Semiconductor

sem·i·con·duc·tor
noun
1. a substance, such as silicon or germanium, with electrical conductivity intermediate between that of an insulator and a conductor
2. a semiconductor device
Sand into Silicon

Silica a.k.a. SiO\textsubscript{2} a.k.a. Quartz

\[\text{SiO}_2 + 2 \text{ C} \rightarrow \text{Si} + 2 \text{ CO} \]

Elemental, amorphous silicon

Monocrystalline Silicon Ingot
Doping Silicon Makes It a Better Conductor

Undoped (pure) silicon crystal: Not a good conductor

p-type (doped) silicon: boron atom steals a nearby electron

n-type (doped) silicon: extra electron on arsenic atom jump loose
A PN Junction aka A Diode

Depletion region

p (holes) n (electrons)

0 V

Ammeter
A PN Junction aka A Diode

Depletion region

Forward biased: current flows
A PN Junction aka A Diode

Reverse biased: no current flow
An N-Channel MOS Transistor

Gate at 0V: Off

SiO₂

Drain

Source

n

p (holes)

n

Ammeter

3 V

0 V
An N-Channel MOS Transistor

Gate positive: On

Gate

SiO₂

Drain

Source

p (holes)

3 V

Ammeter

3 V

0
The CMOS Inverter

An inverter is built from two MOSFETs:
- An n-FET connected to ground
- A p-FET connected to the power supply
The CMOS Inverter

When the input is near the power supply voltage (“1”),
the p-FET is turned off;
the n-FET is turned on, connecting the
output to ground (“0”).
n-FETs are only good at passing 0’s
The CMOS Inverter

When the input is near ground (“0”), the p-FET is turned on, connecting the output to the power supply (“1”); the n-FET is turned off. p-FETs are only good at passing 1’s
The CMOS NAND Gate

Two-input NAND gate:
two n-FETs in series;
two p-FETs in parallel
The CMOS NAND Gate

Both inputs 0:
Both p-FETs turned on
Output pulled high
The CMOS NAND Gate

One input 1, the other 0:
One p-FET turned on
Output pulled high
One n-FET turned on, but does not control output
The CMOS NAND Gate

Both inputs 1:
Both n-FETs turned on
Output pulled low
Both p-FETs turned off
The CMOS NOR Gate

Two-input NOR gate:
two n-FETs in parallel;
two p-FETs in series.
Not as fast as the NAND gate because n-FETs are faster than p-FETs.
A CMOS AND-OR-INVERT Gate
Pull-up and Pull-down networks must be complementary; exactly one should be connected for each input combination.

Series connection in one should be parallel in the other.
CMOS Inverter Layout

Cross Section Through N-channel FET

Top View
Full Adder Layouts

- fa_ly_mini_jk size: 60 \cdot 40 \mu m (1.2 \mu m CMOS)
- fa_ly_opt1 size: 63 \cdot 50 \mu m (1.2 \mu m CMOS)
- Fulladd.L size: 37 \cdot 26 \mu m (0.5 \mu m CMOS)
- fa_ly_itte size: 117 \cdot 31 \mu m (1.2 \mu m CMOS)

From http://book.huioo.com/design-of-vlsi-systems/
Intel 4004: The First Single-Chip Microprocessor

Announcing a new era of integrated electronics

4001: 256-byte ROM + 4-bit IO port
4002: 40-byte RAM
4003: 10-bit shift register
4004: 740 kHz 4-bit CPU w/ 45 instructions (2300 transistors)
Intel 4004 Masks