AGRAJAG

A GRAph JArGon

Final Report

by:
Zachary Salzbank (zis2102)
Erica Sponsler (es3094)
Nate Weiss (ndw2114)

1 Introduction

The purpose of AGRAJAG is to simplify the process of connecting different objects together,
and manipulating them through code. Our language is based on C, but with the capability to
easily express tree and graph data structures. We do this by creating a new data type called
Node which can hold a value and references to objects that are related to it, also referred to as
children. The Node type can have up to ten children. This language is optimal for representing
graphs and trees, as well as processing the data contained by these structures. Graphs and
trees are very important data structures to both computer scientists and mathematicians. Graph
theory and combinatorics use these structures to help solve complex problems and increase the
efficiency of many programs.

2 Language Tutorial
AGRAJAG's syntax is very similar to C’s syntax. The major differences are:

¢ Instead of a main method, you need to have a root method

¢ No include statements

o No direct access to pointers

e No for loops

¢ No type casting

¢ If something is a character, it can only be added to other characters, and will always be

treated as a character. The same goes for ints and booleans.
o Variable declaration and instantiation must be in separate statements and at the
beginning of each block. (Between { and }).

¢ No strings or arrays - these can be simulated through nodes

e Only types are int, boolean, char, and Node<Type>

e Built-in print function

e Nodes:
0 Nodes have a value and children
0 Nodes are declared by Node<type> n; n = <expression of type>;
0 Node<Node<Node<Node<...>>>>is allowed, as long as it eventually

terminates in a base type of int, boolean or char.

0 A node’s child must have the same type as the parent node
o0 Given a node n, n’s value is accessed by n.value
o Given a node n, n’s i'th child (indexed starting at 0) is accessed by n[1]

Apart from these differences, writing a program in AGRAJAG is very similar to C. A short
example using a Node<int> is below:

Program Result

void root () 43
{

Node<int> x;

X = <1>;

x.value = x.value + 42;

print (x.value) ;

}

You can also have a node with children. To create a child of a node, you must simply
instantiate the child of an already instantiated node. For example, the following short program
will create a child node whose value is 2, and then set that value to 42.

Program Result

void root () 67
{ 42

Node<int> x;

x = <67>;

X[0] = <2>;

x[0] .value = 42;

print (x.value) ;

print (x[0] .value) ;

3 Language Reference Manual

3.1 Lexical conventions

3.1.1 Comments

A comment begins when the character sequence /* is encountered. The comment
ends when the character sequence */ is encountered. Comments cannot be nested.

3.1.2 Identifiers
An identifier can be comprised of any combination of alphabetic characters (upper and
lower case), integers, and the underscore ‘_’ character. Identifiers cannot begin with an
integer or an underscore. ldentifiers are case sensitive, for instance hel loWorld and
HelloWorld would not be equivalent.

The maximum length of an identifier is 16 characters. Anything longer than 16
characters will result in an error. The minimum length will be 1 character. Anything less
than 1 character will result in an error.

3.1.3 Keywords
The following words are reserved as keywords and cannot be used as identifiers:
e int
e char
® boolean

Node
void
null
return
if
else
while
true
false

3.1.4 Constants
The following types of constants are supported in AGRAJAG:
o Integer constants
Integers are any sequence of digits not enclosed within single or double quotes.
Digits in any other context (such as in an identifier name) are not considered
constants.

The maximum value of an Integer constant is 2147483647 .
The minimum value of an Integer constant is -2147483648

o Character constants
A character constant is a single character contained within single quotes. A
single quote character is denoted by \' (backslash + single quote), and a
backslash character is denoted by \\ (two backslashes).

3.2 Syntax Notation
This reference manual uses the following syntax notation:
o Terminals: Indicated by bold Courier New typeface.
o Non-terminals: Indicated by regular Courier New typeface.
o Any terminal or non-terminal followed by the subscript o, notation, is not required and
can be omitted.

3.3 Data Type

3.3.1 Node

e A node will consist of a value and a list of pointers to that node’s successors. Nodes can
have at most 10 successors.

e A node’s value can be the value of any expression including another node, as long as
the types match.

e A node is inherently directed, as not all nodes that are connected point to each other. A
node’s successors are not necessarily ‘aware’ that they are a child to the first node.
However, if the user wishes to have an undirected graph, they must simply ensure that
for every node N, all successors of N include N as a successor.

3.3.2 Properties of Nodes
e The value of each node will be mutable and obtainable through operations on that node.

3.3.3

e Foranode x, the value will be obtained by x.value
The list of successors will also be mutable and obtainable through operations on that
node.
For a node x, the n™ successor of this node will be obtained by x[n] where n is any
non-negative integer up to and including 9.
Nodes can be assigned the null value.

Intended Use of Nodes

Mainly to build trees and graphs, but other data structures can be created by using Nodes.
An example is a string, which could be represented by a collection of nodes with character
values.

3.4 Expressions

Expressions return values. This section lists the available expressions. Precedence of
expressions is the same as the order of sections listed below. All expressions within a section
have the same precedence.

3.4.1

3.4.1.1

3.4.1.2

3.4.1.3

3.4.1.4

Primary Expressions

Primary expressions are the first to be evaluated. Leftmost expressions are evaluated
first.

identifier
An identifier is any previously declared variable, as long as it has been declared
according to the rules specified in the Declarations section below.

constant

Any boolean (true or false), integer, or character. The type returned for each type
of constant is as follows:

e boolean: boolean

e integer: int

e character: char

(expression)

Parentheses are used to alter precedence. Expressions within parentheses will be
evaluated as primary expressions, even if the expressions contained within the
parentheses are a lower precedence than the surrounding operations. The returned
type and value evaluates to the same as expression.

function-name (expression-list opt)

Evaluates the expressions described in function-name, optionally passing values
via expression-list. expression-listcan be a single expression, or a comma-
separated list of expressions. The declaration of function-name must return a
value (cannot be a void function declaration). Calling void functions is covered
under statements.

3.4.2 Operators

3.4.2.1

3.4.2.2

3.4.2.3

3.4.2

3.4.2.4

Unary Operators
Unary operators modify the result of a single expression. Rightmost unary operators
are evaluated first.
.1.1 - expression
The result is the negated value of expression, with the same type.
expression must be int.
.1.2 ! expression
The result is the logical opposite of expression. expression must be of type
boolean and the return type is boolean.
Multiplicative Operators
Leftmost multiplicative operators are evaluated first.
.2.1 expression * expression

Multiplies the first expression by the second expression. The type of both
expressions must be the same. The allowed type for expression is int.

.2.2 expression / expression

Divides the first expression by the second expression. The type restrictions
for multiplication apply to division as well. Since division is always integer
division, the result will be the highest integer value less than or equal to the
quotient.

Additive Operators
Leftmost additive operators are evaluated first.

.3.1 expression + expression

Adds the first expression to the second expression. Allowed types for
expression are int or char, but both expressions must be of the same

type.

.3.2 expression - expression

Subtracts the second expression from the first expression. The type
restrictions for addition apply to subtraction as well.

Relational Operators

Relational operators return a boolean type. Allowed types for expression are int
or char, but both expressions must be of the same type. The following relational
operators are available:

e expression<expression (less than)

e expression >expression (greater than)

e expression<=expression (less than or equal to)

e expression >=expression (greater than or equal to)

3.4.2.5 Equality Operators
Equality operators return a boolean type. The type restrictions for relational operators
apply to equality operators as well. expression can also be a boolean type. The
following equality operators are available:
e expression ==expression (equal to)
e expression !'=expression (not equal to)

3.4.2.6 expression && expression
The boolean and operator (&&) returns true if both expressions are true.
Otherwise, it returns £alse. Both expressions must be of boolean type.

3.4.2.7 expression || expression
The boolean or operator (| |) returns true if either expression is true. Otherwise, it
returns false. Both expressions must be of boolean type.

3.4.2.8 Assignment Operator

An assignment has the following form:
e 1identifier =expression or
e node-identifier.value = expression
e node-identifier[expression] = expression
0 Note: the expression within the brackets must evaluate to an int

The rightmost assignment will occur first. Operands must have the same type. After
the leftmost assignment occurs, the value of expression is returned.

