
The Setup Programming
Language

Ian Erb (ire2102)
Bill Warner (whw2108)
Adam Weis (ajw2137)

Andrew Ingraham (aci2110)

December 22, 2011

Contents

1 Introduction 3

2 Setup Tutorial 4

2.1 A Simple Scheduling Program 4

2.2 Sets and Tuples . 5

2.3 Using Set-Builder Notation . 5

3 Language Reference Manual 6

3.1 Overview . 6

3.2 Syntax Notation . 9

3.3 Objects . 10

3.4 Operators . 13

3.5 Language Syntax . 14

3.6 Scope Rules . 17

4 Project Plan 19

5 Compiler Architecture 21

6 Test Plan 23

7 Lessons Learned 24

1

CONTENTS

8 Appendix 25

2

Chapter 1

Introduction

The Setup language was created to leverage the clear and concise syntax of
set formalisms in mathematics. With Setup , users can generate sets using a
variety of logic and combinatorial techniques that would require significantly
more lines of code in other imperative languages such as Java, C or C++.
Setup was designed with the following goals in mind:

• Set Theory Abstraction. Setup provides a framework for handling
data which many mathematicians and scientists will find familiar and
easy to use. By maintaining a sufficient level of abstraction, Setup can
minimize the time needed to go from concept to concrete, working code.

• Minimal Code Generation. Setup greatly reduces the amount
of code needed to perform routine tasks. The user will find that nested
loops can be virtually eliminated from code, making program files lighter
and debugging easier.

• High Level of Readability. Setup aims to be a clear and con-
cise programming language with intuitive commands and syntax which
mirror the mathematical underpinnings of set theory.

3

Chapter 2

Setup Tutorial

Each program you write in Setup should be placed in a plain text file. By
convention, the .su suffix is used to denote programs written in valid Setup
code. Let’s write a simple program to get the hang for how Setup works.

2.1 A Simple Scheduling Program

2.1.1 Writing the Code

Create a text file entitled schedule.su and open it in your text editor. In this
file, place the following text:

/* Our First Program */

function main[] returns int {

set days = {"M","T","W","Th","F"};

set hrs = {1...24};

set week = Days cross hrs;

return 0;

}

We use the keyword set to indicate that we are defining a variable name for
a set

4

CHAPTER 2. SETUP TUTORIAL

2.1.2 Compiling a Program

-$./cWriter.native < hello.su

2.2 Sets and Tuples

2.3 Using Set-Builder Notation

5

Chapter 3

Language Reference Manual

3.1 Overview

3.1.1 Introduction

The language of set theory is widely used by mathematicians and scientists to
construct and manipulate large collections of objects in an abstract setting.
The Setup language implements the most useful and commonly used abstrac-
tions (e.g., union, intersections, direct products) from set theory in a language
which users of other common imperative languages such as C, C++ and Java
will find very simple and intuitive.

Setup was created with three goals in mind:

1. Construct sets in a logical way

2. Perform operations on large sets with minimal code generation

3. Maintain a high level of readability

We anticipate users will solve simple set-oriented problems like scheduling,
logic, and probability problems.

3.1.2 A Motivating Example

Setup greatly reduces the amount of code required to generate and manipulate
sets. A level of abstraction is provided which allows the user to work with sets

6

CHAPTER 3. LANGUAGE REFERENCE MANUAL

in an intuitive way – simultaneously improving readability. For example, the
need for writing successive nested loops is practically eliminated.

Suppose the user wanted to generate all possible ordered pairs of numbers
from 1 to 10. In C++, we would write:

struct { int first; int second; } pair;

vector<pair> pairs;

for(int i = 1; i!= 11; i++){

for(int j = 1; j!=11; j++){

pair temp;

temp.first = i;

temp.second = j;

vector.push_back(temp);

}

}

In Setup , the equivalent code can be written:

set A = {1...10};

set pairs = {(x,y) | x in A, y in A};

Making use of cross – a built-in cartesian product operator – we can further
simplify our code to a single line:

set pairs = {1...10} cross {1...10};

Though somewhat trivial, the above example shows how we can greatly reduce
code and improve readability at the same time. Suppose we wanted to remove
duplicates (1,1) ... (10,10). We would simply write

set unique_pairs = pairs minus {(x,x) | x in {1...10}};

Here we highlight another useful built in operator – minus – which returns
the complement of the second set within the first set. That is, A minus B

= A ∩Bc.

