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1 HIGH-LEVEL OVERVIEW

Abstract

Fractals are often appreciated for their rich and elegant internal com-
plexity. This complexity is responsible for the beautiful aesthetic of these
famed mathematical images as well as the amount of computational power
required to generate them. Using fixed point calculations within paral-
lelized sequential logic blocks, we aim to develop an hardware-accelerated
fractal generator, capable of computing and displaying quadratic Julia
sets in significantly less time than a software-based solution.

1 High-level Overview

The following is a description the high-level block structure of the project:
• The UI Module is responsible for reading user input, translating that

input into information relevant to the remainder of the system, and
communicating the results.

• A Window Generator builds a set of 4-tuples (x, y, a, b) where each
tuple is a mapping from a VGA coordinate (x, y) to a value in the
complex plane of the form a + bi.

• Given a complex number specified by the ordered pair (a, b), compo-
nents known as Iterative Function Modules the number of function
iterations required for a specified value to become unbounded. Mul-
tiple IFMs work in parallel.

• These tuples are requested systematically by a component known as
the Parallel

• The processor writes its values across its bus into a queue, which
feeds values to Iterative Function Modules (IFMs).

• Another queue recieves 3-tuples (x, y, c) from the IFMs, where (x, y)
corresponds to a VGA coordinate and c is the breakaway constant
computed by the IFM. These values are passed one at a time to a
buffer known as the Coordinate-Breakaway Lookup Table.

• The VGA module fetches results from the Coordinate-Breakaway
Lookup Table and colorizes them using a separate RAM-based lookup
table, displaying the result.

These encompass only the so called “critical modules”, what is abso-
lutely needed to have a fast draw of the fractal. Further work, known as
parameterization modules, offer various ways to mutate the parameters
used to draw the fractal.
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1 HIGH-LEVEL OVERVIEW
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Figure 1: High-level Block Diagram
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2 CRITICAL MODULES

2 Critical Modules

2.1 UI Module

As an interactive device, our fractal generator has the capacity to accept
user parameters such as window size or Julia set constants during opera-
tion. This communication with the user is facilitated by the UI module,
which is implemented on the NIOS II processor. This module is respon-
sible for handling communication with input peripherals and translating
user input into information that can easily be used by the hardware-based
fractal generator. Once this information has been translated into a set of
instructions for the generator, these instructions are written to a special-
ized bus across the Avalon interconnect fabric.

Figure 2: Block and Timing Diagram of the Avalon interconnect fabric. Pro-
vided by Altera Corporation.

Parameters of primary concern are those of viewing window and Julia
set constant. The window is set using the following values (which will be
elaborated on in the next section)
• amin − 36 bits
• adiff − 36 bits
• aleap − 10 bits
• bmin − 36 bits
• bdiff − 36 bits
• bleap − 10 bits
Meanwhile, the Julia set constant is set using the following values
• creal − 36 bits
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2.2 Window Generator 2 CRITICAL MODULES

• cimg − 36 bits
Because the Avalon interconnect fabric only allows for 32 bits of data

to be written at once, the UI module communicates with the bus using
a specialized protocol. In this protocol, the four least significant bits of
data transmitted indicate the nature of the data.

XXXXXXXXXXXXXX|21AAAAAAAAAAAAAAAAAA|30000|0 amin (18 MSB)

XXXXXXXXXXXXXX|21AAAAAAAAAAAAAAAAAA|30001|0 amin (18 LSB)

XXXXXXXXXXXXXX|21AAAAAAAAAAAAAAAAAA|30010|0 adiff (18 MSB)

XXXXXXXXXXXXXX|21AAAAAAAAAAAAAAAAAA|30011|0 adiff (18 LSB)

XXXXXXXXXXXXXXXXXXXXXX|12AAAAAAAAAA|30100|0 aleap

XXXXXXXXXXXXXX|21BBBBBBBBBBBBBBBBBB|30101|0 bmin (18 MSB)

XXXXXXXXXXXXXX|21BBBBBBBBBBBBBBBBBB|30110|0 bmin (18 LSB)

XXXXXXXXXXXXXX|21BBBBBBBBBBBBBBBBBB|30111|0 bdiff (18 MSB)

XXXXXXXXXXXXXX|21BBBBBBBBBBBBBBBBBB|31000|0 bdiff (18 LSB)

XXXXXXXXXXXXXXXXXXXXXX|12BBBBBBBBBB|30100|0 aleap

XXXXXXXXXXXXXX|21CCCCCCCCCCCCCCCCCC|31010|0 creal (18 MSB)

XXXXXXXXXXXXXX|21CCCCCCCCCCCCCCCCCC|31011|0 creal (18 LSB)

XXXXXXXXXXXXXX|21CCCCCCCCCCCCCCCCCC|31100|0 cimg (18 MSB)

XXXXXXXXXXXXXX|21CCCCCCCCCCCCCCCCCC|31101|0 cimg (18 LSB)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX31111 End Transmission
We have the Nios II configured to use the SDRAM as its memory store,

making the SRAM available for other uses.

