
Fundamentals of Computer Systems
Thinking Digitally

Stephen A. Edwards and Martha Kim

Columbia University

Spring 2012



The Subject

s

of this Class

0

1



The Subjects of this Class

0 1



But let your communication be, Yea, yea; Nay, nay: for
whatsoever is more than these cometh of evil.

— Matthew 5:37



Engineering Works Because of Abstraction

Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics



Engineering Works Because of Abstraction

Application Software COMS 3157, 4156, et al.

Operating Systems COMS W4118

Architecture Second Half of 3827

Micro-Architecture Second Half of 3827

Logic First Half of 3827

Digital Circuits First Half of 3827

Analog Circuits ELEN 3331

Devices ELEN 3106

Physics ELEN 3106 et al.



Boring Stuff

Mailing list: csee3827-staff@lists.cs.columbia.edu
http://www.cs.columbia.edu/~sedwards/classes/2012/3827-spring/

Prof. Stephen A. Edwards First Half of Semester
sedwards@cs.columbia.edu
462 Computer Science Building

Prof. Martha Kim Second Half of Semester
martha@cs.columbia.edu
469 Computer Science Building

Lectures 1:10–2:25 PM, Mon, Wed, 614 Schermerhorn
Jan 18–Apr 30
Holidays: Mar 12–16 (Spring Break)

http://www.cs.columbia.edu/~sedwards/classes/2012/3827-spring/


Assignments and Grading

Weight What When

40% Six homeworks See Webpage
30% Midterm exam March 7th
30% Final exam During Finals Week (May 4–11)

Homework is due at the beginning of lecture.

We will drop the lowest of your six homework scores;

you can















































skip
omit

forget
ignore

blow off
screw up

feed to dog
flake out on

sleep through















































one with no penalty.



Rules and Regulations

You may collaborate with classmates on homework.

Each paper turned in must be unique; work must
ultimately be your own.

List your collaborators on your homework.

Don’t cheat: if you’re stupid enough to try, we’re smart
enough to catch you.

Tests will be closed-book with a one-page “cheat sheet”
of your own devising.



The Text

David Harris and Sarah
Harris.

Digital Design and
Computer Architecture.

Morgan-Kaufmann, 2007.

Almost precisely right for
the scope of this class:
digital logic and computer
architecture



th
in

kg
ee

k.
co

m



Which Numbering System Should We Use?
Some Older Choices:

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60



The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

7× 102 + 3× 101 + 0× 100 = 73010

9× 102 + 9× 101 + 0× 100 = 99010

Why base ten?



Hexadecimal, Decimal, Octal, and Binary

Hex Dec Oct Bin

0 0 0 0
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111



Binary and Octal

D
E
C

PD
P-

8
/I
,
c.

1
9

6
8

Oct Bin

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111

PC = 0× 211 + 1× 210 + 0× 29 + 1× 28 + 1× 27 + 0× 26 +

1× 25 + 1× 24 + 1× 23 + 1× 22 + 0× 21 + 1× 20

= 2× 83 + 6× 82 + 7× 81 + 5× 80

= 146910



Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Instead of groups of 3 bits (octal), Hex uses groups of 4.

CAFEF00D16 = 12× 167 + 10× 166 + 15× 165 + 14× 164 +

15× 163 + 0× 162 + 0× 161 + 13× 160

= 3,405,705,22910

C A F E F 0 0 D Hex
11001010111111101111000000001101 Binary
3 1 2 7 7 5 7 0 0 1 5 Octal



Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you

represent with 5

binary
octal
decimal
hexadecimal

digits?



Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the pro-
cessor, e.g., 16, 32, 64

LSB Least Significant Bit (“rightmost”)

MSB Most Significant Bit (“leftmost”)



Decimal Addition Algorithm

1 1

434
+628

1062

4+ 8 = 12

1+ 3+ 2 = 6
4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Decimal Addition Algorithm

1

1
434

+628

106

2

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Decimal Addition Algorithm

1

1
434

+628

10

62

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Decimal Addition Algorithm

1 1
434

+628

1

062

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Decimal Addition Algorithm

1 1
434

+628
1062

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Binary Addition Algorithm

10011

10011
+11001

101100

1+ 1 = 10

1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

1001

1
10011

+11001

10110

0

1+ 1 = 10
1+ 1+ 0 = 10

1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

100

11
10011

+11001

1011

00

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01

0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

10

011
10011

+11001

101

100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01

0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

1

0011
10011

+11001

10

1100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

10011
10011

+11001
101100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be
represented?



