
COMS W4115 Project Proposal

GAQ

Generator of Adaptive Questionnaires
Esther Kundin, Ayla Brayer

June 7, 2011

I. Motivation:

As everyone who has visited a doctor recently knows, appointments to see doctors can
take a long time. Filling out the questionnaires can take a while too. As doctors’
offices are increasingly computerized, it is conceivable that diagnostic tools can be
generated to hone in on diagnoses based on answers to simple questions about a
patients’ symptoms. Filling out secure adaptive diagnostic questionnaires, that ask
questions based on your previous answers, would help doctors save time during visits
and hopefully get you out of the office faster. A language that would require no prior
programming experience and would be intuitive to use would be used to generate
adaptive questionnaires that specialists can use to pre-diagnose patients before they
even get into the office. The language should be simple enough that doctors or even
their assistants should be able to use it to tailor questions to their clientele easily.

 Similar questionnaires can be used by car mechanics to diagnose car trouble. Yet
another application for an adaptive questionnaire generator would be to customer-
satisfaction surveys or even phone menu systems. All of them would benefit from a
more adaptive approach. Rather than forcing people to answer reams of unrelated
questions, adaptive questionnaires can adapt to user inputs and have users answer

fewer but more targeted questions. This would make the taking of surveys less
tedious, which would in turn get more people to take them.

II. The Language:

GAQ has a simple and intuitive design to insure that users with little or no
programming experience will find it easy to use. Each command will be written in a
single line and tokens will be separated by space.

• Simple Data Types: GAQ will support floats, ints, booleans. True value for a
Boolean is “yes”, false value for a Boolean is “no”.

• Complex Data Types/Built-in Functions:

o text – similar to C++ strings

o Question (Question-text, Response-data-type) - Complex type that will
host a question text and the anticipated response data type (simple data
type)

 Data Member:

• Response – holds the response value

 Member Function: Member functions are called on the object
using a “->” syntax.

• next_question (Boolean-condition , Question) - Will attach
the next question to be asked, if the boolean condition
evaluates to ‘true’. An empty Boolean condition will always
evaluate to true. Boolean conditions will be evaluated in the
order that they were attached via next_question. Thus, if
two possible conditions are met, the first one attached via
next question will be the first one triggered. To reference
the value of the variable of the parent, the keyword
response is used. References to other variables are not
allowed.

o Result – Complex type that holds the results of the questionnaire – the
list of questions asked and their answers

o results_to_file (file-name, Result) - Prints the questionnaire results into
the given file

o results_to_stdout(Result) – prints the questionnaire results to stdout

o run_que(Question) – Runs the questionnaire, starting from the given
question, returns a Result object

o print (text) – Prints a text to the output stream

• Relational operators: < = , < , >= , > , = , !=

• Logical operators: & (and), | (or)

• Mathematical operators (apply only to float or int): + , -, *, /

• Comments : All characters between /* and */ will be treated as comments

• Line endings: Line endings will be marked by a period (‘.’) character

III. Sample Program:
Question root(“Are you ill?”, boolean).

Question ill(“Do you have a fever?”, boolean).

Question well (“Are you here for a checkup?”, boolean).

Question howHigh(“How high is your fever in Farenheit?”, float).

Question er(“Have you been to the ER?”, boolean).

Question.other(“What are your other symptoms?”, text).

root->next_question(response = yes, ill).

root->next_question(response = no, well).

ill->next_question(response = yes, howHigh).

howHigh->next_question(response > 104.9, er).

howHigh->next_question(other).

/* now questionnaire is set up, so run it, and print out the results
to stdout and file. */

print(“Questionnaire started!”).

Result result = run_que(root).

results_to_file(“result.txt”, result).

results_to_stdout(result).

print(“Finished!”).

