THE SETUP PROGRAMMING
LANGUAGE

Ian Erb (ire2102)
Bill Warner (whw2108)
Adam Weiss (ajw2137)
Andrew Ingraham (aci2110)

December 23, 2011

Contents

1 Introduction 3

2 Setup Tutorial

2.1 A Simple Scheduling Program 4
3 Language Reference Manual 6
3.1 Overview 6
3.2 Syntax Notation 9
3.3 Objects 9
3.4 Operators 12
3.5 Language Syntax 13
3.6 ScopeRules 15
4 Project Plan 18
5 Compiler Architecture 20
6 Test Plan 22
6.1 Parser Tests e 22
6.2 Code Generation Tests 22
6.3 Type-Checking and Validation 24
7 Lessons Learned 26
7.1 Andrew’s Thoughts 26
7.2 Tan’s Thoughts 26
7.3 Bill's Thoughts o 27

CONTENTS

7.4 Adam’s Thoughts 27
8 Appendix 28
8.1 Project Log (GitHub) 29
8.2 FileListing o 30

Chapter 1

Introduction

The SETUP language was created to leverage the clear and concise syntax of set
formalisms in mathematics. With SETUP , users can generate sets using a variety
of logic and combinatorial techniques that would require significantly more lines of
code in other imperative languages such as Java, C or C+4. SETUP was designed
with the following goals in mind:

e Set Theory Abstraction. SETUP provides a framework for handling data
which many mathematicians and scientists will find familiar and easy to use.
By maintaining a sufficient level of abstraction, SETUP can minimize the time
needed to go from concept to concrete, working code.

e Minimal Code Generation. SETUP greatly reduces the amount of code
needed to perform routine tasks. The user will find that nested loops can be
virtually eliminated from code, making program files lighter and debugging
easier.

e High Level of Readability. SETUP aims to be a clear and concise pro-
gramming language with intuitive commands and syntax which mirror the
mathematical underpinnings of set theory.

Chapter 2

Setup Tutorial

Each program you write in SETUP should be placed in a plain text file. By conven-
tion, the .su suffix is used to denote programs written in valid SETUP code. Let’s
write a simple program to get started in SETUP .

2.1 A Simple Scheduling Program

In this tutorial we will write a simple SETUP program which demonstrates an ap-
plication of the language’s set abstraction in the manipulation to compute some
probabilities relating to games of chance. In particular, we're going to compute
probabilities relating to a hand of poker.

We begin by creating a plain text file to store our code. Let’s give it the title
pokerhand.su and open it in your text editor. In this file, place the following text

/* Our First Program */

function main[] returns int {
set values = {1 ... 13};
set suit = {"H","S","C","D"};
set deck = values cross suit;
set ourCards = {(2,"s"),(7,"s"),(8,"s"),(9,"S"),(10,"D")};
set restOfDeck = deck minus ourCards;
set test = values cross {"S"};
set flushCards = test minus ourCards;
float prob_of_flush = #flushCards / #rest0fDeck;
print (prob_of_flush);
return O;

}
You can compile the program into C++4 code by calling

CHAPTER 2. SETUP TUTORIAL

-$./cWriter.native < pokerhand.su

Alternatively, you can call

-$./cWriter.sh < dicel.su

which will print, compile, and run the code immediately in the shell.

In this small program all functionality /*except for a comment which is ig-
nored by the compiler */ was placed inside the definition of main. This is not
always the case. User-defined functions and global variable declarations may be
made outside of main in what is known as global scope. Global variable definitions
may not contain initializers.

SETUP programs begin execution with main. In this program, we created a collection
of "cards” by using the cartesian product keyword cross. You will also notice
that {1 ... 13} expanded to include integers in the range [1,13]. After declaring
our cards using literals, we "removed” them from the deck using the set difference
operator minus. After generating a set of possible flush cards, we used the unary
”cardinality” operator to compute the probability of hitting a flush: 19%.

Chapter 3

Language Reference Manual

3.1 Overview

3.1.1 Introduction

The language of set theory is widely used by mathematicians and scientists to con-
struct and manipulate large collections of objects in an abstract setting. The SETUP
language implements the most useful and commonly used abstractions (e.g., union,
intersections, direct products) from set theory in a language which users of other
common imperative languages such as C, C++ and Java will find very simple and
intuitive.

SETUP was created with three goals in mind:

1. Construct sets in a logical way
2. Perform operations on large sets with minimal code generation

3. Maintain a high level of readability

We anticipate users will solve simple set-oriented problems like scheduling, logic,
and probability problems.

3.1.2 A Motivating Example

SETUP greatly reduces the amount of code required to generate and manipulate
sets. A level of abstraction is provided which allows the user to work with sets in
an intuitive way — simultaneously improving readability. For example, the need for
writing successive nested loops is practically eliminated.

Suppose the user wanted to generate all possible ordered pairs of numbers from 1
to 10. In C++, we would write:

CHAPTER 3. LANGUAGE REFERENCE MANUAL

struct { int first; int second; } pair;
vector<pair> pairs;
for(int i = 1; it= 11; i++){
for(int j = 1; j'!=11; j++){
pair temp;
temp.first = i;
temp.second = j;
vector.push_back (temp) ;

}

In SETUP , the equivalent code can be written:

set A = {1...10};
set pairs = {(x,y) | x in A, y in A};

Making use of cross — a built-in cartesian product operator — we can further simplify
our code to a single line:

set pairs = {1...10} cross {1...10%};

Though somewhat trivial, the above example shows how we can greatly reduce code
and improve readability at the same time. Suppose we wanted to remove duplicates
(1,1) ... (10,10). We would simply write

’set unique_pairs = pairs minus {(x,x) | x in {1...10}}; ‘

Here we highlight another useful built in operator — minus — which returns the
complement of the second set within the first set. That is, A minus B = AN B¢,

Working with SETUP is simple and getting started is easy.

3.1.3 Lexical Conventions

The language has 5 basic tokens:

e Identifiers
o Keywords
e Literals

e Operators

Punctuation

Whitespace characters (blanks, tabs and newlines) are ignored and used only to
separate tokens. At least one whitespace character is required to separate adjacent
tokens.

CHAPTER 3. LANGUAGE REFERENCE MANUAL

Comments

Block comments are introduced with /* and terminated with */. Nesting of com-
ments is not permitted. Comments are in general ignored by the compiler.

Identifiers

An identifier is a sequence of letters and digits. The first character must be alpha-
betic. Names are case-sensitive.

Keywords

The following identifiers are reserved for use as keywords, and may not be used
otherwise:

set int bool float string
if tuple in then union
else intersect minus while Ccross
true function returns false return

Primitive Types

There are four primitive types in SETUP :

Integers
An integer is a sequence of digits. All integers are lexed as a sequence of digits with

an optional leading minus sign for negative integers. They are represented internally
using architecture native integer representation.

Strings

A string is a sequence of characters enclosed in double quotes as in "string". Two
adjacent strings are concatenated using the 74" sign. As in

"string" + "concat" -> "stringconcat".

Floats

We adopt the C' Reference Manual definition of a floating point number:

CHAPTER 3. LANGUAGE REFERENCE MANUAL

A floating constant consists of an integer part, a decimal point, a
fraction part, an e and an optionally signed integer exponent. The in-
teger and fraction parts both consist of a sequence of digits. Either the
integer part or the fraction part (not both) may be missing; either the
decimal point or the e and the exponent (not both) may be missing.

All floating point numbers will be 64-bit double precision.

Booleans

A Boolean value can take either true or false.

3.2 Syntax Notation

In this manual, elements of language syntax are indicated by italic type. Literal
words and characters are written in verbatim. Alternatives are listed using the ”|”
character: item | item.

3.3 Objects

3.3.1 Variables

A variable token is an identifier to a stored primitive, tuple or set. A variable
must begin with an alphabetic character followed by zero or more letters and digits.
Variables are declared by referencing their type followed by the associated token
and an optional initializer, as in int a; or int a = 3;. All global variables must
be declared outside of any function definition, and cannot include an initializer.

A variable, once declared, may be reassigned but cannot be declared again in the
same scope.

int a = 3;
a=4; /* ok */
int a = 5; /* error */

CHAPTER 3. LANGUAGE REFERENCE MANUAL

Variable Initialization

Variables for primitives not explicitly initialized when declared will be initialized as
follows:

int — 0
string — 77
float — 0.0
bool — false

set — {}

Uninitialized tuples are not permitted.

3.3.2 Tuples

A n-tuple is an ordered collection of n comma-delimited expressions enclosed in
parentheses. An element is either a primitive, set or tuple. An n-tuple and m-tuple
are considered of the same type if the following two conditions are satisfied:

® 7L —=1T.

e The type of each coordinate element is of the same type.