3.5 Declarations

Declarations are used in AGRAJAG to specify variables and functions. When declaring a
variable the type and name must be specified. The types available are:
e int
® char
® boolean
® Node<Type>

o when using a Node, the contained type specified can be any of the above types,

including Node

O
Each variable must have its own type specified, and must be a separate statement from other
declarations. After a variable declaration has been made wherever the variable appears in the
program, the value associated with the variable will be used. A variable declaration has three
parts: type, variable name, statement end. For instance, declaring a variable called number of
type 1nt would look like this:

int number;

Functions can be declared to return any of the types listed above, or the void type, and can
take as parameters any values and/or variables of the types listed above. Function declarations
can be made anywhere in the program, before or after the function(s) that call them, but cannot
be nested within other function definitions. Declarations of functions have four parts: return

type, function name, parameter list, function body. Return type specifies the type of value the
function returns. Function names can be any valid identifier that is not a reserved keyword.
Parameter lists can have up to eight parameters with any mixture of the above types. A function
body consists of a set of statements enclosed in braces (‘{’, ‘}). These statements can be any
valid AGRAJAG program, but must return a value of the same type as the specified return type.
The form of a function declaration is:

type function_name(parameter-list) {sequence of statements return
statement}

where parameter-list is a comma separated list of zero or more variables and their
associated types. For instance:

type parameterl, type parameter2, type parameter3

The root function is the entry point to the program. It will be the first function executed, and
has the return type void.

3.6 Statements

There are several allowable statements in AGRAJAG. A sequence of statements will be
executed in the order that they appear in the program. The statements that are recognized by
AGRAJAG are:

e Expression statement: A single expression followed by the end-statement character,

[

e Conditional statement: An expression that evaluates a boolean expression, and will
execute the appropriate statements based on the result. It has the form:

if (boolean expression) then {sequence of statements} else
{sequence of statements,.}

There is no form of conditional without an else section. If the programmer wishes there
to be no action in the else case they may write a statement that has the form:

if (boolean expression) then {sequence of statements} else {}

e While statement: An expression that evaluates a sequence of expressions based on
the value of a boolean expression. The form of a while statement is:

while (boolean expression) {sequence of statements}
The sequence of statements will be executed until the boolean expression evaluates to

false. The boolean expression will be evaluated before each execution of the loop
statements.

e Return statement: A statement that specifies what value a function should return. A
return statement has the form:

return (expressiong);

The expression inside the return statement will be evaluated, and the value will then be
returned to the calling function. The type of the evaluated expression must match the
return type of the function in which the return statement appears. If the expression is
omitted, then no value will be returned. In this case, the type of the function should be
void.

e Calling a function with a return type of void is a statement as well, because all
expressions must evaluate to a value, but statements do not have this restriction. A
function call to a void function has the form:

function-name(parameter-listy,);

3.7 Scope Rules

A lexical block begins with a ‘{* and ends with a “}’. The scope of any variable in a program will
be the lexical block that it is defined in, after the point at which it is defined. If blocks are nested,
the scope of the variables within the outer block extend into the inner block. To avoid ambiguity,
no overlapping names can be used for identifiers; within any scope, there will only be one
identifier with a certain name.

AGRAJAG allows for global variables, which are variables defined outside the scope of any one
function, and will be in the scope of all functions. Nested functions are not allowed. Therefore,
all functions have global scope. To avoid ambiguity, function identifiers must be unique.

3.8 Compilation and Output
Compilation on the file ‘program.ag’ is performed by running the command:

./agrajag < program.ag

The program output will be displayed on the standard output of the terminal that the compiler
was run on. The built in print function is used to output data. Any int, char or boolean
argument passed to the print function will be output.

3.9 Syntax Summary

3.9.1 Expressions
primary
- expression
! expression
expression binop expression
Ivalue assignop expression

3.9.2 Primary
constant
(expression)
primary (expression-list;)
Ivalue

3.9.3 lvalue
identifier
node [primary |
node.Value

3.9.4 binop
+ -
/ *
< > <= >=

&&
I

3.9.5 assignop

3.9.6 statement

expression ;

while (expression) { statement-list }

if (expression) { statement-list } else { statement-listyy }
return (expression);

3.9.7 statement-list
statement
statement statement-list

3.9.8 expression-list
expression
expression,expression-list

4 Project Plan

4.1 Processes

Our team met weekly to help ensure that we were headed in the right direction and making
progress. We spent the weekly meetings planning our strategy for long and short term
development. Our specifications were outlined in the LRM, and as we determined a need for
them to change we would keep the document up-to-date so all team members could reference
the most up-to-date specifications. Development was done mainly individually or in pairs, and
weekly meetings were used to catch the team up on what progress was made by individuals

over the week. Testing was done as features were implemented, and our automated test suites
were kept up to date by individuals as changes were made necessary.

4.2 Project Timeline

September October November December
Planning LRM Initial Development Development || _
Dongyang exits group Project Due

4.3 Roles and Responsibilities

The project was split between the three group members. Zachary was responsible for semantic
analysis as well as the interpreter. Erica was primarily responsible for the production of
bytecode from the semantically correct AST, as well as executing the bytecode. Nate took
responsibility for the parser, scanner, and provided significant assistance with bytecode
compilation and execution.

4.4 Development Environment

We used OCaml and OCamllex for the various portions of the compiler/interpreter. We used
VIM and Emacs as our primary editors.

4.5 Project Log

Date Activity

9/12 Team formed
9/20 First Meeting
e Discussed ideas for languages
e Decided to make a language that includes nodes and supports graphs/trees.
e Wrote proposal draft
® Assigned sample code writing to each group member for the week.

9/27 Second Meeting
e Reviewed sample code progress
e Finished writing final draft of proposal

9/28 Proposal Due
10/4 No meeting because proposal feedback not received yet
10/5 Proposal feedback received

10/11 Third Meeting
e Began work on LRM
e Assigned work to be completed on the LRM to each group member
e Dongyang absent - email sent to catch up on meeting topics

10/17 Email sent out as a meeting reminder to all group members

10/18

Fourth Meeting
e Continued work on LRM
® Resolved issues and questions encountered by individuals during the writing of the
LRM
e Dongyang absent

10/23 Fifth Meeting
e Continued work on LRM
® Assigned additional work to ensure completeness over the coming week.
e Dongyang absent
10/24 Confirmation email sent to change meeting time for the coming week.
10/25 No Meeting due to time conflicts
10/26 Email sent to Dongyang to confirm his participation in the group and to ensure meeting
attendance was made a priority.
10/27 Email received from Dongyang confirming plans to attend meeting.
10/27 Sixth Meeting
e Finished LRM
10/31 LRM Due
11/1 No meeting due to need for LRM feedback in order to move forward with the project.
11/8 No meeting due to election holiday and need for LRM feedback in order to move forward
with the project.
11/10 Email sent to TA requesting an estimate for when we would receive LRM feedback.
11/13 LRM Feedback received
11/15 Seventh Meeting
e Discussed next-steps
® Assigned work to review microc, conduct research, and assess work required for
type implementation and nodes.
e Broke coding/research into four sections and assigned responsibilities:
o Dongyang - Update Scanner/Parser
o Zachary - Begin semantic analysis research/coding
o Nathaniel - Research Java bytecode to see if it's worth translating our
language into Java bytecode.
O Erica - Review microc bytecode, translate a few programs, see what would
need to change in compile.ml/bytecode.ml
11/22 Eighth Meeting
® Reviewed progress:
o Parser/Scanner - no progress
o Semantic analysis - progress made creating a SAST, or Semantically correct
AST.
o Java bytecode research - probably feasible but likely more complicated than
editing microc code.
o Review of bytecode - Example program translated into bytecode by hand.
Several additional commands identified as necessary.
® Reassigned some responsibilities:
o Nathaniel - assist with bytecode/compile modifications
11/29 Ninth Meeting

e Reviewed progress
e Decided not much else could be accomplished without parser/scanner completed

e Dongyang absent
e Assigned Parser/Scanner to Nathaniel

12/1 Email sent to Dongyang letting him go from the group
12/6 Tenth Meeting
e Discussed progress on scanner/parser
o Nodes supported
o Types supported
e Identified a few remaining commands yet to be implemented in parser/scanner
e After review of parser/scanner, made plans to continue work on semantics and
bytecode
12/13 No meeting due to time conflicts
12/14 Eleventh Meeting
e Discussed progress
o Worked collectively on compile/bytecode/execute
o Worked on interpret.ml
e Initial interpreter working on most test cases.
12/17 Interpreter improved, working with more test cases
12/18 Mostly working compile.ml and execute.ml completed
12/19 Twelfth Meeting
e Discussed a few remaining modifications
e Reviewed presentation
12/20 Presented project. Received feedback about node storage in compile/execute
12/20- Node storage improved in compile/execute
12/21
12/22 Report completed/turned in

5 Architectural Design

AGRAJAG can compile a program into bytecode and execute it, or run the program without
creating this intermediate representation.