Working with Setup is simple and getting started is easy.

3.1.3 Lexical Conventions

The language has 5 basic tokens:

• Identifiers

7

CHAPTER 3. LANGUAGE REFERENCE MANUAL

• Keywords

• Literals

• Operators

• Punctuation

Whitespace characters (blanks, tabs and newlines) are ignored and used only
to separate tokens. At least one whitespace character is required to separate
adjacent tokens.

Comments

Block comments are introduced with /* and terminated with */. Nesting of
comments is not permitted. Comments are in general ignored by the compiler.

Identifiers

An identifier is a sequence of letters and digits. The first character must be
alphabetic. Names are case-sensitive.

Keywords

The following identifiers are reserved for use as keywords, and may not be used
otherwise:

set int bool float string

if tuple in then union

else intersect minus while cross

true function returns false return

Primitive Types

There are four primitive types in Setup :

Integers

An integer is a sequence of digits. All integers are lexed as a sequence of digits
with an optional leading minus sign for negative integers. They are represented

8

CHAPTER 3. LANGUAGE REFERENCE MANUAL

internally using architecture native integer representation.

Strings

A string is a sequence of characters enclosed in double quotes as in "string".
Two adjacent strings are concatenated using the ”+” sign. As in

"string" + "concat" -> "stringconcat".

Floats

We adopt the C Reference Manual definition of a floating point number:

A floating constant consists of an integer part, a decimal point,
a fraction part, an e and an optionally signed integer exponent.
The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be
missing; either the decimal point or the e and the exponent (not
both) may be missing.

All floating point numbers will be 64-bit double precision.

Booleans

A Boolean value can take either true or false.

3.2 Syntax Notation

In this manual, elements of language syntax are indicated by italic type. Lit-
eral words and characters are written in verbatim. Alternatives are listed
using the ”|” character: item | item.

9

CHAPTER 3. LANGUAGE REFERENCE MANUAL

3.3 Objects

3.3.1 Variables

A variable token is an identifier to a stored primitive, tuple or set. A vari-
able must begin with an alphabetic character followed by zero or more letters
and digits. Variables are declared by referencing their type followed by the
associated token and an optional initializer, as in int a; or int a = 3;. All
global variables must be declared outside of any function definition, and cannot
include an initializer.

A variable, once declared, may be reassigned but cannot be declared again in
the same scope.

int a = 3;

a=4; /* ok */

int a = 5; /* error */

Variable Initialization

Variables for primitives not explicitly initialized when declared will be initial-
ized as follows:

int→ 0

string → ””

float→ 0.0

bool→ false

set→ {}

Uninitialized tuples are not permitted.

3.3.2 Tuples

A n-tuple is an ordered collection of n comma-delimited expressions enclosed
in parentheses. An element is either a primitive, set or tuple. An n-tuple and
m-tuple are considered of the same type if the following two conditions are
satisfied:

• n = m.

10

CHAPTER 3. LANGUAGE REFERENCE MANUAL

• The type of each coordinate element is of the same type.

For example, the following tuple elements are not the same type because the
first coordinate tuples are not of the same type:

((1,"a"),2) //type: ((int,str),int)

((1,2),3) //type: ((int,int),int)

3.3.3 Sets

A set is an unordered collection (potentially empty) of terminals, sets or tuples.
Every element of a set is unique (duplicate elements are discarded). A set must
be homogeneous in type, meaning that every element within the set has
matching type. All sets are typed as set, regardless of their contents. This
means that a set containing sets of varying types is allowed.

{1,2,3,4} /* valid: homogeneous in type */

{1,2,3,"f"} /* invalid: not homogeneous in type */

{(1,2),(3.0,4.0)} /* invalid: tuple types are deep */

{{1,2,3},{"a","b"}} /* valid: set types are shallow */

Sets can be initialized in various ways:

Literal Initialization

A set may be initialized with a comma-delimited list of elements or identifiers
of matching type within curly braces:

set A = {1, 2, 3, 4, 5, 6}; /* ok */

string b = "name";

set B = {"this", "works", b}; /* ok */

set C = {1, 2, 3, b}; /* error: type mismatch */

Range Initialization

For sets of integer type, we allow the following range initialization using ”...”:

set A = {1 ... 6}; /* ok: returns {1, 2, 3, 4, 5, 6} */

set B = {1 ... 3, 5...7}; /* ok: returns {1, 2, 3, 5, 6, 7} */

set C = {3 ... -1}; /* ok: returns {3, 2, 1, 0, -1} */

11

CHAPTER 3. LANGUAGE REFERENCE MANUAL

Set-Builder Initialization

The following syntax is used for initializing a set through set-builder notation:

{ expr pipe sourcelist }

The source list is a sequence of comma-delimited expressions of the form

id in set

Each id represents a local variable which may be used to construct new el-
ements for a set via the expression appearing on the left hand side of the |
symbol. The sequenced sourcelist expressions are evaluated left-to-right.

The in operator is right associative, and the id is not assigned a value until the
right operand has been resolved. The resulting set will include the resulting left
side expression evaluated for all potential id values, with duplicates removed.

set A = { (x,y) | x in {1,2,3}, y in {"a","b","c"} };

B = { (1,"a"),(1,"b"),(1,"c"),

(2,"a"),(2,"b"),(2,"c"),

(3,"a"),(3,"b"),(3,"c") };

A == B; /* returns yup */

In addition, the left side expression may contain references to variables in
enclosing scopes (local sourcelist variables shadow enclosing scopes). For ex-
ample:

int a = 0;

int x = 5;

set A = { (a,x) | x in {1,2,3} }; /*x shadows enclosing x = 5*/

B = { (0,1),(0,2),(0,3) };

A == B; /*returns yup*/

12

CHAPTER 3. LANGUAGE REFERENCE MANUAL

3.4 Operators

3.4.1 Arithmetic Operations

The following arithmetic operations are provided: +,-,* for types int and
float. The return type is as follows:

int binop int → int

float binop float → float

float binop int → float

int binop float → float

There are two division operators:

1. /, which accepts as arguments any two numerical values and is guaran-
teed to return a float

2. // accepts as arguments any two numerical values and is guaranteed to
return an int truncated toward zero.

The following relational operators are provided for all primitive types: <,>,<=,>=,==,!=.
Types passed to these operators must match, except in the case of <,> when
comparing int and float. String comparison is done lexicographically as per
strcmp in the C standard library. The only character set supported is 8-bit
ASCII.

3.4.2 Set Operations

The following set operations are provided:

union intersect minus cross #

union

union is a binary operator which returns a union of two sets. Both sets must
contain elements of the same type.

13

CHAPTER 3. LANGUAGE REFERENCE MANUAL

intersect

intersect is a binary operator which returns the intersection of two sets.
Both sets must contain elements of the same type.

minus

minus is a binary operator which returns a set of elements which are present
in the first set but not in the second set. Both sets must contain elements of
the same type.

cross

cross takes as left operand a set with elements of type a and as right operand
a set of elements with type b and returns an exhaustive set of tuples of type
(a, b), duplicates removed.

#

is a unary operator returning the number of elements in a set.

3.5 Language Syntax

3.5.1 Structure of a Setup Program

Every Setup progam is a sequence of zero or more function definitions and/or
variable declarations. Variable declarations outside of function bodies are
considered global in scope and may not be assigned a value when declared.

program → ε
program → funcdef program
program → vdecl program

Execution (of non-empty programs) begins by calling the main function which
returns an int. User-defined functions must be defined before the main func-
tion. Nested function definitions are not permitted.

14

CHAPTER 3. LANGUAGE REFERENCE MANUAL

3.5.2 Expressions

Terminals

expr → float | int | string | bool | id

Tuples

expr → tuple
tuple → (expr-list)
expr-list → expr | expr,expr-list

Sets

expr → set
set → { expr-list }
set → { int ... int }
set → { expr | source-list }
source-list → id in expr | id in expr, source-list

Operations

expr → id = expr
expr → expr binop expr
expr → unop expr

3.5.3 Functions

Function definitions begin with the keyword function followed by a valid
identifier (see 3.1.3), a possibly empty list of formals, a return type specified
using the keyword return and a curly-brace enclosed list of statements.

funcdef → function id [formals-list] returns typespec { stmt-list }

formals-list → ε | formals-tail
formals-tail → formal | formal formals-tail
formal → typespec id
typespec → int | set | float | string | tuple | bool

15

CHAPTER 3. LANGUAGE REFERENCE MANUAL

Function definitions specify the expression to be returned using a return state-
ment:

return expr;