For example, the following tuple elements are not the same type because the first
coordinate tuples are not of the same type:

((1,"a"),2) //type: ((int,str),int)
((1,2),3) //type: ((int,int),int)

3.3.3 Sets

A set is an unordered collection (potentially empty) of terminals, sets or tuples.
Every element of a set is unique (duplicate elements are discarded). A set must be
homogeneous in type, meaning that every element within the set has matching
type. All sets are typed as set, regardless of their contents. This means that a set
containing sets of varying types is allowed.

{1,2,3,4} /* valid: homogeneous in type */

{1,2,3,"f"} /* invalid: not homogeneous in type */
{(1,2),(3.0,4.0)} /* invalid: tuple types are deep */
{{1,2,3},{"a","p"}} /* valid: set types are shallow */

Sets can be initialized in various ways:

10

CHAPTER 3. LANGUAGE REFERENCE MANUAL

Literal Initialization

A set may be initialized with a comma-delimited list of elements or identifiers of
matching type within curly braces:

set A = {1, 2, 3, 4, 5, 6}; /*x ok */

string b = "name";

set B = {"this", "works", b}; /* ok */

set C = {1, 2, 3, b}; /* error: type mismatch */

Range Initialization

”

For sets of integer type, we allow the following range initialization using ”...”:

set A ={1 ... 6}; /* ok: returns {1, 2, 3, 4, 5, 6} */
set B={1 ... 3, 5...7}; /* ok: returns {1, 2, 3, 5, 6, 7} */
set C = {3 ... -1}; /* ok: returns {3, 2, 1, 0, -1} %/

Set-Builder Initialization

The following syntax is used for initializing a set through set-builder notation:
{ expr pipe sourcelist }
The source list is a sequence of comma-delimited expressions of the form
id in set

Each id represents a local variable which may be used to construct new elements
for a set via the expression appearing on the left hand side of the | symbol. The
sequenced sourcelist expressions are evaluated left-to-right.

The in operator is right associative, and the ¢d is not assigned a value until the
right operand has been resolved. The resulting set will include the resulting left
side expression evaluated for all potential id values, with duplicates removed.

set A ={ (x,y) | x in {1,2,3}, y in {"a","b","c"} };

B = { (1,"8."),(1,"b"),(1,"C"),
(2,"a"),(2,"b"),(2,"c"),
(S’IIaH),(3’llb"),(3’"c|l) };

A == B; /x returns yup */

In addition, the left side expression may contain references to variables in enclosing
scopes (local sourcelist variables shadow enclosing scopes). For example:

11

CHAPTER 3. LANGUAGE REFERENCE MANUAL

int a = 0;

int x = 5;

set A ={ (a,x) | x in {1,2,3} }; /*x shadows enclosing x = 5%/
B ={ (0,1),(0,2),(0,3) };

A == B; /xreturns yup*/

3.4 Operators

3.4.1 Arithmetic Operations

The following arithmetic operations are provided: +,-,* for types int and float.
The return type is as follows:

it binop int — int
float binop float — float
float binop int — float
it binop float — float

There are two division operators:

1. /, which accepts as arguments any two numerical values and is guaranteed to
return a float

2. // accepts as arguments any two numerical values and is guaranteed to return
an int truncated toward zero.

The following relational operators are provided for all primitive types: <,>,<=,>=,==1=,
Types passed to these operators must match, except in the case of <,> when com-

paring int and float. String comparison is done lexicographically as per strcmp
in the C standard library. The only character set supported is 8-bit ASCIIL.

3.4.2 Set Operations
The following set operations are provided:

union intersect minus <cross #

union

union is a binary operator which returns a union of two sets. Both sets must contain
elements of the same type.

12

CHAPTER 3. LANGUAGE REFERENCE MANUAL

intersect

intersect is a binary operator which returns the intersection of two sets. Both sets
must contain elements of the same type.

minus

minus is a binary operator which returns a set of elements which are present in the
first set but not in the second set. Both sets must contain elements of the same

type.

Cross

cross takes as left operand a set with elements of type a and as right operand a
set of elements with type b and returns an exhaustive set of tuples of type (a,b),
duplicates removed.

#

is a unary operator returning the number of elements in a set.

3.5 Language Syntax

3.5.1 Structure of a Setup Program

Every SETUP progam is a sequence of zero or more function definitions and/or
variable declarations. Variable declarations outside of function bodies are considered
global in scope and may not be assigned a value when declared.

program — €
program — funcdef program
program — vdecl program

Execution (of non-empty programs) begins by calling the main function which re-
turns an int. User-defined functions must be defined before the main function.
Nested function definitions are not permitted.

3.5.2 Expressions
Terminals

expr — float | int | string | bool | id

13

CHAPTER 3. LANGUAGE REFERENCE MANUAL

Tuples

expr — tuple
tuple — (expr-list)
expr-list — expr | expr, expr-list

Sets

expr — set

set — { expr-list >

set — {int ... int }

set — { expr | source-list ¥

source-list — id in expr | id in expr, source-list

Operations

expr — id = expr
expr — expr binop expr
eTpr — unop expr

3.5.3 Functions

Function definitions begin with the keyword function followed by a valid identifier
(see 3.1.3), a possibly empty list of formals, a return type specified using the keyword
return and a curly-brace enclosed list of statements.

funcdef — function id [formals-list] returns typespec { stmt-list }
formals-list — ¢ | formals-tail

formals-tail — formal | formal formals-tail

formal — typespec id

typespec — int | set | float | string | tuple | bool

Function definitions specify the expression to be returned using a return statement:
return expr;

Functions are called by specifying an i¢d and a list of arguments enclosed in paren-
theses:

funcall — id(C arglist)
arglist — € | exprlist
exprlist — expr | expr , exprlist

14

CHAPTER 3. LANGUAGE REFERENCE MANUAL

3.5.4 Statements
A statement list is simply a sequence of one or more statements:
stmt-list — stmt | stmt stmt-list

with the following valid statements:

Variable Declaration and Assignment

stmt — typespec id;
stmt — typespec id = expr;

Control Statements

stmt — if (expr) then { stmi-list } else { stmit-list }
stmt — while (expr) { stmt-list }
stmt — return (expr);

Definitions

Print Statement

SETUP provides a method for nice printing to the standard output:

stmt — Print (expr);

Expressions

A statement may also be an expression:

stmt — expr;

3.6 Scope Rules

There exists a global scope containing global variables and function definitions. Each
function body and set-builder expression defines a local scope. Variable identifiers
without type definitions are treated as references; local scope is first searched, fol-
lowed by successive enclosing scopes. Variable identifiers with type definitions are
treated as new declarations, and mask all variable identifiers in enclosing scopes
with the same identifier.

15

CHAPTER 3. LANGUAGE REFERENCE MANUAL

Sourcelist variables exist in the left side of set-bulider notation:

{expr pipe sourcelist }

A simple example of set-builder scope:

A richer example, using nested scopes:

An example of variable shadowing;:

CHAPTER 3. LANGUAGE REFERENCE MANUAL

17

Chapter 4

Project Plan

Seplember October November December
16-300 ¢ 115 16-31 1-15 16-30 ¢ 115 i 16-22

Concept

T
Granmar o
Scanner/Parser i I I _
Validation
Code Generation : : : :

Regression Testing

Bug Fixing

Figure 4.1: Timeline for Setup Team

September. Our team held weekly meetings to discuss different potential ideas
for a language. By the end of the month, we had decided on a language that
would manipulate sets. We then set to work developing a rough draft for a working
grammar and began drafting our reference manual.

October. In conjunction with writing the first draft of our LRM, we began work
on the scanner and parser. As we built the parser, we found several areas where our
grammar needed to be ”improved.” The following graphic illustrates nicely how we
spent October:

18

CHAPTER 4. PROJECT PLAN

November. We completed work on our parser in November and began working
on validation (static semantic analysis) to perform type checking. By the end of the
month we were at the point where we could start generating code.

December. Writing code to generate valid C++ turned out to be more difficult
than we anticipated, largely due to deep typing of nested tuples, and we continued
to struggle with the Set-Builder construction mechanism. We implemented a set
class abstraction in C++ to handle some of the peculiarities of arbitrary set and
tuple containers. Throughout December, we generated code and tested for bugs.

Software Used. All members of our team used Vim or Vi as our editor of choice
and we used GitHub for version control to stay synchronized in our development.

19

Chapter 5

Compiler Architecture

The compiler consists of 5 principal components: Scanner, Parser, Validator, Code
Generator and Set Class. The Scanner receives input in the form of plain text files
with .su suffix and the compiler generates valid cpp code.

The Code Generator uses the concrete parse tree generated from the Parser to
output valid C++ code. A polymorphic class hierarchy was implemented in C++
(Set Class component) to implement complicated Tuple and Set types.