—In&p Parser/Scanner % Semantic Checker ﬂ[} Interpreter &&D

J?SAST

Bytecode Bytecode

Bytecode 3 Output 3
Generator Executor

The AGRAJAG compiler consists of five different functionality blocks:

Parser/Scanner: Accepts the program as input and generates an abstract syntax tree
(AST). Programs written in accordance with the syntax of the language will be accepted
by this state, but that does not mean they are valid programs.

e Semantic Checker: Accepts the AST from the previous stage and ensures it complies
with the semantic rules dictated in the language reference manual. If the program is not
semantically correct, an error message will be returned to the user stating the problem
encountered. Semantically correct code in the form of a Semantic AST (SAST) can be
passed to the interpreter or the bytecode generator stage.

e Interpreter: Runs the code from the SAST, starting with the root function. Code is not
compiled into specific instructions and does not model the operation of an actual
processor, but has the same output as the executed bytecode.

e Bytecode Generator: Accepts the code from the SAST and generates a stack-based
bytecode representation of the code. This code can be output to the user or run in the

bytecode executor.

e Bytecode Executor: Runs the bytecode generated in the previous stage. The output
from the program is reported back to the user.

The Parser/Scanner and the Bytecode Generator/Executor were developed by Erica and Nate.
The Semantic Checker and Interpreter were developed by Zachary.

6 TestPlan

6.1 Representative Source Code and Target Code

6.1.1 Hello World!

Source Code

void root()

{
Node<char> hi;
hi = <"h">;
hi[0] = <"e">;
hi[1l] = <"I1">;
hi[2] = <"I1">;
hi[3] = <"0">;
hi[4] = <™ ">;
hi[5] = <" ">;
hi[6] = <"w">;
hi[7] = <"0">;
hi[8] = <"r">;
hi[9] = <"1">;
hi[10] = <"d">;
hi[11] = <* ">;
hi[12] = <"1">;
print_string(hi, 14);

}

void print_string(Node<char> n,

t
int i;
i =0;
print(n.value);

int

len)

while (i < len - 1)
print(n[i].-value);
i i+ 1;

}
}
Byte Code
0 global 35 Litl 1 72 Lfp 109 Cnd 146 Sth 183 Litl O
variables 36 Sfp 73 Litl 1 110 Litl 1 147 Drp 4 184 Rts 1
0 Jsr 52 37 Drp 4 74 Sth 111 Litl 37 148 LitC 32 185 Ent O
1 H1t 38 Rsp 75 Drp 4 112 Lfp 149 Cnd 186 Litl O
2 Ent 1 39 Litl 1 76 LitC 108 113 Litl 6 150 Litl 1 187 Ssp
3 LitI O 40 Litl 7 77 Cnd 114 Sth 151 Litl 37 188 Rsp
4 Ssp 41 Lfp 78 Litl 1 115 Drp 4 152 Lfp 189 Litl O
5 LitI O 42 Litl -3 79 Litl 37 116 LitC 111 153 Litl 11 190 Rts 1
6 LitI 1 43 Litl 7 80 Lfp 117 Cnd 154 Sth
7 sfp 44 Lfp 81 Litl 2 118 Litl 1 155 Drp 4
8 Drp 4 45 Litl 1 82 Sth 119 Litl 37 156 LitC 33
9 LitI -2 46 Sub 83 Drp 4 120 Lfp 157 Cnd
10 LitI 37 47 Lt 84 LitC 111 121 Litl 7 158 Litl 1
11 Lfp 48 Bne -31 85 Cnd 122 Sth 159 Litl 37
12 LitI -1 49 Rsp 86 Litl 1 123 Drp 4 160 Lfp
13 Ldh 50 Litl O 87 Litl 37 124 LitC 114 161 Litl 12
14 Jsr -3 51 Rts 2 88 Lfp 125 Cnd 162 Sth
15 Drp 1 52 Ent 1 89 Litl 3 126 Litl 1 163 Drp 4
16 Bra 23 53 Litl O 90 Sth 127 Litl 37 164 Litl 14
17 LitI O 54 Ssp 91 Drp 4 128 Lfp 165 Litl 1
18 Ssp 55 LitC 104 92 LitC 32 129 Litl 8 166 Litl 7
19 LitI -2 56 Cnd 93 Cnd 130 Sth 167 Lfp
20 LitI 37 57 Litl 1 94 Litl 1 131 Drp 4 168 Jsr 2
21 Lfp 58 Sfp 95 Litl 37 132 LitC 108 169 Drp 1
22 LitI 1 59 Drp 4 96 Lfp 133 Cnd 170 Rsp
23 LitI 7 60 LitC 101 97 Litl 4 134 Litl 1 171 Litl O
24 Lfp 61 Cnd 98 Sth 135 Litl 37 172 Rts O
25 Ldh 62 Litl 1 99 Drp 4 136 Lfp 173 Ent O
26 LitI -1 63 Litl 37 100 LitC 32 137 Litl 9 174 Litl O
27 Ldh 64 Lfp 101 Cnd 138 Sth 175 Ssp
28 Jsr -3 65 Litl O 102 Litl 1 139 Drp 4 176 Rsp
29 Drp 1 66 Sth 103 Litl 37 140 LitC 100 177 Litl O
30 Litr 1 67 Drp 4 104 Lfp 141 Cnd 178 Rts 1
31 LitI 7 68 LitC 108 105 Litl 5 142 Litl 1 179 Ent O
32 Lfp 69 Cnd 106 Sth 143 Litl 37 180 Litl O
33 LitI 1 70 Litl 1 107 Drp 4 144 Lfp 181 Ssp
34 Add 71 Litl 37 108 LitC 119 145 Litl 10 182 Rsp

6.1.2 Binary Search

void root(){
Node<int> treeRoot;
Node<int> result;
treeRoot = <5>;
treeRoot[0] = <3>;
treeRoot[1] = <7>;

treeRoot[0][0] = <2>;

treeRoot[0][1] = <4>;

treeRoot[1][0] = <6>;

treeRoot[1][1] = <8>;

result = binSearch(treeRoot, 4);

if(result == null){
print(false);

} else {

print(true);

}

Node<int> binSearch (Node<int> sNode, int searchFor) {
while (sNode = null) {
if (searchFor < sNode.value) {
sNode = sNode[0];
} else {
if(searchFor > sNode.value) {
sNode = sNode[1];

