
COMS W4115
Programming Languages and Translators

Homework Assignment 3

Prof. Stephen A. Edwards Due July 22nd, 2011
Columbia University at 11:59 PM your time

Submit solutions through the CVN website.
Do this assignment alone. You may consult the instructor

and the TAs, but not other students.

1. For the following C array,

int a[2][3];

assume you are working with a 32-bit little-endian pro-
cessor with the usual alignment rules (e.g., a Pentium)
and

(a) Show how its elements are laid out in memory.

(b) Write the address expression for accessing
a[i][j].

(c) Verify parts a) and b) by writing a small C program
that contains and accesses such an array and look-
ing at the assembly language output with the C
compiler’s -S flag (e.g., gcc -O -S array.c. Turn
in a copy of your C program and an annotated ver-
sion of the assembly listing. Make sure the assembly
listing is no more than 40 lines.

2. In an assembly-language-like notation (e.g., use MIPS or
a pseudocode of your own choosing), write what an op-
timizing compiler would produce for the following two
switch statements.

switch (a) {
case 5: x = 2; break;
case 6: x = 5; break;
case 7: x = 24; y = 11; break;
case 8: y = 8; break;
case 9: z = 3; break;
default: z = 4; break;
}

switch (b) {
case 5: a = 18; break;
case 73: a = 2; break;
case 105: b = 7; c = 10; break;
case 5644: c = 8; break;
default: c = 17; break;
}

3. For a 32-bit little-endian processor with the usual align-
ment rules, show the memory layout and size in bytes of
the following three C variables.

union {
short a; /* 16-bit */
struct {
int b; /* 32-bit */
char c; /* 8-bit */

} s;
} u1;

struct {
short a;
char b;
short c;
int d;

} s1;

struct {
int d;
short a;
short c;
char b;

} s2;

4. Consider the following C-like program.

int w = 8;
int x = 12;

int incw() { return ++w; }
int incx() { return ++x; }

void foo(y, z){
printf("%d\n", y + 1 + y);
x = 4;
printf("%d\n", z);

}

int main() {
foo(incw(), incx()); return 0;

}

What does it print if the language uses

(a) Applicative-order evaluation?

(b) Normal-order evaluation?