The following lays out who worked on the various component implementations:

Component Team Members
Scanner Adam

Parser Adam, Ian
Validation Bill

Code Generator Andrew, Bill, Ian
Set Class Bill, Andrew

Regression Suite

Ian, Bill, Andrew

CHAPTER 5. COMPILER ARCHITECTURE

Validator

Set Class Regression Suite]

/

~

outfile.cpp]

Figure 5.1: Overview of Setup Compiler

21

Chapter 6

Test Plan

We maintain a working regression suite which tests the various parts of our compiler.
Over 120 tests were used. Python Scripts were used for automation. Tests focused
on most common errors (arithemtic, assignment, etc.) and ensured accurate results
by testing against golden .su.out files.

6.1 Parser Tests

-LINES- --FILENAME--

5 ./tests/parser/expect_failure/fail2.su

4 ./tests/parser/expect_failure/fail3.su

5 ./tests/parser/expect_failure/faill.su

5 ./tests/parser/expect_success/commentl.su
30 ./tests/parser/expect_success/succeedl.su
11 ./tests/parser/expect_success/global.su

4 ./tests/parser/expect_success/floatl.su

5 ./tests/parser/expect_success/initial.su

6.2 Code Generation Tests

-LINES- --FILENAME--
10 ./tests/cWriter/expect_failure/string.su
10 ./tests/cWriter/expect_success/string.su

11 ./tests/cWriter/expect_success/addl.su

1 ./tests/cWriter/expect_success/set_range.su

6 ./tests/cWriter/expect_success/testl.su

1 ./tests/cWriter/expect_success/simplest_set.su

22

CHAPTER 6. TEST PLAN

25

19

21
11
13
29

O =

13

11
13

= - -
O Nk 00 WEk O

© N O© 00N O o ooy O

[T i V) e
O O O N0 O, O N

./tests/cWriter/expect_success/comments.su
./tests/cWriter/expect_success/arithmetic_
./tests/cWriter/expect_success/test3.su
./tests/cWriter/expect_success/arithmetic_float_vars.su
./tests/cWriter/expect_success/arithmetic_float_literals.su
./tests/cWriter/expect_success/arithmetic_
./tests/cWriter/expect_success/test2.su
./tests/cWriter/expect_success/cross.su
./tests/cWriter/expect_success/add.su
./tests/cWriter/expect_success/printTestl.
./tests/cWriter/expect_success/ndivide.su
./tests/cWriter/expect_success/nested_set.
./tests/cWriter/expect_success/test12.su
./tests/cWriter/expect_success/function_return_set.su
./tests/cWriter/expect_success/conversion.
./tests/cWriter/expect_success/if_then.su
./tests/cWriter/expect_success/union.su
./tests/cWriter/expect_success/minus.su
./tests/cWriter/expect_success/nested_setl
./tests/cWriter/expect_success/arithmetic_float_retvals.su
./tests/cWriter/expect_success/arithmetic_
./tests/codeGenTests/expect_success/testll
./tests/codeGenTests/expect_success/test7.
./tests/codeGenTests/expect_success/test4.
./tests/codeGenTests/expect_success/testl.
./tests/codeGenTests/expect_success/test8.
./tests/codeGenTests/expect_success/test3.
./tests/codeGenTests/expect_success/test2.
./tests/codeGenTests/expect_success/test9.
./tests/codeGenTests/expect_success/testb.
./tests/codeGenTests/expect_success/test10
./tests/codeGenTests/expect_success/test6.
./genTests/failing/tuple3.su
./genTests/failing/paren2.su
./genTests/failing/rec_funcl.su
./genTests/failing/global2.su
./genTests/failing/func_ret2.su
./genTests/failing/paren3.su
./genTests/failing/tuple2.su
./genTests/failing/rec_func2.su
./genTests/failing/parenl.su
./genTests/failing/func_ret6.su
./genTests/failing/func_ret7.su

int_retvals.su

int_vars.su

su

su

su

.Su

int_literals.su
.su

su
su
su
su
su
su
su
su

.Su

su

23

CHAPTER 6. TEST PLAN

13 ./genTests/succeeding/func_ret3.su
23 ./genTests/succeeding/whileloop.su
14 ./genTests/succeeding/func_retb5.su
10 ./genTests/succeeding/globall.su
14 ./genTests/succeeding/func_retl.su
14 ./genTests/succeeding/func_ret4.su
20 ./demo/database.su

57 ./demo/set0Op.su

9 ./demo/fib.su

5 ./demo/poker.su

21 ./demo/setDiff.su

6.3 Type-Checking and Validation

-LINES- --FILENAME--

5 ./tests/validation/expect_failure/logor_int.su
./tests/validation/expect_failure/setbuilder.su
./tests/validation/expect_failure/minus_string.su
./tests/validation/expect_failure/mult_string.su
./tests/validation/expect_failure/while.su
./tests/validation/expect_failure/comparell.su
./tests/validation/expect_failure/two_decl.su
./tests/validation/expect_failure/float2.su
./tests/validation/expect_failure/tuple3.su
./tests/validation/expect_failure/compare8.su
./tests/validation/expect_failure/logand_string.su
./tests/validation/expect_failure/return_type.su
./tests/validation/expect_failure/setrange.su
./tests/validation/expect_failure/undeclared.su
./tests/validation/expect_failure/func_mutual_recursion.su
./tests/validation/expect_failure/plus_mix.su
./tests/validation/expect_failure/floatl.su
./tests/validation/expect_failure/decl_clash.su
./tests/validation/expect_failure/compare4.su
./tests/validation/expect_failure/plus_set.su
./tests/validation/expect_failure/return_type_deeper.su
./tests/validation/expect_failure/compare2.su
./tests/validation/expect_failure/compareb.su
./tests/validation/expect_failure/compare?.su
./tests/validation/expect_failure/tuple4.su
./tests/validation/expect_failure/set_literal.su
./tests/validation/expect_failure/minus.su

o1 01O, O N0 Oo OOy O N OO N

1

N

o o1 o o1 o On

24

CHAPTER 6. TEST PLAN

Q o1 o o O

=
Q0 = O

[ae
O O o1 o1 01O 00 O 01 On

[y
~N O

./tests/validation/expect_failure/tuple.su
./tests/validation/expect_failure/comparel.su
./tests/validation/expect_failure/comparel0.su
./tests/validation/expect_success/compare_string.su
./tests/validation/expect_success/setbuilder.su
./tests/validation/expect_success/setbuilderl.su
./tests/validation/expect_success/op_mixl.su
./tests/validation/expect_success/setbuilder4.su
./tests/validation/expect_success/while.su
./tests/validation/expect_success/hrm_why.su
./tests/validation/expect_success/op_mix3.su
./tests/validation/expect_success/op_mix7.su
./tests/validation/expect_success/func_scope8.su
./tests/validation/expect_success/op_mix8.su
./tests/validation/expect_success/tuple3.su
./tests/validation/expect_success/return_type.su
./tests/validation/expect_success/compare_float.su
./tests/validation/expect_success/func_scope2.su
./tests/validation/expect_success/setrange.su
./tests/validation/expect_success/setbuilder2.su
./tests/validation/expect_success/simple_plus.su
./tests/validation/expect_success/add.su
./tests/validation/expect_success/floatl.su
./tests/validation/expect_success/setrange?2.su
./tests/validation/expect_success/if _simple.su
./tests/validation/expect_success/logor.su
./tests/validation/expect_success/tuple2.su
./tests/validation/expect_success/return_type_deeper.su
./tests/validation/expect_success/string_plus.su
./tests/validation/expect_success/func_scope.su
./tests/validation/expect_success/if.su
./tests/validation/expect_success/op_mix6.su
./tests/validation/expect_success/op_mix5.su
./tests/validation/expect_success/logand.su
./tests/validation/expect_success/tupled.su
./tests/validation/expect_success/op_mix2.su
./tests/validation/expect_success/set_literal.su
./tests/validation/expect_success/minus.su
./tests/validation/expect_success/op_mix4.su
./tests/validation/expect_success/tuple.su
./tests/validation/expect_success/func_scope4.su
./tests/validation/expect_success/compare.su
./tests/validation/expect_success/setbuilder3.su

25

Chapter 7

Lessons Learned

7.1 Andrew’s Thoughts

I learned how much the semantics of a language affects what a programmer is able
to do with it. Specifically, we originally had ML as a target language but found
the C-style nature of our Setup language made for awkward translation. We shifted
to targetting C++ and found the translation significantly more straightforward in
most every case. It was not until we started attempting to implement the Set-
Builder functionality that our choice of C++ may have hindered our progress. The
functional nature of the SetBuilder made C++ less than optimal and we were never
able to get it working properly. Additionally, I have become incredibly more familiar
with the underlying mechanics of a compiler. And of course I learned OCaml and
to start large projects earlier. For others, I would recommend starting early and
experimenting with a couple different approaches before deciding on a final plan of
action.