} else {
return sNode;
3
3
3
return null;
}
Byte Code
0 global 41 Beq 13 84 Litl 2 127 Drp 4 170 Ssp
variables 42 Litl 0 85 Litl 37 128 Litl 8 171 Rsp
0 Jsr 74 43 Ssp 86 Lfp 129 cnd 172 Litl O
1 H1t 44 Litl -2 87 Litl O 130 Litl 2 173 Rts 1
2 Ent 0 45 Litl 37 88 Sth 131 Litl 37 174 Ent O
3 LitI 0 46 Lfp 89 Drp 4 132 Lfp 175 Litl 0
4 Ssp 47 Litl 1 90 Litl 7 133 Litl 1 176 Ssp
5 Bra 58 48 Ldh 91 cnd 134 Ldh 177 Rsp
6 LitI 0 49 Litl -2 92 Litl 2 135 Litl 1 178 Litl O
7 Ssp 50 Sfp 93 Litl 37 136 Sth 179 Rts 1
8 LitI -3 51 Drp 4 94 Lfp 137 Drp 4 180 Ent O
9 LitI 7 52 Rsp 95 Litl 1 138 Litl 4 181 Litl O
10 Lfp 53 Bra 8 96 Sth 139 Litl 2 182 Ssp
11 LitI -2 54 Litl 0 97 Drp 4 140 Litl 7 183 Rsp
12 LitI 37 55 Ssp 98 Litl 2 141 Lfp 184 Litl 0
13 Lfp 56 Litl -2 99 cnd 142 Jsr 2 185 Rts 1
14 LitI -1 57 Litl 7 100 Litl 2 143 Litl 1
15 Ldh 58 Lfp 101 Litl 37 144 Sfp
16 Lt 59 Rts 2 102 Lfp 145 Drp 4
17 Beq 13 60 Rsp 103 Litl 0 146 Litl 1
18 LitI 0 61 Rsp 104 Ldh 147 Litl 7
19 Ssp 62 Rsp 105 Litl O 148 Lfp
20 LitI -2 63 Litl -2 106 Sth 149 LitNull
21 LitI 37 64 Litl 7 107 Drp 4 150 Eql
22 Lfp 65 Lfp 108 Litl 4 151 Beq 8
23 LitI 0 66 LitNull 109 Cnd 152 Litl 0
24 Ldh 67 Neq 110 Litl 2 153 Ssp
25 LitI -2 68 Bne -62 111 Litl 37 154 LitB false
26 Sfp 69 LitNull 112 Lfp 155 Jsr -2
27 Drp 4 70 Rts 2 113 Litl 0 156 Drp 1
28 Rsp 71 Rsp 114 Ldh 157 Rsp
29 Bra 33 72 Litl O 115 Litl 1 158 Bra 7
30 LitI 0 73 Rts 2 116 Sth 159 Litl 0
31 Ssp 74 Ent 2 117 Drp 4 160 Ssp
32 LitI -3 75 Litl 0 118 Litl 6 161 LitB true
33 LitI 7 76 Ssp 119 Cnd 162 Jsr -2
34 Lfp 77 Litl 5 120 Litl 2 163 Drp 1
35 LitI -2 78 Cnd 121 Litl 37 164 Rsp
36 LitI 37 79 Litl 2 122 Lfp 165 Rsp
37 Lfp 80 Sfp 123 Litl 1 166 Litl 0
38 LitI -1 81 Drp 4 124 Ldh 167 Rts O
39 Ldh 82 Litl 3 125 Litl 0 168 Ent 0

40 Gt 83 Cnd 126 Sth 169 Litl O

6.2 Test Suites

Our tests are broken up into two main groups: tests and semantic tests. Tests (located in the
tests folder) are used to test the functionality of out code. Each of these tests should pass.

Semantic tests are used to ensure that code that does not pass the semantics required by the
LRM do not get through to the compilation stage. All these tests should fail.

6.3 Test Case Selection

Most of the test cases were chosen to test node functionality and to ensure that it matched the
specifications as stated in our LRM. We ensured that Nodes could be declared, initialized, and
manipulated properly in every context (e.g. within a function, within a block, in the context of
other nodes, etc.).

6.4 Test Automation

We used several automated test suites to test our translator. There is an all-encompassing
shell script to run every test case we have, and ensure that the expected result is achieved. We
also developed subset scripts that ran a particular class of tests. For example, there is a suite
of semantic tests that exercise the semantic analysis, ensuring that all the illegal semantic
errors are properly caught. There are also suites of test cases to test every aspect of Node
functionality, from declaring nodes of various types to accessing and setting children and values
of nodes. These test suites were extremely helpful when developing the bytecode compilation
module.

6.5 Responsibilities

Team members were generally responsible for creating test cases for the functionality which
they implemented. However, many of the test cases created by one person to test one aspect
of the program were useful for testing other facets of the translator. For instance, many of the
test cases created specifically for the interpreter were also useful for testing the bytecode
execution, and vice versa. We also were all responsible for checking specifications in the
Language Reference Manual and ensuring that all specifications had appropriate corresponding
test cases. Zachary was especially instrumental in keeping the Language Reference Manual
and test cases up-to-date.

7 Lessons Learned

Throughout the course of the project we all learned a lot, not just about compilers, but also
about organizing a project where we knew the end goal but weren’t sure exactly what it would
take to get there. Our collective advice to future teams is to look at the project reports by
previous teams, talk to people, and try to get a grasp on what the project entails. In retrospect
the project seems relatively straightforward, but at the beginning we didn’t always know where
we were headed. The best thing to do would probably be to get some perspective early on. It
would have helped a lot to know how to get to a completed project from the beginning.

The biggest obstacle we encountered in doing the project had more to do with team member
participation than the project itself. Our group started out with four group members, and we

tried to divide the work reasonably between ourselves. However, any work assigned to our
fourth group member didn’t end up getting done. He didn’t show up to over half the team
meetings, and none of the work assigned to him was actually completed until we decided to let
him go from the group. Unfortunately his portion of the project had been the parser and
scanner. This meant that progress was practically halted as we were expecting him to complete
his work. Once he was no longer on the project we immediately set to work on the parser and
scanner, and we progressed steadily throughout the rest of the project, completing our compiler
on schedule in spite of the setback.

In light of this experience the first lesson learned was that it is more important to worry about the
group as a whole than an individual member of the team. It might have helped us to cut our
losses earlier instead of giving our last group member the benefit of the doubt too many times.

The second lesson learned was that it pays to look ahead at how we plan to implement
something and make sure it is possible before assuming that it will work. We decided to
implement types, and were going to store our data as bytes to take advantage of the different
type sizes. Unfortunately we learned later that it would not be possible to store our integer,
character, and boolean data objects as a byte array in OCaml. By the time we realized this, we
had already implemented an infrastructure to accommodate the size of differently typed objects.

The last lesson learned was that writing code in OCaml cannot be approached like writing a
program in other languages that we were more familiar with. Large chunks of code could not be
written and then tested because figuring out where the type errors occurred would be very time
consuming. Rather, changing one or two lines of code at a time and then recompiling was a
much better development style. This allowed for easier debugging during development.

8 Appendix

Please see the attached pages for source code.

Makefile

OBJS = ast.cmo sast.cmo semantics.cmo parser.cmo scanner.cmo interpret.cmo bytecode.cmo
compile.cmo execute.cmo agrajag.cmo

TESTS = \
arithl \
arith2 \
fib \
forl \
funcl \
func2 \
func3 \
gcd \
globall \
hello \
ifl \

if2 \

if3 \

ifd \
opsl \
varl \
whilel

TARFILES = Makefile testall.sh scanner.mll parser.mly \
ast.ml bytecode.ml interpret.ml compile.ml execute.ml agrajag.-ml \
$(TESTS:%=tests/test-%.ag) \
$(TESTS:%=tests/test-%.out)

agrajag : $(0BJS)
ocamlc -g -o agrajag $(0BJS)

-PHONY : test
test : agrajag testall.sh
-/testall._sh

scanner.ml : scanner.mll
ocaml lex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc -v parser.mly

%.cmo : %.ml
ocamlc -g -c $<

%.cmi = %.mli
ocamlc -g -c $<

agrajag-tar.gz : $(TARFILES)
cd .. && tar czf agrajag/agrajag.tar.gz $(TARFILES:%=agrajag/%)

-PHONY : clean

clean :
rm -f agrajag parser.ml parser.mli scanner.ml testall_log \
*_cmo *.cmi *.out *.diff *_output *.parsed