2.2 Window Generator

The window generator serves to kick off the calculation cascade, calcu-
lating the position of each pixel in the complex plane given the input
window, thereby producing (x, y, a, b) tuples.

36

36

10

36

10

clk

next_val

reset

a_min

a_diff

a_leap

a_out

x_out

Window Generator

36

36

10

a_min

a_diff

a_leap

36 b_out

10 y_out

Figure 3: High-level Block Diagram of the Window Generator

The generator uses a specialized procedure that requires only addition
and comparison operations to map out a whole window. Say we have a
window that stretches from vmin to vmax over N pixels. The procedure
works by iterating from 0 to N-1 and producing a sum at each step of the
way that corresponds to a the value of v at that point. The procedure
requires a few values as input:
• amin − 36 bits: Describes the minimum value of a in the window
• adiff − 36 bits: Describes the standard differential between consec-

utive a values in the window (amax − amin)/WIDTHSCREEN this
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2.2 Window Generator 2 CRITICAL MODULES

is computed by the NIOS processor.
• aleap−10 bits: Periodically, we will need to add 1 to our sum to com-

pensate for precision loss. This value corresponds to the length of
the intervals between these ”leap cycles” WIDTHSCREEN/((amax−
amin)%WIDTHSCREEN )

• bmin − 36 bits: Describes the minimum value of a in the window
• bdiff −36 bits: Describes the standard differential between consecu-

tive a values in the window (bmax − abmin)/HEIGHTSCREEN this
is computed by the NIOS processor.

• bleap−10 bits: Periodically, we will need to add 1 to our sum to com-
pensate for precision loss. This value corresponds to the length of the
intervals between these ”leap cycles” HEIGHTSCREEN/((bmax −
bmin)%HEIGHTSCREEN )

The window generator is therefore comprised of two ”differential coun-
ters” that are responsible for performing the iterations. One computes
values for b and the other a.
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Figure 4: Block diagram of a differential counter used in window generation

When the differential counter receives a reset signal, it initializes its
data according to the signals coming in. Then, each time it recieves a next-
value signal, it increments the output value accordingly. If the counter
reaches its maximum, it asserts a flag.
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2.2 Window Generator 2 CRITICAL MODULES
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c_out=0
v_diff=v_diff_in
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ready=1
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iter_max=iter_max_in

reset=0

reset=1
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at_max=1

Data
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reset=0

reset=1

reset=1
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reset=0
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reset=0
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next=1
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Figure 5: State Diagram for the diff counter, Moore machine: signals
max=c cuis=max itr, leap=iter count=v leap. Omit unused signals (X) for
compactness. Colorcoded signal bundles.

Figure 6: Timing diagram of the differential counter

In the window generator, the differential counters are hooked up in
such a way that the points are cycled through from left to right down the
screen.
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Figure 7: Block diagram illustrating (x, y, a, b) tuple dataflow.

The window generator takes reset signals from the bus connected to
the NIOS processor. When the window generator is ready for computation
(the same cycle that it is reset by the bus), it asserts a data flag. When the
IFM reads an (x, y, a, b) tuple, it asserts a next value signal indicating that
it will need new data in the following cycle. Once the window generator
runs out of values to give, it asserts an at max flag.
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Figure 8: State Diagram for the window generator code, Moore machine: signals
max=c cuis=max itr, leap=iter count=v leap. Omit unused signals (X) for
compactness.
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2.3 Parallel IFM Control Module 2 CRITICAL MODULES

Figure 9: Timing diagram of interface between the window generator and the
IFMs.

2.3 Parallel IFM Control Module

Rendering Julia set fractals requires many iterations of relatively simple
computations in the complex plane. This sequence of computations is
independent for each point in the image, which is why the calculation of
fractal sets lends itself to parallel computation. However, the very nature
of the iterated fractal calculation means that the amount of time spent
performing computations on each individual point can vary drastically,
introducing synchronization issues. It is the responsibility of the IFM
control module to resolve these issues.
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Figure 10: Block diagram for the IFM wrappers