7.2 Ian’s Thoughts

This project served as my introduction to large group programming projects. If I
had to do it all over again, I would have chosen the same group — but I might have
approached the project slightly differently. First, I would have insisted on tighter
specifications for both the architecture of the compiler and the interface with which
the different modules would communicate.

I would have spent much more time with O’Caml. It was only at tthe very end of
the project when the sheer power of the pattern matching features became apparent.
This occured somewhere right around the time we attempted to ”unwrap” arbitrarily
nested sets and tuples to generate output (C++) code.

26

CHAPTER 7. LESSONS LEARNED

7.3 Bill’s Thoughts

Implementing the the type checker was a good exercise in understanding how lan-
guage feature affect compiler design. Setup supports a compact syntax for generat-
ing Cartesian products that we call the Set Builder expressions. While the rest of
the language is statically scoped and the compiler can verify type assignments by
looking in a single frame of function context, Set Builder has a lambda style syntax
in which variables are defined by the result of an expression evaluation. Further
more, Set Builder expressions may nest, and variable bindings can occur anywhere
along the chain of Set Builder contexts, as well as from the calling function’s context.

Consider this example:

set A = {1,2,3};
set S { &,y | xin A, yin { z | z in {"a", "b", "c"} } }

S will be composed of (int * string) tuples. X will take on an int type, y will take
on the type of z, and z will have type string. A is resolved by first search the set
builder context, and failing to find it there, looking in the function context. All the
other variables are defined in the chain of set builder context.

It should also be noted that our tuple types are deep structures, so that (1, 2) is
not of the same type as (1,(2)).

Completing the type checker was a bit tricky, as both selection of the correct frame
to make a binding decision and getting the correct level in the type structure was
also an issue that was solved.

7.4 Adam’s Thoughts

This project was hard, but I enjoyed it a lot.

27

Chapter 8

Appendix

8.1 Project Log (GitHub)

commit 61£2d421751£9545581£6650e3a35a33£64d7445
Author: Tan Erb <ianrerb@gmail.com>
Date: Thu Dec 22 22:36:17 2011 -0500

commiting edits to the reference manual

commit c46c1£830b039139c79d00c0838476b57e2c06bb
Author: Ian Erb <ianrerb@gmail.com>
Date: Thu Dec 22 22:03:50 2011 -0500

updated refMan and added .out files for some tests
commit 2861da6cbd5a844da0a7696f8bd1f1fbc83fd1d4
Author: Ian Erb <ianrerb@gmail.com>
Date: Thu Dec 22 21:43:30 2011 -0500

validation repair
commit 8d8ea993fef8a0fb2513cd713b4ed87ccde018b9
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 21:12:05 2011 -0500

Fixed Tuples, SetFactory, TupleFactory, SetRange, and printing bools

commit f6a324420dc6be8f88aal0f82ee96cab492dd658
Author: Tan Erb <ianrerb@gmail.com>

28

CHAPTER 8. APPENDIX

Date: Thu Dec 22 18:55:45 2011 -0500
modified lessons learned

commit 4c86259b£837667f£5e28399f723400e6b79304eb
Merge: 80a9672 3d648dd

Author: Ian Erb <ianrerb@gmail.com>

Date: Thu Dec 22 18:04:32 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 80a96728c23544400de58d57ef574ccc6804b9fd
Author: Tan Erb <ianrerb@gmail.com>
Date: Thu Dec 22 18:03:33 2011 -0500

updated RefMan and Removed Bill Miller from slides

commit 3d648dddaa6a8b3ccefb80b82e5fe60bb64809f4
Author: acingraham <acingraham@gmail.com>
Date: Thu Dec 22 17:31:38 2011 -0500

Some simple programs I’d like to get working before we submit.

commit d862d2a9b3c524dbe7980a234933e0c792bb895a
Merge: bl129ff8 d4d5429

Author: Ian Erb <ianrerb@gmail.com>

Date: Thu Dec 22 11:05:29 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011
commit b129ff83706155624e9bfbeaaa7c520babe8805b
Author: Ian Erb <ianrerb@gmail.com>
Date: Thu Dec 22 11:05:11 2011 -0500
pres
commit d4d5429928c44a814da9460329a09052cdccf3fd
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 10:41:08 2011 -0500

Added setDiff to demo

commit £63346dbab40b1b486d24254cdadf6b171£04£46

29

CHAPTER 8. APPENDIX

Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 10:21:03 2011 -0500

Added to demo
commit 3bbd20bladfdlede9e8a3e03918823ba7a846c30
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 09:35:15 2011 -0500

Altered demo
commit 443346b525c5c3f5a0fecbdf97c13acc98daddef
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 09:18:25 2011 -0500

setOp to demo
commit de01c5308ae8855808373ef718e54d4562feleal8
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 09:16:01 2011 -0500

Added cardinality
commit 5dd09593223fcc6037be810edfe0d744b2cdbade
Merge: 17861bf 8c09684
Author: Bill Warner <whw2108@columbia.edu>
Date: Thu Dec 22 09:11:29 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 17861bf0c102159fa617858e499476dfc8ab01f6
Author: Bill Warner <whw2108@columbia.edu>
Date: Thu Dec 22 09:11:13 2011 -0500

fix string issue
commit 8c09684fb6bf6503c0439a5667b328b3d375b1e0
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 08:26:58 2011 -0500

Demo Folder

commit 87c88c313e9e49c9b9£42b698ad4add17fe24623

30

CHAPTER 8. APPENDIX

Merge: abd2770 34169a6
Author: Tan Erb <ianrerb@gmail.com>
Date: Thu Dec 22 08:20:17 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit abd2770076ffec25212d1279addeccf419082791
Author: Ian Erb <ianrerb@gmail.com>
Date: Thu Dec 22 08:19:40 2011 -0500

added su.out files

commit 4de777c402498d0954ab005650767b182b2defla
Author: Ian Erb <ianrerb@gmail.com>
Date: Thu Dec 22 07:59:10 2011 -0500

updated docs

commit 34169a6f6d912e2f9131a00127f70ccc446a120c
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 07:30:47 2011 -0500

Fiddled with setupBase.h
commit 12269b1d9b78d3589600d4b7b98d97f253fbfa2a
Author: Bill Warner <whw2108@columbia.edu>
Date: Thu Dec 22 07:28:36 2011 -0500

match warning
commit ¢922521d057a94e7cca7b4af53cbc2e828a5708e
Author: Bill Warner <whw2108@columbia.edu>
Date: Thu Dec 22 07:24:36 2011 -0500

sharing some code
commit 521e6c2bd7f4bal1869c0ab05bf90b3a0a8f74a21
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 04:04:41 2011 -0500

Overloaded != operator for SetupBase types and added another test

commit 8e7e5e2483b963c897088eebec188d11ed6825e0

31

CHAPTER 8. APPENDIX

Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 03:40:13 2011 -0500

Fixed Intersect so it no longer calls Union

commit 5663cd1f5b10dbbb44c8f3f4f527a99d633fe43d
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Thu Dec 22 03:28:39 2011 -0500

Changed some tests

commit 93bd643abbcb5b8a7d0cc924c8ededl17be09ab344
Merge: d38clba ab63e38

Author: Bill Warner <whw2108@columbia.edu>
Date: Thu Dec 22 03:06:47 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit d38c15ac793b639abccff36d5e9e9a985a04479a
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Thu Dec 22 03:06:16 2011 -0500

cross and union fixes

commit ab63e38ce6c15209fabd378f739%edc28bfafbech
Merge: 0a81278 d199218

Author: Ian Erb <ianrerb@gmail.com>

Date: Thu Dec 22 03:05:57 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011
commit 0a81278£1d11933700271e1c37c67c6cd00c3a7e
Author: Tan Erb <ianrerb@gmail.com>
Date: Thu Dec 22 03:02:27 2011 -0500
updated LRM for new grammar rules, tutorial, etc
commit d199218c3476c12090d863£a508957ddb452ff£7
Author: Bill Warner <whw2108Qcolumbia.edu>

Date: Wed Dec 21 23:47:46 2011 -0500

take care of ml compiler warnings

32

CHAPTER 8. APPENDIX

commit 93bc812c6e04ac263717a4372a8a31b9b80dd35d
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Wed Dec 21 23:31:26 2011 -0500

a test with deeper nesting

commit a06d59f63a7d06e5£f025e2c06dfbb73fcb22856
Merge: 0e1d0f8 bb233a2

Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 22:58:38 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 0e1d0f8694e354f8db1e60d4a86b43b6e5167681
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 22:58:08 2011 -0500

set op bug

commit bb233a2f039eebl1767801bab064275c008£20359
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Wed Dec 21 22:53:22 2011 -0500

Added setIntersect

commit e753f05624ae9b551c92bb242fe82e5d48ca8fd6
Merge: 2del1936 alb5e28c

Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 22:44:39 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011
commit 2de19361a5433a892644b37e4a5049da11157b54
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 22:44:18 2011 -0500
tests
commit al5e28cf1e944c07bfb01db4344d76af26243751
Author: unknown <Andrew@Andrew-PC. (none)>

Date: Wed Dec 21 22:35:03 2011 -0500

Corrected set function calls like setUnion, setCross, etc.