Makefile

Generated by ocamldep *.ml *_.mli

ast.cmo:

ast.cmx:

bytecode.cmo: ast.cmo

bytecode.cmx: ast.cmx

compile.cmo: sast.cmo bytecode.cmo ast.cmo

compile.cmx: sast.cmx bytecode.cmx ast.cmx

execute.cmo: bytecode.cmo ast.cmo

execute.cmx: bytecode.cmx ast.cmx

interpret.cmo: sast.cmo ast.cmo

interpret.cmx: sast.cmx ast.cmx

agrajag2.cmo: scanner.cmo parser.cmi compile.cmo bytecode.cmo ast.cmo
agrajag2.cmx: scanner.cmx parser.cmx compile.cmx bytecode.cmx ast.cmx
agrajag-.cmo: semantics.cmo scanner.cmo sast.cmo parser.cmi interpret.cmo execute.cmo
compile.cmo bytecode.cmo ast.cmo

agrajag.cmx: semantics.cmx scanner.cmx sast.cmx parser.cmx interpret.cmx execute.cmx
compile.cmx bytecode.cmo ast.cmx

parser.cmo: ast.cmo parser.cmi

parser.cmx: ast.cmx parser.cmi

sast.cmo: ast.cmo

sast.cmx: ast.cmx

scanner.cmo: parser.cmi

scanner.cmx: parser.cmx

semantics.cmo: sast.cmo ast.cmo

semantics.cmx: sast.cmx ast.cmx

parser.cmi: ast.cmo

agrajag.ml

type action = Ast | Interpret | Semantics | Bytecode | Compile

let =
let action = if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(1l) [("-a", Ast);
(-1, Interpret);
('-s", Semantics);
('-b', Bytecode);
('-c', Compile);]
else Compile in
let lexbuf = Lexing.from_channel stdin in
let program = Parser._.program Scanner.token lexbuf in
let semantic_prog = Semantics.translate program in
match action with
Ast -> let listing = Ast.string_of program program
in print_string listing
| Semantics -> print_endline (Sast.string_of_sast semantic_prog)
| Interpret -> ignore (Interpret.run semantic_prog)
| Bytecode -> let listing =
Bytecode.string_of _prog (Compile.translate semantic_prog)
in print_endline listing
| Compile -> Execute.execute prog (Compile.translate semantic_prog)

scanner.mll

(* Writtent by Zachary Salzbank, Erica Sponsler and Nate Weiss *)

{ open Parser }

let char_regex = ["\\" "\""]

let id =

rule token = parse
[T " *\t" °\r* "\n7]

u/*n

b o A NS A

return”
int"
char"
boolean
Node"
-value"
void"
true”
false”
null"
\\" "

B NN\ G

"*" (char_regex as c) """
[FO"-"9"]+ as Ixm

i
e

d as Ixm
of
as char

O N T I T O O I N S N N A N el e N N e Y Y Sy Sapy S

token lexbuf } (* Whitespace *)
comment lexbuf } (* Commen
LPAREN }

RPAREN }

LBRACE }

RBRACE }

LBRACKET }

RBRACKET }

SEMI }

COMMA }

PLUS }

MINUS }

TIMES }

DIVIDE }

ASSIGN }

BANG }

BOOLAND }

BOOLOR }

EQ }

NEQ }

LT }

LEQ }

GT }

GEQ }

IF }

ELSE }

WHILE }

BREAK }

RETURN }

INT }

CHAR }

BOOLEAN }

NODE }

VALUEOF }

VOID }
BOOLEAN_LITERAL(true) }
BOOLEAN_LITERAL(false) }
NULL_LITERAL }
CHAR_LITERAL("\"") }
CHAR_LITERAL("\\") }
CHAR_LITERAL(c) }
INTEGER_LITERAL(int_of string Ixm) }
ID(Ixm) }

EOF }

raise (Failure("illegal character "

ts *)

~ Char.escaped char)) }

scanner.mll

and comment = parse
"*/" { token lexbuf }
| _ { comment lexbuf }

ast.ml

(* Written by Zach Salzbank, Erica Sponsler and Nate Weiss *)
type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq | BoolAnd | BoolOr

type constant =
Integer of int
| Character of char
| Boolean of bool
| Null

type obj type =

IntType

CharType

BooleanType
VoidType

NodeType of obj_ type
Nul I Type

type 1 _value =
Id of string
| Unop of 1 _value * unary_op

and unary_op = Child of expr | ValueOf

and expr =

Literal of constant

Lvalue of I_value

Node of expr

Binop of expr * op * expr
Assign of I _value * expr
Call of string * expr list

Neg of expr
Bang of expr
Noexpr

type v_decl = {
vname: string;
vtype: obj type;
vdefault: expr option;

}

type stmt =
Block of v_decl list * stmt list
| Expr of expr
| Return of expr
| IFf of expr * stmt * stmt
| While of expr * stmt

type func _decl = {
ftype: obj type;
fname : string;
formals : v _decl list;
locals : v _decl list;
body : stmt list;

ast.ml

}
type program = v_decl list * func_decl list

let string _of char = function

"\ > M\
[“\\" => "\\\\"
| as c -> String.make c

let string_of op = function
Add -> "+

Sub -> -

Mult -> "=

Div —> "/
Equal -> "=="
Neq -> "I="
Less -> "<

Leq -> "'<="
Greater -> ">"
Geq -> "">="
BoolAnd -> "&&"
BoolOr -> ||

let rec string_of _const = function
Integer(l) -> string _of _int |
| Character(c) -> """ ~ string_of char c ©
| Boolean(b) -> if b then "true” else "false”
| Null -> "null”

let rec string _of unop = function
ValueOf -> "_value"
| Child(e) -> [~ string_of_expr e ™~ "]"

and string_of lval = function
1d(s) -> s
| Unop (I, uo) -> string_of Ival I » string_of _unop uo

and string_of _expr = function
Literal(c) -> (match c with
Integer(l) -> string_of_int 1
| Character(c) -> """ ~ string_of _char ¢ ~ """
| Boolean(b) -> if b then "true” else "false"”
| Null -> "null”
)
| Lvalue(l) -> string_of _lval 1
| Node(e) -> <" ™ string_of expr e ™ ">"
| Binop(el, o, e2) ->
string_of _expr el ™~ ' ™ ~ string_of op o A~ ™ " /N string_of_expr e2
| Assign(l, e) -> string_of Ival I ~ " = " ~ string_of_expr e
| Call(F, el) ->

f~ (" N String.concat ', " (List.map string_of _expr el) ~)"
| Neg(e) -> "-"" ™ string_of _expr e
| Bang(e) -> "I ™ string_of _expr e
| Noexpr -> "'

ast.ml

let rec string of obj type t = match t with
IntType -> "int"”
| CharType -> "‘char™
| BooleanType -> "boolean”
| VoidType -> "void"”
| NodeType(s) -> "Node<" ™ string _of obj type s » ">"
| NullType -> "null™

let string_of vdecl id = match id.vdefault with
None -> string_of obj type id.vtype ~ " " ~ id.vhame ™ "";\n"
| Some(d) -> string_of obj type id.vtype ™ ' ™ ~ id.vname N " = " ™ string_of _expr d ™ ";\n"

let rec string of stmt = function
Block(vars, stmts) ->

“{\n" N String.concat """ (List.map string_of vdecl vars) ™ "\n" ~
String.concat """ (List.map string_of stmt stmts) ™ "}\n”

| Expr(expr) -> string_of _expr expr ™ ";\n";

| Return(expr) -> "return " ~ string_of _expr expr ™ ";\n";

| 1f(e, s, Block([1, [1)) -> "if (" ™ string_of _expr e ~ ")\n" N string_of _stmt s

| 1f(e, s1, s2) -> it (" ~ string_of _expr e ~ ")\n" ~
string_of stmt s1 » "else\n" ” string_of stmt s2

| While(e, s) -> "while (" ™ string_of expr e ~ ") " ™ string_of _stmt s

let string_of fdecl fdecl =

string_of obj type fdecl.ftype ~ ™ "

fdecl.fname ™ "(** ~ String.concat ", " (List.map string_of vdecl
fdecl.formals) ™ ")\n{\n" ~

String.concat """ (List.map string _of vdecl fdecl.locals) »
String.concat """ (List.map string of stmt fdecl.body) »

"\n"

let string_of program (vars, funcs) =
String.concat """ (List.map string_of vdecl vars) »~ "\n" ~
String.concat "\n" (List.map string_of fdecl funcs)

parser.mly

/* Written by Zachary Salzbank, Erican Sponsler and Nate Weiss */
%{ open Ast %}

%token INT CHAR BOOLEAN VOID

%token NODE

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA LBRACKET RBRACKET
%token PLUS MINUS TIMES DIVIDE ASSIGN
%token EQ NEQ LT LEQ GT GEQ

%token BOOLAND BOOLOR BANG

%token VALUEOF

%token RETURN IF ELSE WHILE BREAK
%token NULL_LITERAL

%token <bool> BOOLEAN_LITERAL

%token <char> CHAR_LITERAL

%token <int> INTEGER LITERAL

%token <string> ID

%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%nonassoc BANG
%right ASSIGN