Signed Magnitude Numbers

You are most familiar with this: negative numbers have
a leading −

In binary, a
leading 1 means
negative:

00002 = 0

00102 = 2

10102 = −2

11112 = −7

10002 = −0?

Can be made to work, but addition is
annoying:

If the signs match, add the magnitudes
and use the same sign.

If the signs differ, subtract the smaller
number from the larger; return the
sign of the larger.



One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative
One’s Complement number.

To negate a number, complement (flip) each bit.

00002 = 0

00102 = 2

11012 = −2

10002 = −7

11112 = −0?

Addition is nicer: just add the one’s
complement numbers as if they were
normal binary.

Really annoying having a −0: two
numbers are equal if their bits are the
same or if one is 0 and the other is −0.





Two’s Complement Numbers
Really neat trick: make the most
significant bit represent a negative
number instead of positive:

11012 = −8+ 4+ 1 = −3

11112 = −8+ 4+ 2+ 1 = −1

01112 = 4+ 2+ 1 = 7

10002 = −8

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s
complement) then add 1.

Very good property: no −0

Two’s complement numbers are equal if all their bits
are the same.



Number Representations Compared

Bits Binary Signed One’s Two’s
Mag. Comp. Comp.

0000 0 0 0 0
0001 1 1 1 1

...
0111 7 7 7 7
1000 8 −0 −7 −8
1001 9 −1 −6 −7

...
1110 14 −6 −1 −2
1111 15 −7 −0 −1

Smallest number
Largest number



Fixed-point Numbers

How to represent fractional
numbers? In decimal, we continue
with negative powers of 10:

31.4159 = 3× 101 + 1× 100 +

4× 10−1 + 1× 10−2 + 5× 10−3 + 9× 10−4

The same trick works in binary:

1011.01102 = 1× 23 + 0× 22 + 1× 21 + 1× 20 +

0× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4

= 8+ 2+ 1+ 0.25+ 0.125
= 11.375



F
F a
u c
Interesting

The ancient Egyptians used binary fractions:

The Eye of Horus



Floating-point Numbers

How can we represent very large and small numbers
with few bits?

Floating-point numbers: a kind of scientific notation

IEEE-754 floating-point numbers:

1
︸︷︷︸

sign

10000001
︸ ︷︷ ︸

exponent

01100000000000000000000
︸ ︷︷ ︸

significand

= −1.0112 × 2129−127

= −1.375× 4

= −5.5



Binary-Coded Decimal

thinkgeek.com

Humans prefer
reading decimal
numbers;
computers prefer
binary.

BCD is a
compromise:
every four bits
represents a
decimal digit.

Dec BCD

0 0000 0000
1 0000 0001
2 0000 0010
...

...
8 0000 1000
9 0000 1001

10 0001 0000
11 0001 0001

...
...

18 0001 1000
19 0001 1001
20 0010 0000

...
...



BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

11

158
+242

400

1 1

000101011000
+001001000010

1010 First group

+ 0110 Correction
10100000 Second group

+ 0110 Correction
01000000 Third group

(No correction)
010000000000 Result



BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

11

158
+242

400

1 1

000101011000
+001001000010

1010 First group
+ 0110 Correction

10100000 Second group
+ 0110 Correction

01000000 Third group
(No correction)

010000000000 Result



BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

1

1
158

+242

40

0

1

1
000101011000

+001001000010
1010 First group

+ 0110 Correction
10100000 Second group

+ 0110 Correction
01000000 Third group

(No correction)
010000000000 Result



BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

1

1
158

+242

40

0

1

1
000101011000

+001001000010
1010 First group

+ 0110 Correction
10100000 Second group

+ 0110 Correction

01000000 Third group
(No correction)

010000000000 Result



BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

11
158

+242

4

00

1 1
000101011000

+001001000010
1010 First group

+ 0110 Correction
10100000 Second group

+ 0110 Correction
01000000 Third group

(No correction)
010000000000 Result



BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

11
158

+242
400

1 1
000101011000

+001001000010
1010 First group

+ 0110 Correction
10100000 Second group

+ 0110 Correction
01000000 Third group

(No correction)
010000000000 Result