33

CHAPTER 8. APPENDIX

commit 17a8ed7597f0576ed080e1f486e0d7b7d849e74a
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Wed Dec 21 22:26:40 2011 -0500

Notes on memory leaks

commit d8d89fab8578710d0682741e4db9491174£60222
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Wed Dec 21 22:14:13 2011 -0500

SetupBool prints "yup" and "nope"

commit 9e1a438d5988004a14155808bc319e1c41b4432f
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 22:06:11 2011 -0500

set ranges

commit 57a0b034c5d98b0be51d2388932b2f7a11a0bcOb
Merge: 977bcel b7f2c63

Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 21:39:58 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 977bcel19071635257352b80b20189%6afecf71962
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 21:39:43 2011 -0500

nesting
commit b7£2c631c6b21169£700409a8cda29d19c732£47
Author: unknown <Andrew@Andrew-PC. (none)>
Date: Wed Dec 21 21:13:02 2011 -0500

Untested destructors for SetupSet and SetupTuple
commit 8210££57df48722d3eef7a71c£517188000863£0

Author: Bill Warner <whw2108Q@columbia.edu>
Date: Wed Dec 21 18:55:11 2011 -0500

cWriter tuples

34

CHAPTER 8. APPENDIX

commit 0fa245f8135edelec7fda7aeldcdfa01383dc3c8
Merge: 55e5dd3 ad5f090

Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 18:37:26 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 55e5dd358258b727197c132cf3253411a10314af
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 18:36:59 2011 -0500

cWriter bits

commit adb5f090741c17009324b85ef12cdae91ae549065
Author: acingraham <acingraham@gmail.com>
Date: Wed Dec 21 18:13:10 2011 -0500

Added cross

commit 5d7550a2f£34cb964£996dadbb0e28c1767d8e8d6
Author: acingraham <acingraham@gmail.com>
Date: Wed Dec 21 17:52:11 2011 -0500

Added setUnion, setMinus, setCardinality, and overloaded = operator

commit 17fd4294bc2e2aed3a854f3698f173a6183b1bb5
Merge: b6e7d32 e3c7led

Author: Ian Erb <ianrerb@gmail.com>

Date: Wed Dec 21 16:40:10 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011
commit b6e7d321ba1218561555d59fcac96fef56ff4chd
Author: Tan Erb <ianrerb@gmail.com>
Date: Wed Dec 21 16:39:00 2011 -0500
more tests and fixed NDIVIDE BUG
commit 4e4d0b625d7376243785569abbf7b8£6067a3760

Author: Ian Erb <ianrerb@gmail.com>
Date: Wed Dec 21 16:33:59 2011 -0500

35

CHAPTER 8. APPENDIX

fixed Ndivide bug in cWriter.ml

commit e3c71ed82b29a645a758b407122cce78a947£546
Merge: 5706922 a947eac

Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 16:09:48 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 570692264254eec57826eb141f62ce15d42d38c86
Merge: a866522 325025d

Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 16:09:11 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

Conflicts:
tests/cWriter/expect_success/arithmetic_float_literals.su.err
tests/cWriter/expect_success/arithmetic_float_vars.su.err
tests/cWriter/expect_success/arithmetic_int_literals.su.err
tests/cWriter/expect_success/arithmetic_int_vars.su.err

commit a947eacdd45529df6bb3915d6ab34135f6c8cabd
Author: Tan Erb <ianrerb@gmail.com>
Date: Wed Dec 21 15:58:52 2011 -0500

arithmetic and comment tests. *NDIVIDE BUG FOUND* need to cast whole expression to i

commit a866522db2797cbebab0491ccac69f7d63601c9a
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 15:55:19 2011 -0500

functions can return sets

commit 325025de68956£90ca9cff80d00bb0ccb3a727b9
Merge: bebcbfb 604bbl2

Author: Ian Erb <ianrerb@gmail.com>

Date: Wed Dec 21 14:57:15 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 604bb12e4842a85277224f1e3b79d6eeddc53367
Author: Bill Warner <whw2108@columbia.edu>

36

CHAPTER 8. APPENDIX

Date: Wed Dec 21 14:54:13 2011 -0500
some cWriter tests

commit bebc5fbe5158e1290359299bal13536£78a8508bd
Author: Ian Erb <ianrerb@gmail.com>
Date: Wed Dec 21 14:51:29 2011 -0500

literal and float arithmetic tests

commit 9a067b4b259d1b0e02ad50b32ee2633b8d2e42cf
Author: Ian Erb <ianrerb@gmail.com>
Date: Wed Dec 21 14:07:11 2011 -0500

fixed tests for linux

commit €236c396e£319fdb9df9d54ca2a2£212320fba71
Merge: 9e2eabc b7d753a

Author: Ian Erb <ianrerb@gmail.com>

Date: Wed Dec 21 13:47:37 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011
commit 9e2eabc04a1e04894d0c815b7e73031195cb54ebd
Merge: bb6b001 9¢39590

Author: Ian Erb <ianrerb@gmail.com>
Date: Wed Dec 21 13:44:26 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011
commit b7d753afdled4fa9ccdbbd7c8979b7bdbl7fecB8ee
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 13:43:36 2011 -0500
cWriter tests folded into Makefile
commit 9¢c39590aeb66eaba29e3bbeb8bcb51c5197a3fcad
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Wed Dec 21 13:08:32 2011 -0500

print statement, fixed add test for success

commit bb6b0015018fb8dca87514a0£370ab07aa4ab3c6

37

CHAPTER 8. APPENDIX

Author: Ian Erb <ianrerb@gmail.com>
Date: Wed Dec 21 12:51:31 2011 -0500

updates to refMan

commit d9e458de6a2c8266edb42c8b5c5a759bbeab54dcO
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Wed Dec 21 12:30:10 2011 -0500

deep comparison for set assignment

commit 0492e9b846950608c0d1765941ee4bccbfbebe21
Merge: 93e43f1 6e57d9f

Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 12:15:56 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

Conflicts:
validation.ml

commit 93e43f17cb45059c24ace81e6ac08f18fd7celdf
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 21 12:11:12 2011 -0500

better setbuilder type checking

commit 6e57d9f9710ba209d0e91dd4fb5c50227e34e80a
Author: Ian Erb <ianrerb@gmail.com>
Date: Wed Dec 21 11:25:02 2011 -0500

added auxiliary files for refMan to .gitignore

commit 8eelbef4dd340efa2244e4b7612e6877af2f0099a
Author: Tan Erb <ianrerb@gmail.com>
Date: Wed Dec 21 11:22:45 2011 -0500

edits to refMan, adding back validation.ml file

commit febdf69683e01b02f994f771e850d7454b0dd777
Merge: 931868c 721336b

Author: Ian Erb <ianrerb@gmail.com>

Date: Wed Dec 21 10:23:11 2011 -0500

38

CHAPTER 8. APPENDIX

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

Conflicts:
validation.ml

commit 721336b642258fc293579295e119adab3d67d67E
Merge: 0300111 8da9346

Author: Bill Warner <whw2108@columbia.edu>
Date: Tue Dec 20 22:39:07 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 03001112e7c523a2117dacbcab744eea33bd01df
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Tue Dec 20 22:38:19 2011 -0500

set expression semantics (whew!)

commit 8da9346bbe4c340d88eb332fdf37ffd4c42a6bd9
Author: acingraham <acingraham@gmail.com>
Date: Tue Dec 20 18:39:42 2011 -0500

Added clone and copy constructor

commit £41b03a583f725ff5efc8977396f6db2e440a962
Author: acingraham <acingraham@gmail.com>
Date: Tue Dec 20 17:03:36 2011 -0500

Added a tests folder and some tests for setupBase.h. I haven’t made any changes to
commit dadf63e626749c£560500£6c083128ca9cb667f2
Author: acingraham <acingraham@gmail.com>
Date: Tue Dec 20 16:53:33 2011 -0500

Fixed not allowing duplicate entries in Sets. I left it out when I integrated with
commit 8518ead580eale545bf06ala725fdae03e5ddf43
Author: acingraham <acingraham@gmail.com>

Date: Tue Dec 20 16:18:52 2011 -0500

Overloaded == operator for SetupBase. Added isDuplicate function to SetupSet and Set

39

CHAPTER 8. APPENDIX

commit 1702f440a52e063a261d2d6£80e3603a898452c4
Merge: a61d005 b747e07

Author: Bill Warner <whw2108@columbia.edu>
Date: Tue Dec 20 11:04:08 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