%left EQ NEQ

%left BOOLAND BOOLOR
%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE
%left VALUEOF

%start program
%type <Ast.program> program

%%

program:
/* nothing */ { [1. [1 }

| program vdecl { ($2 :: fst $1), snd $1 }

| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:
func_decl LPAREN formals_opt RPAREN LBRACE vdecl list stmt _list RBRACE
{ { ftype = snd $1;
fname = fst $1;
formals = $3;
locals = List.rev $6;
body = List.rev $7 } }

obj type:
INT { IntType }
| CHAR { CharType }
| BOOLEAN { BooleanType }

| NODE LT obj_type GT { NodeType($3) }

parser.mly

obj decl:

obj type ID { (%2, $1) }

func_decl:
VOID ID { ($2, VoidType) } /7* Need this because can"t declare anything but function as

void */
obj decl { $1 }

formals_opt:

/* nothing */ { [1 }
formal_list { List.rev $1 }

formal_list:

obj decl { [{ vname =
| formal _list COMMA obj decl { ({ vname

vdecl_list:

/* nothing */ {11}
vdecl_list vdecl { $2 :: $1 }

vdecl :

obj decl SEMI { { vname = fst $1; vtype

stmt_list:

/* nothing */ { [1 }
stmt_list stmt { $2 :: $1 }

stmt:

expr SEMI { Expr($1) }

RETURN expr SEMI { Return($2) }

RETURN SEMI { Return(Noexpr) }

snd $1; vdefault
snd $3; vdefault

fst $1; vtype
fst $3; vtype

= snd $1; vdefault = None; } }

LBRACE vdecl_list stmt_list RBRACE { Block(List.rev $2, List.rev $3) }
IF LPAREN expr RPAREN stmt %prec NOELSE { I1T($3, $5, Block([1, [D) }

IF LPAREN expr RPAREN stmt ELSE stmt

{ IT($3, $5, $7) }

WHILE LPAREN expr RPAREN stmt { While($3, $5) }

literals:

INTEGER_LITERAL
CHAR_LITERAL
BOOLEAN_LITERAL
NULL_LITERAL

I_value:

ID
1_value VALUEOF
I_value LBRACKET expr RBRACKET

expr:

literals

LT expr GT
1_value

MINUS expr

BANG expr

expr BOOLAND expr

{ Integer($l) }

{ Character($1) }
{ Boolean($1) }

{ Null }

1d($1) }
Unop($1l, ValueOf) }
Unop($1, Child($3)) }

-

Literal($l) }
Node($2) }
Lvalue($l) }
Neg($2) }

Bang($2) }
{ Binop(%$1, BoolAnd, $3) }

M -

None; }1 }
None; }) :: $1 }

-2

parser.mly

| expr BOOLOR expr { Binop(%$1, BoolOr, $3) }
| expr PLUS expr { Binop(%$1, Add, $3) }
| expr MINUS expr { Binop($1, Sub, $3) }
| expr TIMES expr { Binop($1, Mult, $3) }
| expr DIVIDE expr { Binop($1, Div, $3) }
| expr EQ expr { Binop($1, Equal, $3) }
| expr NEQ expr { Binop($1, Neq, $3) }
| expr LT expr { Binop($1, Less, $3) }
| expr LEQ expr { Binop($1l, Leq, $3) }
| expr GT expr { Binop($1l, Greater, $3) }
| expr GEQ expr { Binop(%$1, Geq, $3) }
| 1_value ASSIGN expr { Assign($1, $3) }

| ID LPAREN actuals_opt RPAREN { Call(%1, $3) }

| LPAREN expr RPAREN { $2}

actuals_opt:
/* nothing */ { [1 }
| actuals_list { List.rev $1 }

actuals_list:

expr { 1] }
| actuals_list COMMA expr { $3 :: $1 }

sast.ml

(* Written by Zachary Salzbank *)
open Ast

type simple_expr =

Literal of Ast.constant
Lvalue of I _value

Node of simple_expr

Binop of expr * Ast.op * expr
Assign of I _value * expr

Call of func_decl * expr list

Neg of expr
Bang of expr
Noexpr

and unary_op = Child of expr | ValueOf

and simple_1 _value =
Id of v_decl
| Unop of I_value * unary_op

and stmt =

Block of v_decl list * stmt list
Expr of expr

Return of expr

IT of expr * stmt * stmt

While of expr * stmt

and expr = simple_expr * Ast.obj type
and 1 _value = simple_Il_value * Ast.obj type

and v_decl = {
vvhame: string;
vvtype: Ast.obj type;
vvdefault: expr option;

}

and func_decl = {
fftype: Ast.obj type;
ffname : string;
fformals : v_decl list;
flocals : v_decl list;
fbody : stmt list;
parsed: bool;

}
type program = v_decl list * func_decl list

let string of sast v v =

"Variable: "™ ™ v.vvname N " = " N string_of_obj_type v.vvtype N '"\n"

let string of sast f f =

“"Function: " ™ f.ffname ™ " = " ~ string_of obj type f.fftype »

sast.ml

String.concat “"\n\t" (""\nFormals: :: (List.map string of sast v f.fformals)) »
String.concat "\n\t" ("\nLocals: " :: (List.map string of sast v f.flocals))

let string _of sast (vars, funcs) =
String.concat """ (List.map string of sast v vars) ™ "\n"
String.concat "\n" (List.map string_of sast f funcs)

semantics.ml

(* Written by Zachary Salzbank *)

open Ast
open Sast

type symbol _table = {
parent - symbol_ table option;
variables : Sast.v_decl list;
functions: Sast.func _decl list;

}

type trans_env = {
scope : symbol_ table;

}

let rec find_variable (scope : symbol_table) name =
try
List.find (fun v -> v.vvname = name) scope.variables
with Not_found ->
match scope.parent with
Some(parent) -> find variable parent name
| _ -> raise (Failure('variable "™ ~ name ™ " not defined™))

let var_exists scope hame =

try
let = find _variable scope name
in true

with Failure() ->
false

let integer_check i =

if (> Il i<-) then
raise (Failure(“invalid value for integer™))
else

let id_check name =
if String.length name > then
raise (Failure(identifiers must be 16 characters or less™))
else
name

let rec find_function (scope : symbol_ table) name =
try
List.find (fun ¥ -> f_ffname = name) scope.functions
with Not_found ->
match scope.parent with
Some(parent) -> find_function parent name
| _ —> raise (Failure('function ™ »~ name ~ " not defined™))

let rec find_print (scope : symbol_table) t =
try

List.find (fun ¥ -> (f.ffname = "print” && (List.hd f.fformals).vvtype

with Not_found ->

t)) scope.functions

semantics.ml

match scope.parent with
Some(parent) -> find_print parent t
| _ —> raise (Failure('function print(" »~ string_of _obj_type t ™ ™) not defined™))

let func_exists scope name =
List.exists (fun ¥ -> f_ffname = name) scope.functions

let assign_allowed It rt = match It with
NodeType(t) -> (It = rt) || (rt = NullType)
| _ > 1t=rt

let rec can_assign It rval =
let (, rt) = rval in
if assign_allowed It rt then
rval
else
raise (Failure("type " » string_of obj type rt ~ " cannot be put into type " »
string_of obj type It))

let inner_type t =
match t with
NodeType(it) -> it
| _ —> raise (Failure(accessor cannot be used on " ™ string_of _obj_type t))

let is_node = function
NodeType() -> true
| _ -> false

let can_op lval op rval =
let (_, It) = lval
and (_, rt) = rval in
let type_match = (It = rt) in
let int_or_char = (It = IntType || It = CharType) in
let node = ((is_node It) && rt == NullType) || (1t == NullType && (is_node
rt)) || (type_match && (is_node It)) in
let result = match op with

Ast._BoolAnd -> (type_match && It == BooleanType), BooleanType
Ast.BoolOr -> (type_match && It == BooleanType), BooleanType
in if fst result then
snd result
else
raise (Failure(“operator "™ » string of op op ~ " cannot be used on types "™
string_of obj type It ~ " and " ™ string_of obj type rt))