The IFM control module constantly transmits the (x, y, a, b) tuple cur-
rently being expressed by the window generator to each of the IFMs.
When an IFM indicates that it is in the ready state, the controller asserts
a signal instructing the IFM to accept the new data and begin compu-
tation (assuming that the window generator is asserting the valid data
flag). Simultaneously, the controller signals to the window generator that
it needs the next data tuple in the window. If more than one IFM is in
the ready state at once, the controller only sends the read and compute
signal to one, saving the upcoming data tuples for the rest.
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2.4 Iterative Function Module (IFM)

A quadratic polynomial Julia set is generated by applying the function

f(z) = z2 + c (1)

repeatedly, where z, c ∈ C. For any given pair (z, c), this recurrence
will result in one of two outcomes:
• The magnitude of the complex values generated by the recurrence

may stay bounded by 2
• The magnitude may become unbounded and escape toward infinity
A point z on the complex plane is in the Julia set uniquely defined

by the complex number c if and only if the recurrence remains bounded
for (z, c). To determine whether or not a point remains bounded for a
given c, we compute a fixed number of iterations on the recurrence (in
our case 127) and report the iteration in which the value generated has a
squared magnitude of greater than 4. Those points that do not become
unbounded in this many iterations are considered to be part of the set.

Because the factors of the multiplication are complex numbers, com-
puting their product involves 3 real-number multiplications. For z = a+bi
we compute

PA = a2

PB = b2

PC = ab

With these values we can compute:

anext = PA − PB + creal

bnext = 2PC − cimg

|z|2 = PA + PB

The squaring operations for PA and PB can be perfomed by a special-
ized logical circuit provided as an Altera Megafunction. The multiplica-
tion PC should be perfomed by embedded multipliers on the DE2.
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Figure 11: Arithmetic Logic Circuit within each IFM

Numbers are represented as two’s-complement fixed-point binary val-
ues. We restrict ourselves to 36 bits, as the onboard multipliers are sized
as such. In order to accomodate the largest-magnitude value we expect
to come across during any iteration, we require 6 bits to the left of the
radix. Thus, our fixed-point values have 30 bits to the right of the radix.

Reset

Wait Compute

Done
x,y,count

reset=1

reset=0

reset=0

compute=1

compute=1

count=127 or ma2 > 4

reset=0

reset=1

Figure 12: State diagram for a single IFM. Moore machine: using abstract
transition descriptions. Omits unused signals for compactness.

To more easily facilitate communication with the IFM controller, each
IFM is contained within a wrapper module. Thus, the IFM controller
need only alter the state of the wrapper module, and the wrapper module
will transmit the signals to the IFMs indicating the desired behavior.
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Reset
we=0

Wait
we=0

IFM Ready
we=0

IFM Done
we=1,x,y,count

reset=1

reset=0
reset!=0

IFM new data

IFM done

Push data
No Data

New Data
Waiting
for data

Figure 13: State diagram for a single IFM unit (IFM handler/wrapper), Moore
machine: using abstract transition descriptions.

If a wrapper module is in the done state, the controller indicates that
its (x, y, c) triple should be read into the output register. If multiple IFM
wrappers are in the done state simultaneously, the controller chooses one
at a time to be read in. These triples are then augmented with an asserted
write enable flag to indicate that they represent valid data, and should be
written to the Coordinate-Breakaway lookup table.

2.5 Coordinate-Breakaway Lookup Table

After the count associated with each pixel is calculated, it must be stored
in a framebuffer that interfaces both with the Parallel IFM Control Mod-
ule as well as the VGA module.

Coordinate-Breakaway
            LUT

rx

ry

re

wx

wy

wv

we

clk_25MHz

reset
rv8

clk_50MHz

8

9

10

9

10

Figure 14: Block Diagram of the Coordinate-Breakaway LUT: signals on the
right side are inputs, signals on the left are outputs.

For this, we use the SRAM chip that is built into the DE2 board,
for its relatively expansive memory size (versus on-chip memory), fast
speed, and ease of use (versus the SDRAM chip). The SRAM chip has a
512kibibytes capacity that can be accessed and written to in half a 50MHz
clock cycle, making it ideal for our purposes.

Since we display a 640 × 480 image in the VGA module and keep
8 bits of iteration information for each pixel, we need a grand total of
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300kibibytes to store the information, fitting well within the confines of
the given 512kibibyte SRAM chip.

We use a straightforward addressing scheme to store the count infor-
mation, using the y position as the top 9 bits of the address, and the
x position as the bottom 10 bits of the address. This way, finding the
address from a given pixel position is very fast.

A small wrinkle is the fact the SRAM is in fact a 256Kx16 bit memory,
reading and writing in 16 bit chunks. This merely means that the very
bottom bit of the x position does not go to the address, but is routed to
the bitmask signal indicating whether the byte sought is in the upper or
lower half. Of the 16-bit word that is addressed by the remaining 18 bits.