Conflicts:
setupBase.h

commit a61d00589676d6a74eb97cec849ec724dd11a35c¢c
Author: Bill Warner <whw2108@columbia.edu>
Date: Tue Dec 20 10:54:12 2011 -0500

chaining add

commit b747e07ebacb48ac1253fcdlfaecaf25cfad55060
Author: acingraham <acingraham@gmail.com>
Date: Tue Dec 20 10:46:56 2011 -0500

Overload << operator for SetupBase.h

commit 3b812d36b0£f2970b9b57c08e6c55463324aa208c¢c
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Tue Dec 20 07:09:44 2011 -0500

quote strings in setupBase

commit 931868cb06515c0b08151285afbac21e84bdfd04
Author: Ian Erb <ianrerb@gmail.com>
Date: Mon Dec 19 23:48:41 2011 -0500

cWriter and Print stmt and tests

commit e34b19625c39d788c8bc368e9f95d7d5c61£305c¢
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Mon Dec 19 23:36:30 2011 -0500

cpp setup types

commit 5b6d2e8731cffb28ff2586£0c50£302fdb75cb85
Author: acingraham <acingraham@gmail.com>
Date: Mon Dec 19 17:43:10 2011 -0500

40

CHAPTER 8. APPENDIX

Fixed assignment and declaration so chaining is possible.

commit dd0a0aa78753fab50661729d0dd42b10b34726af3
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Mon Dec 19 15:55:54 2011 -0500

code gen tests

commit c6208edec4ed00f16a54abd675£51c87d5d3d768
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Mon Dec 19 15:00:12 2011 -0500

preserve order of function args

commit 6cd0b2b29c495428deed738d6e18813d64cfed39
Author: Bill Warner <whw2108@columbia.edu>
Date: Mon Dec 19 12:20:20 2011 -0500

while statement

commit ecb04778b73843decd6594b1b0abf31bfab0734f
Merge: d287d78 Oeefal8

Author: Bill Warner <whw2108@columbia.edu>
Date: Mon Dec 19 08:51:42 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit Oeefal818cf076eacbdecfec449fa039269e5ac0
Author: acingraham <acingraham@gmail.com>
Date: Mon Dec 19 05:43:58 2011 -0500

Added while, assignment, set literal, set range, mutable variables, variable default

commit d287d78629acf290939677fa14b8d3606dfbdd62
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sun Dec 18 21:05:42 2011 -0500

added type checking line to code generator
commit 647583703a8e62b3aeffea7270ala666adbbd91b

Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sun Dec 18 20:33:42 2011 -0500

41

CHAPTER 8. APPENDIX

codeGen tests added to run_tests.py

commit a408b0a2dbb28856a318cd4bf00cd1d0c9091c42
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sun Dec 18 20:14:20 2011 -0500

If statments and fixed a bug

commit c38ad4cabb7bd4b7c113bfdf257b8caeal2afae7ab
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sun Dec 18 18:40:54 2011 -0500

changed the word ’scoping’ to ’validation’

commit aff193e06a9ae00e318b51c9eab42ae3d9793ddb
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sun Dec 18 17:59:39 2011 -0500

guarantees a return statement

commit 1e8dddee0ab90dcfOfcb5b3a745d85e569092951
Author: Bill Warner <whw2108@columbia.edu>
Date: Sun Dec 18 16:25:15 2011 -0500

some type checking for set builder

commit 313910578910bf1051bd0f43618bf85d38885743
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sun Dec 18 14:04:21 2011 -0500

set range

commit 5433071ba3071cb76bd052920b7c48d91f3ec622
Author: Bill Warner <whw2108Qcolumbia.edu>
Date: Sun Dec 18 13:41:28 2011 -0500

unary ops, removed warnings
commit d3942416bd23d40583aa333158£3335bf03638eb

Author: Bill Warner <whw2108@columbia.edu>
Date: Sun Dec 18 13:04:11 2011 -0500

42

CHAPTER 8. APPENDIX

fixed a bug hidden by test system

commit 74b40£fdf77503143bc2f79ae9c5b770466db320d
Author: Bill Warner <whw2108@columbia.edu>
Date: Sun Dec 18 12:34:57 2011 -0500

better testing; each test is composed of three files: test.su test.su.out and test.s
When you have created a test that is passing, save it using this example:

$test_exec < $F > $F.out 2> $F.err

commit 4abe70226b3a27eed0072507958af46dabde3c3c
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sun Dec 18 01:59:47 2011 -0500

fixed bug in tuple parsing

commit d1e194bd05747216ca0b64519d9b2ad586d288ct
Author: Bill Warner <whw2108@columbia.edu>
Date: Sun Dec 18 00:59:53 2011 -0500

these tests no longer apply
commit £66£8b77d0e21087e29607dcbla3c2431661£f0ee
Author: Bill Warner <whw2108Qcolumbia.edu>
Date: Sun Dec 18 00:55:55 2011 -0500

tuples, actually checked in.
commit fb5a05£85180aaf65a8cfeeb51c049d5c69dd2fe8

Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sat Dec 17 23:47:09 2011 -0500

tuples
commit 807ffc59d4946£82c3c136ec8ab811147a23338f
Author: Adam Weiss <adam@signalll.com>
Date: Sat Dec 17 22:19:47 2011 -0500

Parser: Global variables decl outside of funcs

NOTE: Ast.program is now a record type.

43

CHAPTER 8. APPENDIX

Given an instance of Ast.program p:

p.funcs is the list of funcdefs that Ast.program once was
p-globals is a list of statements that are guaranteed to
only be of the type Decl() with NullExpr for the expression.

commit albe273fb601751£8£7343134eddc23602d7063e
Author: acingraham <acingraham@gmail.com>
Date: Sat Dec 17 19:25:20 2011 -0500

Added funcalls, if-else, boolean operators, and more test files to codegen.

commit 70ef5db8d4bc50704149978eal6b8b67d8c25061
Merge: 8b0218d 221cd03

Author: acingraham <acingraham@gmail.com>

Date: Sat Dec 17 19:20:46 2011 -0500

Merge branch ’master’ of https://github.com/weissadam/plt-fall-2011

commit 8b0218d3bf2ada264add552bclfaeb16653£a860
Author: acingraham <acingraham@gmail.com>
Date: Sat Dec 17 19:18:16 2011 -0500

Added funcalls, if-else, boolean operators, and two more tests to codegen

commit 221cd038b9a1810599d9268323cc86faf7e40099
Merge: 637a2e2 7477649

Author: Bill Warner <whw2108@columbia.edu>
Date: Sat Dec 17 18:45:15 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011
commit 637a2e2f5354d401821ed525c98356feed8b316e
Author: Bill Warner <whw2108@columbia.edu>
Date: Sat Dec 17 18:43:01 2011 -0500
function return type checking
commit 7477649b3576e564164154ec3cb3253acdb483df
Author: Ian Erb <ianrerb@gmail.com>

Date: Sat Dec 17 16:36:14 2011 -0500

code Generator and output test directory

44

CHAPTER 8. APPENDIX

commit bbee84f41e9b2a43fadb70f5ab6cal0c8df327288
Merge: 02a223a 7£9dd05

Author: Bill Warner <whw2108@columbia.edu>
Date: Sat Dec 17 08:48:08 2011 -0500

Merge branch ’master’ of github.com:weissadam/plt-fall-2011

commit 02a223aae3c29fcedfb44b0ed8a4011b74607cdl
Author: Bill Warner <whw2108@columbia.edu>
Date: Sat Dec 17 08:47:37 2011 -0500

conform to spec

commit 7£9dd0573001laeefblbfc61436e5914894009c6d
Author: Ian Erb <ianrerb@gmail.com>
Date: Fri Dec 16 18:56:47 2011 -0500

updated refMan for ranges

commit 9830e7634b433050ce54841£7d336fb91c944114
Author: Tan Erb <ianrerb@gmail.com>
Date: Fri Dec 16 18:47:59 2011 -0500

updated refMan for scoping and global vars

commit b298eed84103e0d49c7193692e4dd972995c9£53
Author: Ian Erb <ianrerb@gmail.com>
Date: Fri Dec 16 14:22:22 2011 -0500

added presentation shell and first slide
commit 7181293794f06edd5ea7bbe9c388c9047£98c3ed
Author: Bill Warner <whw2108@columbia.edu>
Date: Thu Dec 15 13:00:22 2011 -0500

coupla more interesting tests
commit 898d4ed99deccdd7881fedbbf8a84ccf9ae0c391
Author: Bill Warner <whw2108Q@columbia.edu>