Ast.Add -> (type_match && int_or_char), It
| Ast.Sub -> (type_match && int_or_char), It
| Ast.Mult -> (type_match && It = IntType), It
| Ast.Div -> (type_match && It = IntType), It
| Ast.Equal -> (type_match && (int_or_char || It = BooleanType)) |] node, BooleanType
| Ast_Neq -> (type_match && (int_or_char || It = BooleanType)) |] node, BooleanType
| Ast_Less -> (type_match && int_or_char), BooleanType
| Ast.Leq -> (type_match && int_or_char), BooleanType
| Ast.Greater -> (type_match && int_or_char), BooleanType
| Ast._Geq -> (type_match && int_or_char), BooleanType
I
I

-2

semantics.ml

let translate (globals, funcs) =
let rec trans_lval env = function
Ast._Id(n) -> let vdecl = (find_variable env.scope n) in
Sast.ld(vdecl), vdecl.vvtype
| Ast.Unop(lval, op) -> let I, t = trans_Ival env lval in
let inner = inner_type t in
let newt = match op with
Ast.Child() > t
| Ast.ValueOf -> inner
in Sast.Unop((l, t), trans_unop env op), newt
and trans_unop env = function
Ast.Child(e) -> let e, t = (trans_expr env €) in
if (t == IntType) then
Sast.Child(e, t)
else
raise (Failure("index must be of type iInt™))
| Ast_ValueOF -> Sast.ValueOf
and trans_expr env = function
Ast.Literal(l) -> (match 1 with
Integer(i) -> Literal(Integer(integer_check i)), IntType
| Character(c) -> Literal(Character(c)), CharType
| Boolean(b) -> Literal(Boolean(b)), BooleanType
| Null -> Literal(Null), NullType
)
| Ast.Node(e) ->
let e, t = trans_expr env e
in Sast.Node(e), NodeType(t)
| Ast_Lvalue(l) ->
let Iv, t = trans_lval env 1
in Sast.Lvalue(lv, t), t
| Ast.Binop(el, op, e2) ->
let el = trans_expr env el
and e2 = trans_expr env e2
in let rtype = can_op el op €2 in
Sast_Binop(el, op, e2), rtype
| Ast.Call(n, a) ->
let args =
List.map (fun s -> (trans_expr env s)) a in
let fdecl = if n = "print” then
(find_print env.scope (snd (List.hd args)))
else
(find_function env.scope n)
in let types =
List.rev (List.map (fun v -> v.vvtype) (List.rev fdecl.fformals)) in
let checked args = try
List.map2 can_assign types args
with Invalid_argument(x) ->
raise (Failure("invalid number of arguments’™)) in
Sast.Call(fdecl, checked _args), fdecl.fftype
| Ast_Assign(lv, e) ->
let Ival, t = (trans_lval env Iv) in
let aval = (trans_expr env €) in
Sast.Assign((lval, t), (can_assign t aval)), t

-3-

semantics.ml

| Ast_Neg(e) ->
let e, t = (trans_expr env €) in
if t = IntType then
Sast_Neg(e, ©t), t
else
raise (Failure(‘'cannot negate type " ™ string_of obj type t))
| Ast_Bang(e) ->
let e, t = (trans_expr env e) in
it t = BooleanType then
Sast.Bang(e, t), t
else
raise (Failure(cannot get logical opposite of type " ™ string_of obj type t))
| Ast_Noexpr ->
Sast.Noexpr, VoidType
in let add_local env v =
let evalue = match (var_exists env.scope (id_check v.vname)) with
true -> raise (Failure(“redeclaration of " ~ v.vname))
| false -> match v.vdefault with
None -> None
| Some(e) -> Some(can_assign v.vtype (trans_expr env e))
in let new v = {
vvname = v.vhame;
vvtype = v.vtype;
vvdefault = evalue;
}
in let vars = new_v :-: env.scope.variables
in let scope” = {env.scope with variables = vars}
in {(*Yenv with*) scope = scope”}
in let rec trans_stmt env = function
Ast.Block(v, s) ->
let scope” = {parent = Some(env.scope); variables = []; functions = []}
in let env® = {(*env with*) scope = scope-}
in let block env = List.fold_left add local env® (List.rev v)
in let s* = List.map (fun s -> trans_stmt block env s) s
in Sast.Block(block env.scope.variables, s*)
| Ast_Expr(e) ->
Sast.Expr(trans_expr env e)
| Ast.Return(e) ->
Sast._Return(trans_expr env e)
| Ast.If (e, sl1l, s2) —>
let e" = trans_expr env e
in Sast.If(can_assign BooleanType e", trans_stmt env sl, trans_stmt env s2)
| Ast_While (e, s) ->
let e = trans_expr env e
in Sast.While(can_assign BooleanType e", trans_stmt env s)
in let add _func env f =

let new_f = match ((var_exists env.scope f.fname) || (func_exists env.scope F.fname)) with
true -> raise (Failure(redeclaration of " ™ f_fname))
| false ->

let scope” = {parent = Some(env.scope); variables = []; functions = []}
in let env® = {(*env with*) scope = scope"}
in let env® = List_.fold_left add_local env® (List.rev f._formals)
in {
fftype = f.ftype;

semantics.ml

ffname = id_check f.fname;

fformals = env"._.scope.variables;
flocals = [];
fbody = [1;
parsed = false;
}
in let funcs = new_f :: env.scope.functions

in let scope® = {env.scope with functions = funcs}
in {(*env with*) scope = scope”}
in let trans_func env (F : Ast.func _decl) =
let st = find_function env.scope (f.fname)
in let functions®™ = List.filter (fun f -> f_ffname I= sf_ffname) env.scope.functions
in let scope”™ = {parent = Some(env.scope); variables = sf_fformals; functions = []}
in let env® = {(*env with*) scope = scope"}
in let formals®™ = env"._scope.variables
in let env® = List.fold_left add_local env® (f.locals)
in let remove v =
not (List.exists (fun fv -> fv.vvname = v.vvname) formals")
in let locals®™ = List.filter remove env"._scope.variables
in let body"™ = List.map (fun ¥ -> trans_stmt env") (f.body)
in let new f = {
st with
fformals = formals”;
flocals = locals”;
fbody = body”;
parsed = true;

}

in let funcs = new_f :: functions”
in let scope”™ = {env.scope with functions = funcs}
in {(*env with*) scope = scope”}
in let validate func f =
let is_return = function
Sast.Return(e) -> true
| _ —> false
in let valid_return = function
Sast._Return(e) -> if assign_allowed f.fftype (snd e) then
true
else
raise (Failure(Tf.ffname N " must return type ™ °
string_of _obj type f.fftype »
", not " ~ string_of _obj_type (snd e)
D).
| _ —> false
in let returns = List_filter is_return f.fbody
in let _ = List.for_all valid_return returns
in let return_count = List.length returns
in if (return_count = 0 && f.fftype I= VoidType) then
raise (Failure(f.ffname ~ " must have a return type of ' ™ string_of _obj type f._fftype))
else if List.length f.fformals > 8 then
raise (Failure(f.ffname N ' must have less than 8 formals™))
else
f
in let make print t =

{

semantics.ml

fftype = VoidType;

ffname = "'print";

fformals = [{
vvhame = “val';
vvtype = t;
vvdefault = None;

3

flocals = [];

fbody = [];

parsed = false;

}

in let global_scope = {

parent = None;

variables = [];

functions = List.map make_print [IntType; CharType; BooleanType];
}
in let genv = {

scope = global_scope;

}

in let genv = List.fold_left add_local genv (List.rev globals)
in let genv = List.fold _left add func genv (List.rev funcs)

in let genv = List.fold _left trans_func genv (List.rev funcs)
in If func_exists genv.scope "‘root” then

(genv.scope.variables, List.map validate_func genv.scope.functions)
else
raise (Failure(''no root function defined™))

interpret.ml

(* Written by Zachary Salzbank *)

open Ast
open Sast

module NameMap = Map.Make(struct

type t = string

let compare x y = Pervasives.compare X y
end)

type node = {
value: int;
child: int array;

}

type environment = {
locals: int NameMap.t;
globals: int NameMap.t;
nodes: node array;