2.6 Reading/Writing

Since the SRAM has only one IO port, reads and writes must be time
multiplexed. The VGA module will be consistently requesting data from
the SRAM at 25MHz. However, while the fractal is being generated, the
IFMs will be providing information that must be written to the SRAM at
the same frequency. This means that we must interleave reads and writes
to the SRAM.

We can use the structure of the reads from the VGA to our advantage
to make room for the necessary writes. Reads always follow a pattern,
where if we read the lower half of a 16bit word, then we will read the
higher half in the next 25MHz clock cycle. Hence, when we require the
lower half of a word, we can fetch the entire word in one read, save the
higher half in a register, and return it when it’s required in the next clock
cycle. In this way, we reduce the frequency of VGA reads from the SRAM
to every other cycle on a 25MHz clock.

Figure 15: Timing diagram of the interface between the Coordinate-Breakaway
LUT and VGA module

Even with every other 25Mhz cycle being dedicated to writing the data
being sent out by the IFMs, the SRAM might still miss a coordinate if the
IFMs are generating their maximum possible throughput of 25MB/s. To
account for this, we put the junction serving writedata to the SRAM on
a 50MHz clock. This junction consists of a shift register that constantly
reads from the IFM output, but only shifts when the SRAM’s read enable
signal is not being asserted.
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Read
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re=0,we=1/~
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Figure 16: Simplified State Diagram of the Coordinate-Breakaway LUT: Mealy
machine, only includes re and we as inputs and rv as an output, with ∼ denoting
a lack of outputs

This means that a given tuple (xj , yj , cj , wej) being output by the
IFM controller will be overwritten by the following (xk, yk, ck, wek) output
during every VGA read cycle. However, since the shift register is reading
from a 25MHz process at 50MHz, it is guaranteed that every write tuple
will be read into the shift register twice. Because the IFM and VGA
controllers are synchronized, the VGA read always occurs when j 6= k.
But because every tuple is read into the shift register twice, the value
that was overwritten, (xj , yj , cj , wej), must also exist in the next cell
over, guaranteeing reliable data transmission.

Figure 17: Timing diagram of the interface between the IFMs and the
Coordinate-Breakaway LUT.

Dangerous though it may be, the effect of having a faster clock for the
SRAM write junction is well contained. No processes depend on the state
of the write junction, and the junction is free to produce redundant write
data without consequence. The write junction merely serves as a conduit
through which writedata is transmitted.
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2.7 VGA Module

In order to display the generated Julia set, we connect a VGA controller to
the Coordinate-Breakaway lookup table. As the controller cycles through
output coordinates within the display area, it modifies the read address
signal for the lookup table. The data signal coming from the RAM is thus
the breakaway value associated with that coordinate.

VGA Control Module

VGA_CLK

VGA_HS

VGA_VS

VGA_SYNC

VGA_BLANK

VGA_*

x_pos

y_pos

re

30

10

9

clk

reset

rv_in 8

Figure 18: Block diagram of the VGA module

This breakaway value is passed through a decoder known as the Col-
orization Lookup Table and the resulting (R,G,B) signal tuple is sent to
the VGA port.

S0
x_pos,y_pos
re=1,VGA=0

reset=1

S1
re=0

S2
x_pos,y_pos
re=1, VGA

rv_in

~rv_in

reset=1

reset=1

Figure 19: State diagram for the VGA module, Mealy machine: ∼ stands in for
no input/output, and VGA stands in for all the VGA signals (VGA CLK, VGA HS,
VGA VS, VGA BLANK, VGA SYNC, VGA R, VGA G, VGA B). Omits unused signals for
compactness.

3 Parametrization Modules

These modules might be used parameterize the output fractal
• PS/2 Keyboard input can be used to allow the user to specify fractal

recomputation using a different set of parameters, permitting the
modification of window ranges and Julia Set constants. Keyboard
input would be facilitated through the Nios II processor and would
require a reexecution of the Window Generator.

• We could create a module for permuting the display colors given
by the Colorization Lookup table using a periodic function, thus
causing the colors to cycle. This module would allow us to modify
the way the fractal looks without recomputing it.
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4 UPDATED MILESTONES

• Spectral analysis module takes audio input and uses it to influence
the behavior of the Color Permutation module.

4 Updated Milestones

• Milestone 1 (Mar 27):
Develop a Window Generator and Parallelized IFM module that can
communicate successfully.

• Milestone 2 (Apr 10):
Display the colorized (and static) Julia set through VGA.

• Milestone 3 (Apr 24):
Implement parameter mutation, with subsequent updates to the dis-
played Julia set.

• Final Report and Presentation (May 10)
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