
System Design Document: Hardware Accelerated Market

Order Packet Generation

Ankur Gupta ∗1, Dhananjay Palshikar †1, Mithila Paryekar ‡1, Sushant Bhardwaj §1, and Yasser
Mohammed ¶1

1Department of Electrical Engineering,Columbia University

March 20, 2012

Abstract

This document specifies the design of Hardware Accelerated
Market Order Packet Generator. The designed system
aims at accelerating the release of packets on the network.
Optimization is acheived in terms of reducing the latency,
decreasing the data uploaded on the Avalon bus which
will eventually lead to power optimization. A software
application running on a soft-processor would change the
transaction-data going over the network in runtime. This
document describes the overall architecture of the system,
along with describing the design of the custom ethernet
accelerator. Typically the ethernet controller should be
capable of receiving and sending data over the network.
Our implementation will accelerate the sending of data to
the network. The receiving of data will still be handled in
software.

Keywords. FPGA, Nios II,ethernet accelerator

1 Introduction

Various applications now days require the fast transmission
of data in the order of giagbytes per second. High frequency
trading used in stock markets is one such example. A major
bottleneck in any such system is the overhead of the Operat-
ing System due to the limitation of CPU speed.This occurs
since packetization is implemented using software application.
The speed of these systems can be greatly increased if packe-
tization is done in hardware instead.

The duration of time we plan to minimize is: from the point
when the user initiates the transaction through a software ap-
plication, to the point when the ethernet controller puts the
data on the network.
Our system would implement the transport layer processing
along with the software interface of DM9000A ethernet con-
troller on an FPGA. The FPGA will also have on board a
soft-processor which would serve as an end point and a source

∗ag3187@columbia.edu
†dp2575@columbia.edu
‡mmp2178@columbia.edu
§sb3322@columbia.edu
¶ym2364@columbia.edu

of input for our custom hardware component. The system will
be developed for the Altera DE-2 FPGA board.

2 Architecture

In the Lab 2 assignment of the Embedded Systems Course, we
implemented UDP-chat application which implemented the
UDP packetization in software. The architecture of the Lab
2 assignment is shown in Fig.1(a), and is further described
in the following section. The system we would implement has
been shown in Fig.1(b). The accelerated ethernet controller
would listen on the avalon bus, for data from the application.

2.1 Lab 2 Architecture

In the Lab 2 assignment the software on the NIOS-2 generated
data in the form of UDP packets. It was then sent to the
ethernet controller via the DM9000A software interface, as
can be seen from Fig.1(a). Every time there was data to be
sent, the entire packet was sent to the ethernet controller.
In terms of a stock market, an architecturally similar system
will have the application running on an Operating System,
which adds its overheads. The software application will have
to compete with other processes in order to get scheduled.
Although Lab 2 does not have an Operating System on the
NIOS-II processor, its architecture is similar in the sense that
UDP protocol is handled in the software. Lab 2 provided us
a good starting point for the design of our project.

2.2 System Architecture

Data packets sent over the network follow a protocol similar to
the OUCH protocol.OUCH is a digital communications proto-
col that allows customers of the NASDAQ (National Associa-
tion of Securities Dealers Automated Quotations) to conduct
business in the options market adapted for streaming(FAST)
[1], where often the difference in contents of the UDP packet
are restricted to a few fields in the payload, (assuming UDP
header remains the same;fixed sender, fixed recipient). Thus,
the System would implement the UDP packet generation on
the FPGA, in effect replacing the NIOS II software block in
Fig.1(a), with the DM9000A block in Fig.2(a). The soft-
ware component on NIOS would now only send limited filed
information amounting to 12 bytes(see Table1).

1



(a) Lab 2 (b) Our System

Figure 1: System Architecture

Price(5) Name(4) Buy/Sell(1) Quantity(2)

Table 1: UDP-Payload Format

2.3 DM9000A accelerated block for UDP

Our task for the project would be to build the DM9000A
block as an Avalon peripheral on the Altera-II FPGA. The
implemented peripheral will store a generic pre-decided UDP
packet in its internal memory. Every time a request on the
Avalon Bus is made by the NIOS-II, the packet payload con-
tents are minimally modified and passed over to the DM9000A
PHY interface. In all, the DM9000A accelerated block would
have the following components :

• Avalon Peripheral Component, for reading from the
avalon bus.

• UDP Packetization Component, for modifying the con-
tents of UDP packets

• DM9000A PHY interface would further have two compo-
nents

– DM9000A initialization component, to initialize the
ethernet Physical Layer Component for the first
time a packet is sent.

– DM9000A Communication component: sends UDP
packets to the physical layer.

This component would be made in VHDL which would be
synthesized and deployed on the FPGA chip on-board the
Altera DE-2 evaluation Board. The next section shows the
format of UDP payload used for the project.

2.4 UDP-Payload Format

The numbers seen with the field names indicate the size of
each field in bytes. The format shown above could be revised
along the course of the project.

Offset Wait(Y/N) Data

Table 2: Instruction Set for DM9000A

2.5 Instruction Set for DM9000A

In order to minimize communication over the avalon bus, we
intend to design a protocol which could eliminate the need for
the DM9000A controller to wait for each field, in case only
a subset of fields have changed. Table 2 ,shows the format
of instruction which would be sent over the avalon bus. The
Offset field in the instruction decides which address has to
be written to. Within the DM9000A controller this would be
interpreted as the payload field to be modified. Wait tells
the controller to wait for more fields and not send the packet
right away. Data carries the content of the modified field.

2.6 DM9000A controller State Description

Figure 2: State Diagram for DM9000A controller

The ethernet controller would be modeled on the the state
digram show in Fig.2. The figure is self explanatory and
follows the protocol explained in section2.5. An important
point to notice is, that the controller writes to PHY only
when wait = 0 ,implying that there are no more changes to
be made, and the packet could be sent in its current form.

2



3 Milestones & Plan of execution

The following list shows our Milestones, some of which have
been accomplished.

• Design of the system - Complete

• UDP-test -Complete : This test verified if the UDP
packets sent through the software code on NIOS-II were
readable. This was done by receiving the packets on a
UDP server running on an X86 machine.

• Milestone -I Get the DM9000A module to send a fixed
packet from its internal memory to the network. At this
point, the initialization of DM9000A will be handeled in
software. Develop software interface to update data value
at this internal memory.

• Milestone -II DM9000A is now an Avalon peripheral, it
would listen to the bus, and change the contents of the
packet as per the instruction from software application ,
and then send the packet over the network. A dummy
version of the protocol mentioned in section2.5 would be
implemented.

• Milestone -III Implement the complete protocol men-
tioned in section2.5 which leads to bus optimizaion. Cal-
culate and trasmit correct checksum value. Also, imple-
ment the initialization of DM9000A in hardware (which
was up till now in software). The system will be able to
handle reception of data packets in software.

4 Scope & Limitation of the imple-
mentation

The performance gain acheived with this project cannot be
compared in performance to the commercial systems deployed
at trading firms, primarily due to the limitations imposed by
the Altera DE2 Board. The limitations are listed below:

• Slow Clock: Altera DE2 Evaluation Board having lower
clock frequency

• Slow Ethernet: The absence of Gigabyte ethernet on
board Altera DE-2 Board.

• Avalon Bus vs Shared Memory: A bus handles multiple
devices, snooping on the bus for reading and writing is
slower than accessing a shared memory.

References

[1] What is ouch. URL
http://www.nasdaqtrader.com/Trader.aspx?id=ouch.

3