Functions are called by specifying an id and a list of arguments enclosed in
parentheses:

funcall → id(arglist)

arglist → ε | exprlist
exprlist → expr | expr , exprlist

3.5.4 Statements

A statement list is simply a sequence of one or more statements:

stmt-list → stmt | stmt stmt-list

with the following valid statements:

Variable Declaration and Assignment

stmt → typespec id;
stmt → typespec id = expr;

Control Statements

stmt → if(expr) then { stmt-list } else { stmt-list }

stmt → while (expr) { stmt-list }
stmt → return (expr);

Definitions

Print Statement

Setup provides a method for nice printing to the standard output:

stmt → Print (expr);

16

CHAPTER 3. LANGUAGE REFERENCE MANUAL

Expressions

A statement may also be an expression:

stmt → expr;

3.6 Scope Rules

There exists a global scope containing global variables and function definitions.
Each function body and set-builder expression defines a local scope. Variable
identifiers without type definitions are treated as references; local scope is first
searched, followed by successive enclosing scopes. Variable identifiers with
type definitions are treated as new declarations, and mask all variable identi-
fiers in enclosing scopes with the same identifier.

Sourcelist variables exist in the left side of set-bulider notation:

{expr pipe sourcelist}

A simple example of set-builder scope:

set A1 = {1,2};

set A2 = {3,4};

set A = {A1,A2};

/* result: B = {(1,2),(2,1),(3,4),(4,3)} */

set B = {(x,y) | a in A, x in a, y in a-{x}};

A richer example, using nested scopes:

17

CHAPTER 3. LANGUAGE REFERENCE MANUAL

set A1 = {1,2};

set A2 = {3,4};

set A = {A1,A2};

/* result: B = {4,6,8,10} */

set B = {x*2 | a in A, x in {y+1 | y in a } };

/*Pseudocode:

foreach a in A

foreach y in a

x = y+1

B.add(x*2)

next y

next a

*/

An example of variable shadowing:

int x = 2;

/* result: A = {4,16} */

set A = {x*x | x in {y | y in {x,x*x} } };

x; /* result: x=2 */

/*Pseudocode

x = 2

temp t = {x, x*x}

foreach y in t

x=y;

A.add(x*x)

next y

*/

18

Chapter 4

Project Plan

Figure 4.1: Timeline for Setup Team

September. Our team held weekly meetings to discuss different potential
ideas for a language. By the end of the month, we had decided on a language
that would manipulate sets. We then set to work developing a rough draft for
a working grammar and began drafting our reference manual.

October. In conjunction with writing the first draft of our LRM, we began
work on the scanner and parser. As we built the parser, we found several areas
where our grammar needed to be ”improved.” The following graphic illustrates
nicely how we spent October:

19

CHAPTER 4. PROJECT PLAN

Grammar

ScannerParser

update

update

update

November. We completed work on our parser in November and began
working on validation (static semantic analysis) to perform type checking. By
the end of the month we were at the point where we could start generating
code.

December. Writing code to generate valid C++ turned out to be more
difficult than we anticipated, largely due to deep typing of nested tuples, and
we continued to struggle with the Set-Builder construction mechanism. We
implemented a set class abstraction in C++ to handle some of the peculiarities
of arbitrary set and tuple containers. Throughout December, we generated
code and tested for bugs.

20

Chapter 5

Compiler Architecture

The compiler consists of 5 principal components: Scanner, Parser, Validator,
Code Generator and Set Class. The Scanner receives input in the form of plain
text files with .su suffix and the compiler generates valid cpp code.

The Code Generator uses the concrete parse tree generated from the Parser to
output valid C++ code. A polymorphic class hierarchy was implemented in
C++ (Set Class component) to implement complicated Tuple and Set types.

The following lays out who worked on the various component implementations:

Component Team Members

Scanner Adam
Parser Adam, Ian
Validation Bill
Code Generator Andrew, Bill, Ian
Set Class Bill, Andrew
Regression Suite Ian, Bill, Andrew

21

CHAPTER 5. COMPILER ARCHITECTURE

infile.su

Scanner

ParserValidator

Code GeneratorSet Class

outfile.cpp

Regression Suite

Figure 5.1: Overview of Setup Compiler

22

Chapter 6

Test Plan

23

Chapter 7

Lessons Learned

24

Chapter 8

Appendix

25