Date: Thu Dec 15 12:49:13 2011 -0500

comments

45

CHAPTER 8. APPENDIX

commit 617a57b44fb2dcc35d3eba7e7e9440f29f85a07d
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Thu Dec 15 12:26:03 2011 -0500

corresponding success test

commit 2d0dbf6eecad6130b40ce02632d2da32eebedcde
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Thu Dec 15 12:20:00 2011 -0500

taller stack still passes

commit 50b084db4b07ed221b9cfeb596c2eall11111bc2d
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Thu Dec 15 12:14:34 2011 -0500

fixed stack traversal

commit b1d79p£f81063517aecabb5dab9bc2c0al067a6b95
Author: Bill Warner <whw2108@columbia.edu>
Date: Thu Dec 15 11:56:38 2011 -0500

important test fails

commit e72362e56818969407b80d072b1aa94c85c13d9c
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Thu Dec 15 11:41:43 2011 -0500

forgot to push the frame
commit 738bal27f8f5ffedb9ffe2b5172e6346£347473cc
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Thu Dec 15 11:28:21 2011 -0500

var scoping in function calls!
commit ac354c4093e534e849bd4c279dc6745010477633
Author: Bill Warner <whw2108@columbia.edu>

Date: Thu Dec 15 10:43:58 2011 -0500

better naming for function context

46

CHAPTER 8. APPENDIX

commit 45e42af35abf5ba59ffec9195bf5ee8eead83944
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Wed Dec 14 22:13:11 2011 -0500

less redundant

commit 6977334d373cdf47e0bbfd130c7dc8e03842a0ca
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 14 21:36:55 2011 -0500

defined a symbol table type; part way into checking types of variables in functions

commit 312eead4e978c8444fe7f000be96bel11723f0cee
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Wed Dec 14 10:26:30 2011 -0500

bit of progress with function call scoping

commit d13ed60ad540e6b30286407636ed2605fbleebfe
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Tue Dec 13 10:56:33 2011 -0500

test for set literal
commit 229c67f555adf88b176fd6ae721afb8ecbdb0£95
Author: Bill Warner <whw2108@columbia.edu>
Date: Tue Dec 13 10:54:26 2011 -0500
homogeneous typed sets
commit 9199b7ad7517bdddca508ael6e786e10£31c822c
Author: Bill Warner <whw2108@columbia.edu>
Date: Tue Dec 13 10:28:09 2011 -0500
removed redundant fdef for minus, re-introduced NoType
commit 029ad58313bbd3cabac02d3d40514a15e666de28

Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sun Dec 11 15:40:29 2011 -0500

set literal test (fails)

commit fc4b770e4260a36939db7£8be864a79e57b254b9

47

CHAPTER 8. APPENDIX

Author: Bill Warner <whw2108@columbia.edu>
Date: Sat Dec 10 22:57:43 2011 -0500

assignment type checking

commit d740d7214ab348a785266259d72b7af38e31b35e
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sat Dec 10 21:03:20 2011 -0500

some tests

commit b8302e00a0a9798e00f5c9ab048710812a35eb0c
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Sat Dec 10 20:33:32 2011 -0500

test output

commit a920e0b6280db90318eb8d41547b18770db29b2d
Author: Bill Warner <whw2108@columbia.edu>
Date: Sat Dec 10 20:31:49 2011 -0500

a few tests

commit 0f1£7835b3cbd1bc4d6bb26523ade093a3751b33
Author: Adam Weiss <adam@signalll.com>
Date: Sat Dec 10 20:07:53 2011 -0500

Type checking!

commit c00df82cd1af439b4d282b6ecd17be8fce69bbf9
Author: Adam Weiss <adam@signalll.com>
Date: Sat Dec 10 16:31:16 2011 -0500

Fix parser problem with declaration/assignment
commit 1901ca4a253b82e182dda8fedf7calc914105672
Author: Adam Weiss <adam@signalll.com>
Date: Sat Dec 10 16:20:10 2011 -0500

Support for "make test" and fix path in run_tests

commit d73071£6b3dc27d3d8c02c9690dadb7eb7153861
Author: Adam Weiss <adam@signalll.com>

48

CHAPTER 8. APPENDIX

Date: Sat Dec 10 16:19:11 2011 -0500
Add gitignore

commit e1d4293d40822dae27aad1557£380e4552adf7a8
Author: Adam Weiss <adam@signalll.com>
Date: Sat Dec 10 16:18:40 2011 -0500

Support C style comments and fix test

commit 0ce870edf36898f93e1343310b649f627dcacdel3
Author: Bill Warner <whw2108@columbia.edu>
Date: Sat Dec 10 10:00:18 2011 -0500

some type inference code, uncalled

commit ae8b3feb515930d1cba506d53cd3el1f136f1b960a
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Fri Dec 9 19:39:17 2011 -0500

get the tests in there

commit 37031a4fc6dc26£4d1fd06511e8fbbf127107d46
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Fri Dec 9 12:19:52 2011 -0500

comments for run_tests.py

commit a03174c7536e6£26b4e8970b894e9eab7edb662ad
Author: Bill Warner <whw2108@columbia.edu>
Date: Fri Dec 9 12:07:02 2011 -0500

replaced passed/failed with yup/nope

commit f2afe2872a40d46fb404c602bc4d7878fa256522
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Fri Dec 9 12:03:12 2011 -0500

discover test types
commit a9258faaaeeea2d92e¢1237f446bffbbc96c823bb

Author: Bill Warner <whw2108Q@columbia.edu>
Date: Fri Dec 9 11:58:47 2011 -0500

49

CHAPTER 8. APPENDIX

refactored includes, test harness

commit 0albf7df050cad76e2da68b295a359a3511fc271
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Fri Dec 9 11:04:36 2011 -0500

raise exception for multiple declarations

commit Ob21a8e570fdfc13b4d68e7ed5125cae597e38ef
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Fri Dec 9 10:46:52 2011 -0500

We infer SetType for assignments in expressions

commit 727cb6907c242e103a4791a2dfe3£f8165e6¢c1cab
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Fri Dec 9 03:03:52 2011 -0500

some var scoping

commit 6f7dcfff8bebfcc6c233e86cfdf66129ee7£813c
Author: Bill Warner <whw2108@columbia.edu>
Date: Wed Dec 7 23:13:24 2011 -0500

messaging

commit 72e8e2c85e03aab7eafc8c369c3f85f8acda2ff3
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Wed Dec 7 22:23:29 2011 -0500

rm’d some dumb files

commit e217ed46713c17ed743cc0f182abfab5d25bef762
Author: Bill Warner <whw2108Q@columbia.edu>
Date: Wed Dec 7 22:20:57 2011 -0500

some tests and a test harness in python
commit c3e8771e26fb60576£63dbf0788a577098bcd1ab

Author: Adam Weiss <adam@signalll.com>
Date: Mon Nov 21 19:28:15 2011 -0500

20

CHAPTER 8. APPENDIX

First pass at a parser

This is really not clean enough for a commit, but it’s at least
something to share with the team.

commit 45636477bc52908082f0a0102596ea393c53e215
Author: Adam Weiss <adam@signalll.com>
Date: Mon Nov 21 19:24:31 2011 -0500

Move doc off before first commit

commit 5556065ceeeab88f07cdal18820£794343e4196e5
Author: Tan Erb <ianrerb@gmail.com>
Date: Mon Oct 31 21:13:37 2011 -0400

added author names to front page

commit fad415ad2da67e10e835653a54bb49fb49dealae7
Author: Ian Erb <ianrerb@gmail.com>
Date: Sun Oct 30 21:01:16 2011 -0400

complete first draft for submission

commit 5fabfbddcc641ae0ffe275700553fbacab857eac
Author: Bill Warner <bill@dyn-209-2-218-7.dyn.columbia.edu>
Date: Fri Oct 28 00:12:49 2011 -0400

remove test file

commit 75649879a845bdd0b30fb6e442bd5adablfc5583
Author: Bill Warner <bill@dyn-209-2-218-7.dyn.columbia.edu>
Date: Fri Oct 28 00:12:24 2011 -0400

test push

commit e9c7dd7e3609fd2ebc8c842173ffbf18042eb720
Author: Ian Erb <ianrerb@gmail.com>
Date: Thu Oct 27 23:56:51 2011 -0400

variables, grammar, other

commit 0c1£1690de3c7dfdb4fb3044cdda7c48b5b51559
Author: Adam Weiss <adam@signalll.com>

o1

CHAPTER 8. APPENDIX

Date: Thu Oct 27 22:17:45 2011 -0400

create repo

02

CHAPTER 8. APPENDIX

8.2 File Listing

8.2.1 ast.mli

CHAPTER 8. APPENDIX

8.2.2 scanner.mll

{ open Parser }

(x for floats *)

let digit = [20’-"9’]

let sign = [’+’ ’-7]

let exp = (Pe’ sign? digit+)

rule token = parse
(* eat whitespace *)

