = ’1’ then

if std_logic’ (control_wr_strobe) = /1’ then

control_register <= writedata (3 DOWNTO 0);

end if;

end if;

end process;

stop_strobe <= writedata(3) AND control_wr_strobe;
start_strobe <= writedata(2) AND control_wr_strobe;
control_continuous <= control_register (1);
control_interrupt_enable <= control_register(0);
status_wr_strobe <= (chipselect AND NOT write_n) AND
to_std_logic((((std_logic_vector’ ("00000000000000000000000000000")
& (address)) = std_logic_vector’ ("00000000000000000000000000000000"))));

end europa;

timer.vhdl

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity timer is

port (

clk : in std_logic;

reset_n : in std_logic;

read : in std_logic;

write : in std_logic;

chipselect : in std_logic;

address : in unsigned(4 downto 0);
readdata : out unsigned(1l5 downto 0);
writedata : in unsigned(15 downto 0)

)i
end timer;

architecture rtl of timer is

signal we,wl,wh,ws : std_logic;
signal lo: unsigned(15 downto 0);
signal hi: unsigned(15 downto 0);
signal va : unsigned (31 downto 0);
signal start: std_logic;

signal re:std_logic;

signal count:std_logic;

begin

-Write signals

-Style inspired by http://www.amazon.com/Embedded-SoPC-Design-Processor-Examples/
dp/111800888X/ref=sr_1_3?s=books&ie=UTF8&qid=1332644132&sr=1-3
we <= '1’ when chipselect = ’1’and write ='1’ else ’'0' ;

wl <= ’1’ when we =’1’ and address = "00000" else "0’ ;

wh <= ’1’ when we =’1’ and address = "00001" else "0’ ;

ws <= ’1’ when we ='1’ and address = "00010" else ‘0’ ;

re <= ’1’ when chipselect = 1’ and read='1’ else ‘0’ ;
readdata <=

va(l5 downto 0) when address="00000" and re ='1’ else

va (31 downto 16) when address="00001" and re ='1’ else
x"0000";

process (clk)
begin
if rising_edge (clk) then

va <= va;
start <= start;

if reset_n='0’ then

count <= "0’
start <='0";
end if;

if wh = 1’ then va(31 downto 16) <= writedata;
elsif wl 1’ then va(l5 downto 0) <= writedata ;
elsif ws = ’1’ then start <= writedata(0);

else

if start =1’ then
count <= "1’;
start <= "0’

end if;

if count =’1’ then

if va = x"00000000" then
count <= 0’ ; start <= '0’

93

else
va <= va - 1;
end if;

end if;
end if;
end if;
end process;

end rtl;

timer_hw.tcl

TCL File Generated by Component Editor 7.2 on:
Tue May 22 19:56:46 EDT 2012
DO NOT MODIFY

set_source_file "timer.vhd"
set_module "timer"
set_module_description
set_module_property "className" "timer"
set_module_property "group" ""

set_module_property "libraries™ [list "altera.altera_europa_support_lib.all" "ieee.std_logic_1164.all" "ieee.std_logic_arith.all"

"ieee.std_logic_unsigned.all" "std.standard.all"]
set_module_property "synthesisFiles" "timer.vhd"

Module parameters

Interface clock
add_interface "clock" "clock" "sink" "asynchronous"
Ports in interface clock
add_port_to_interface "clock" "clk" "clk"

Interface clock_source
add_interface "clock_source" "clock" "source" "clock"
Ports in interface clock_source

Interface clock_sink
add_interface "clock_sink" "clock" "sink" "clock"
Ports in interface clock_sink

Interface export_0
add_interface "export_0" "conduit" "start" "clock"
Ports in interface export_0

Interface avalon_slave_0
add_interface "avalon_slave_0" "avalon" "slave" "clock"
set_interface_property "avalon_slave_0" "isNonVolatileStorage" "false"
set_interface_property "avalon_slave_0" "burstOnBurstBoundariesOnly" "false"
set_interface_property "avalon_slave_0" "readLatency" "0"
set_interface_property "avalon_slave_0" "holdTime" "0"
set_interface_property "avalon_slave_0" "printableDevice" "false"
set_interface_property "avalon_slave 0" "readWaitTime" "1
set_interface_property "avalon_slave_0" "setupTime" "0"
set_interface_property "avalon_slave_0" "addressAlignment" "DYNAMIC"
set_interface_property "avalon_slave_0" "writeWaitTime" "0"
set_interface_property "avalon_slave 0" "timingUnits" "Cycles"
set_interface_property "avalon_slave_0" "minimumUninterruptedRunLength" "1"
set_interface_property "avalon_slave 0" "isMemoryDevice" "false"
set_interface_property "avalon_slave_0" "linewrapBursts" "false"
set_interface_property "avalon_slave_0" "maximumPendingReadTransactions" "0"
4 Ports in interface avalon_slave_0
add_port_to_interface valon_slave_0" "address" "address"
add_port_to_interface "avalon_slave_0" "chipselect" "chipselect"
add_port_to_interface "avalon_slave_0" "write_n" "write_n"
add_port_to_interface "avalon_slave_0" "writedata" "writedata"
add_port_to_interface "avalon_slave_0" "readdata" "readdata"

Interface interrupt_sender

add_interface "interrupt_sender" "interrupt" "sender" "clock"

set_interface_property "interrupt_sender" "associatedAddressablePoint" "avalon_slave_0"
Ports in interface interrupt_sender
add_port_to_interface "interrupt_sender" "irg" "irg"

add_port_to_interface "interrupt_sender" "reset_n" "irg n"

timer_inst.vhd

-Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
—use of Altera Corporation’s design tools, logic functions and other
-software and tools, and its AMPP partner logic functions, and any
—output files any of the foregoing (including device programming or
-simulation files), and any associated documentation or information are
—expressly subject to the terms and conditions of the Altera Program
-License Subscription Agreement or other applicable license agreement,
-including, without limitation, that your use is for the sole purpose

94

-of programming logic devices manufactured by Altera and sold by Altera
-or its authorized distributors. Please refer to the applicable
—agreement for further details.

- turn off superfluous VHDL processor warnings
- altera message_level Levell
- altera message_off 10034 10035 10036 10037 10230 10240 10030

library altera;
use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity timer_inst is

port (
- inputs:

signal address : 1IN STD_LOGIC_VECTOR (2 DOWNTO 0);
signal chipselect : IN STD_LOGIC;

signal clk : IN STD_LOGIC;

signal write_n : 1IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

- outputs:
signal irg : OUT STD_LOGIC;
signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)i

end entity timer_inst;

architecture europa of timer_inst is
component timer is

port (

- inputs:

signal address : 1IN STD_LOGIC_VECTOR (2 DOWNTO O0);

signal chipselect : 1IN STD_LOGIC;

signal clk : 1IN STD_LOGIC;

signal write_n : 1IN STD_LOGIC;

signal writedata : 1IN STD_LOGIC_VECTOR (15 DOWNTO 0);
- outputs:

signal irg : OUT STD_LOGIC;

signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

)i
end component timer;

signal internal_irg : STD_LOGIC;
signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);

begin

—the_timer, which is an e_instance
the_timer : timer
port map (
irg => internal_irq,
readdata => internal_readdata,
address => address,
chipselect => chipselect,
clk => clk,
write_n => write_n,
writedata => writedata
)i
-vhdl renameroo for output signals
irg <= internal_irg;
-vhdl renameroo for output signals
readdata <= internal_readdata;

end europa;

95