[J) ’\t’ ’\I"

(* eat comments

’\n’] { token lexbuf }

)

| /%" { comment lexbuf }
(x funcdefs *)

| "function" { FUNCTION }
| °{’ { LBRACE }

(I { RBRACE }

| [’ { LBRACKET }
(I { RBRACKET }
| "returns" { RETURNS }
| "return" { RETURN }
(x types *)

| "int" { INT }

| "set" { SET }

| "float" { FLOAT }

| "string" { STRING }

| "tuple" { TUPLE }

| "bool" { BOOL }

(* binops *)

| 2+ { PLUS }

| =2 { MINUS }

| 2% { TIMES }

| 2/ { DIVIDE }

| "//" { NDIVIDE }

| < { LETHAN }

| 2> { GRTHAN }

| me=n { LETHANEQ }
| m>=n { GRTHANEQ }
| ==t { EQUALS }

| ni=n { NOTEQUALS }
| "&&" { LOGICALAND } 54
[y { LOGICALOR }
| "union" { UNION }

| "cross" { CROSS }

CHAPTER 8. APPENDIX

8.2.3 wvalidation.ml

open Ast
open Stringofsetups
open Setuptypes

let empty_sc =
let fsig = {fformals = []; freturn = NoTypel} in
let fvars = (Hashtbl.create 3) in
FunctionContext({ fname = ""; fsig

fsig; fvars = fvars; has_ret

let rec var_collide var_name symbols
match symbols with
| [1 -> false
| hd :: tl -> if Hashtbl.mem hd var_name then true else var_collid

let var_add var_name var_type ifcl =
match ifcl with
| FunctionContext(fc) -> Hashtbl.add fc.fvars var_name var_type
| Callers(fc, fcl) -> Hashtbl.add fc.fvars var_name var_type

exception UndeclaredVariable of string

let rec var_get var_name fcl =
match fcl with
| FunctionContext(fc) ->
(try Hashtbl.find fc.fvars var_name
with _ -> raise(UndeclaredVariable(var_name)))
| Callers(c, cl) —>
try Hashtbl.find c.fvars var_name
with _ -> var_get var_name cl

exception MultipleDecls of string * string

let validate_formals formals fcl =
let ctx =
match fcl with
| FunctionContext(c) -> c
| Callers(c, _) —> c
in
List.iter (fun pair -> Hashtbl.add ctx.fvars (snd pair) (fst p

exception Unimplemented of string
exception TypeError of string

urn = false})

e var_name tl

air)) formals;

exception NotASet of string 59

let compute_return_type_plus lhs rhs =
match lhs, rhs with

CHAPTER 8. APPENDIX

8.2.4 parser.mly

%{ open Ast %}
%token EOF ASSIGN SEMI PIPE IN ELLIPSIS YUP NOPE

/* funcdefs */
%token FUNCTION LBRACE RBRACE LBRACKET RBRACKET RETURNS RETURN

/* types */
%token INT SET FLOAT STRING TUPLE BOOL

/* binops */
%token PLUS MINUS TIMES DIVIDE NDIVIDE LETHAN GRTHAN LETHANEQ GRTHAN
%token EQUALS NOTEQUALS LOGICALAND LOGICALOR UNION CROSS SETMINUS IN

/* unops */
%token POUND NOT

/* statements / funcalls */
%token LPAREN RPAREN COMMA WHILE IF THEN ELSE PRINT

Jtoken <int> INT_LITERAL
%itoken <string> STRING_LITERAL
%token <string> FLOAT_LITERAL
Jtoken <string> ID

Jright ASSIGN

%left PLUS MINUS

%left EQUALS NOTEQUALS LOGICALAND LOGICALOR UNION CROSS SETMINUS INT
%left TIMES DIVIDE NDIVIDE

%left NOT POUND

%left LETHAN GRTHAN LETHANEQ GRTHANEQ

%left UMINUS

%start program
htype < Ast.program> program

o

program:
/* empty */ { { funcs = []; globals = [] } }
| func_def program { { funcs = $1::$2.funcs; globals
| var_decl program { { funcs = $2.funcs; globals

$2.globals
$1::$2.glob

EQ
TERSECT

ERSECT

3
als } }

var_decl: 56
typespec ID SEMI { Decl($1, $2, NullExpr) }

stmt_list:

CHAPTER 8. APPENDIX

8.2.5 cWriter.ml

open Ast
open Validation
open Setuptypes

open Printf
(* Authors: Andrew Ingraham, Bill Warner, Adam Weiss *)

exception Unimplemented of string
exception BindingError of string

(* Prevents collisions with library functions *)
let funcname_mangle f = match f with

| "main" -> f

l __> ll_ll -~ f

let string_of_typespec = function
IntType -> "int"

SetType -> "SetupSet"
FloatType -> "float"
StringType -> "std::string"
TupleType -> "tuple"
BoolType -> "bool"

NoType -> "notype"
TupleSeq(_) -> "SetupTuple"
SetSeq(_) -> "SetupSet"

let string_of_binop = function
Plus -> "+"

Minus -> "-"

Times -> "x"
Divide -> "/"
NDivide -> "//"
GrThan -> ">"
LeThan -> "<"
GrThanEq -> ">="
LeThanEq -> "<="
Equals -> ==
NotEquals —-> "!="
LogicalAnd -> "&&"
LogicalOr -> "||"
Union -> "union"

Cross -> "cross" 57
SetMinus -> "minus"

Intersect —-> "intersect"

CHAPTER 8. APPENDIX

8.2.6 setup.ml

open Ast

open Stringofsetups

(* Author Adam Weiss x)

let _ =

let lexbuf = Lexing.from_channel stdin in

let program = Parser.program Scanner.token lexbuf in
let result = string_of_program program in
print_endline (result)

o8

CHAPTER 8. APPENDIX

8.2.7 setupBase.h

#include <set>
#include <list>
#include <string>
#include <sstream>
#include <iostream>
#include <typeinfo>

/*
Authors: Andrew Ingraham, Bill Warner */

class SetupBase {

public:
// virtual std::ostream toStream(std::ostream) const;
virtual std::string toString() const = 0;
virtual bool operator==(const SetupBase &) const = 0;
virtual bool operator!=(const SetupBase &) const = 0;
//virtual SetupBool& operator==(const SetupBase &) const
//virtual SetupBool& operator!=(const SetupBase &) const

nn
o O

virtual SetupBase* clone() const = O;

};

class SetupBool : public SetupBase {
public:
bool value;
SetupBool(bool v) : value(v) {}
SetupBool() : value(0) {}
SetupBool(const SetupBool& r) : value(r.value) {}
std: :string toString() const {
std::stringstream out;
if (value){
out << "true";
}elseq{
out << "false";
}

return out.str();

SetupBase* clone() const {
return new SetupBool(*this) ;

out << rhs.toString(); 59
return out;

CHAPTER 8. APPENDIX

8.2.8 setuptypes.ml

open Ast

open Stringofsetups

(* Author Bill Warner x*)
exception ContextError of string

type function_signature = { fformals : (typespec * string) list; fre

function_context = { fname: string; fsig : function_signature;

type

function_context_link = FunctionContext of function_context | C

type

execution_context = { evars : (string, string) Hashtbl.t; }

type

type execution_context_link = ExecutionContext of execution_context
let push_fc fc fcl =

match fc with

| FunctionContext(c) -> Callers(c, fcl)

| Callers(c, 1) -> raise(ContextError("do you really want to push
let push_ec ec ecl =
match ec with
| ExecutionContext(c) -> ECallers(c, ecl)
| ECallers(c, 1) -> raise(ContextError("do you really want to push

type symbol_table = { functions (string, function_context_link) Hal

let print_fc ?(indent="") fc

print_endline (indent ~ "fname: " ~ fc.fname);
Hashtbl.iter (fun k v -> print_endline(indent ~ k ~ " " ° string o
fc.fvars

let rec print_fcl ?(indent="") fcl =
match fcl with
| FunctionContext(fc) -> print_fc fc “indent:indent
| Callers(fc, fcl) -> print_fc fc “indent:indent; print_fcl fcl

“i
let rec print_typespec 7(indent="") tup =
match tup with
| TupleSeq(l) ->
print_endline("(");

turn : typespec 1}

fvars : (string, ty

allers of function_c¢

ECallers of execus

a call stack onto a

a call stack onto :

shtbl.t }

f_typespec Vv))

ndent: (indent =~ "

let ind = indent =~ " " in

IList . iter (fun t => print tvpespec ~“indent:ind t) 1:
= < P ==y Pe=p y

print_endline ")" 60

~

-> print_endline(indent ~ (string_of_typespec tup))

CHAPTER 8. APPENDIX

8.2.9 wvalidationtest.ml

61

CHAPTER 8. APPENDIX

8.2.10 MAKEFILE

62