}
exception ReturnException of int * environment

let node_check i1 =
ifT 1 <0 then
raise (Failure(''node does not exist yet'™))
else

let get child a i =
let cur_len = Array.length a
in if i < cur_len then
a, Array.get a i
else
let a = Array.append a (Array.make (i - cur_len + 1) (-1))
in a, Array.get a i

let array replace a i x =
let left = Array.sub a i
in let right = Array.sub a (i+1) ((Array.length a)-i-1)
in let nodes = Array.append left (Array.make 1 x)
in Array.append nodes right

(* Main entry point: run a program *)

let run (vars, funcs) =
(* Put function declarations in a symbol table *)
let func_decls = List.fold left
(fun funcs fdecl -> NameMap.add fdecl.ffname fdecl funcs)
NameMap .empty
funcs

in let rec 1 _value (env:environment) = function
Id(var) ->

interpret.ml

it NameMap.mem var.vvname env.locals then
(NameMap.find var.vvname env.locals), env
else
(NameMap.find var.vvname env.globals), env
| Unop(lv, op) ->
let lvi, env I_value env (fst 1v)
in let rnode = Array.get env.nodes (nhode_check Ivi)
in match op with
Child(e) ->
let v, env = eval env e
in let children, child = get_child rnode.child (nhode_check v)
in let rnode® = {rnode with child = children}
in let nodes = array_replace env.nodes lvi rnode*
in let env® = {env with nodes = nodes}
in child, env*
| valueOF ->
rnode.value, env
and eval (env:environment) e =
(* Evaluate an expression and return (value, updated environment) *)
let e, t = e In match e with
Literal(c) -> (match c with
Integer(i) -> i
| Character(ch) -> Char.code ch
| Boolean(b) -> if b then else
| Null -> -
), env
| Noexpr -> 1, env (* must be non-zero for the for loop predicate *)
| Binop(el, op, e2) ->
let vl, env = eval env el in
let v2, env = eval env e2 in
let bl = if (vl == 1) then true else false in
let b2 = if (v2 == 1) then true else false in
let boolean 1 = if 1 then else in
(match op with
Add -> vl + v2
| Sub -> vl - v2
| Mult -> v1 * v2
| Div -=> vl / v2
| Equal -> boolean (v1 = v2)
| Neq -> boolean (v1 = v2)
| Less -> boolean (vl < v2)
I
I
I
I
I

Leq -> boolean (v1 <= v2)
Greater -> boolean (v1 > v2)
Geq -> boolean (v1 >= v2)
BoolAnd -> boolean (bl && b2)
BoolOr -> boolean (bl |] b2)
), env
| Assign(lval, e) —>
let v, env = eval env e
in (match fst lval with
Id(var) ->
iT NameMap.mem var.vvname env.locals then(
let locals = NameMap.add var.vvname v env.locals in
v, {env with locals = locals;}

-2

interpret.ml

) else
let globals = NameMap.add var.vvname v env.globals
in v, {env with globals = globals;}
| Unop(lv, op) ->
let lvi, env = I _value env (fst lv)
in let rnode = Array.get env.nodes (nhode_check Ivi)
in let n, env = (match op with
Child(e) ->
let iv, env = eval env e
in let a, cv = get_child rnode.child iv
in let a = array_replace a iv v
in {rnode with child = a}, env
| valueOF ->
{rnode with value = v}, env)
in let nodes = array_replace env.nodes lIvi n
in let env = {env with nodes = nodes;}
in v, env)
| Neg(e) ->
let v, env = eval env e
in (v * -1), env

| Bang(e) ->
let v, env = eval env e
in let value = if v = then else
in value, env

| Node(e) ->

let nvalue, env = eval env (e, NullType)
in let n = {
value = nvalue;
child = Array.make -1);
}
in let index = Array.length env.nodes in
let nodes = Array.append env.nodes (Array.make n)
in let env = {env with nodes = nodes;}
in index, env
| Lvalue(l) -> I_value env (fst I)
| Call(f, actuals) ->
if f.ffname = "print” then
let fml = List.hd f.fformals
in let t = fml_vvtype
in let v, env = eval env (List.hd actuals)
in let s = match t with
IntType -> string of _int v
| BooleanType -> if v==1 then "true" else "fTalse”
| CharType -> string_of _char (Char.chr v)
| _ —> raise (Failure('Invalid print call'™))
in print_endline s;

, env

else
let fdecl = NameMap.find f.ffname func_decls
in

let actuals, env = List.fold_left
(fun (actuals, env) actual ->
let v, env = eval env actual in
v :: actuals, env)

interpret.ml

ai. env)
(List.rev actuals)
in try

let env® = call fdecl actuals env
in O, {env® with locals = env.locals;}
with Returnkxception(v, env®) ->
let env = {env" with locals = env.locals;}
in v, env
and add_local env vdecl =
let dv = match vdecl._vvtype with
NodeType() -> -
| _ ->
in let value, env = match vdecl.vvdefault with
Some(x) -> eval env x
| None -> dv, env
in
let locals
in let env
in
env
and exec env = function
Block(vars, stmts) ->
let env® = List.fold_left add_local env vars
in let env® = List.fold _left exec env®™ stmts
in let locals = NameMap.fold
(fun Iname lval Ist -> if NameMap.mem Iname env.locals then
NameMap.add Iname lIval Ist
else
Ist

NameMap.add vdecl.vvname value env.locals
{env with locals = locals;}

)

env” _locals
NameMap .empty
in {env" with locals = locals};
| Expr(e) ->
let , env = eval env e in env
| 1f(e, s1, s2) —>
let v, env = eval env e in
exec env (if v 1= 0 then sl else s2)
| While(e, s) ->
let rec loop env =
let v, env = eval env e in
if v I= 0 then loop (exec env s) else env
in loop env
| Return(e) ->
let v, env = eval env e in
raise (ReturnException(v, env))

(* Invoke a function and return an updated environment *)
and call fdecl actuals (env : environment) =
(* Enter the function: bind actual values to formal arguments *)
let locals =
List_.fold_left2
(fun locals formal actual -> NameMap.add formal actual locals)
NameMap .empty

interpret.ml

(List.map (fun v -> v.vvname) fdecl.fformals)
actuals
in let env = {env with locals = locals}
(* Initialize local variables *)
in let env = List.fold_left
add_local
env
(List.rev fdecl._flocals)
in
(* Execute each statement in sequence, return updated environment *)
List.fold_left exec env fdecl.fbody

(* Run a program: initialize environment with globals, find and run "root™ *)
in let env = {
globals = NameMap.empty;
locals = NameMap.empty;
nodes = Array.make 0 {
value ;
child = Array.make (-1);
};

}
in let env = List.fold_left
(fun env vdecl ->
let value, env = match vdecl.vvdefault with
Some(x) -> eval env x
| None -> 0, env
in let globals = NameMap.add vdecl.vvname value env.globals
in {env with globals = globals;}
)
env vars
in try
call (NameMap.find “root” func_decls) [] env
with ReturnkException(v, env) ->
ignore(print_endline("Exited with code " ~ string_of _int v));
env

bytecode.ml

(* Written by Erica Sponsler and Nate Weiss *)

type bstmt =
Litl of int (* Push a literal *)
LitC of char (* Push a character *)
LitB of bool (* Push a boolean *)

|
|
| LitNull (* Push null *)
| Drp of int (* Drop a certain number of bytes from the stack *)
| Bin of Ast.op (* Perform arithmetic on top of stack *)
| Lod (* Fetch global variable *)
| Ldh (* Fetch from the heap *)
| Str (* Store global variable *)
| Sth (* Store value to the heap *)
| Lfp (* Load frame pointer relative *)
| Sfp (* Store frame pointer relative *)
| Cnd (* Create a node on the node-heap with value at top of stack *)
| Jsr of int (* Call function by absolute address *)
| Ssp
| Rsp
| Ent of int (* Push FP, FP -> SP, SP += i1 *)

ts of int estore , , consume formals, push result

R Ll R FP, SP L | h It *
| Beqg of int (* Branch relative if top-of-stack is zero *)
| Bne of int (* Branch relative if top-of-stack is non-zero *)

ra of int ranch relative

B Ll * B h lati *

t erminate
HI T i *)

type prog = {
num_globals : int; (* Number of global variables *)
text : bstmt array; (* Code for all the functions *)

}

let string_of _stmt = function

Litl(i) -> "Litl " ~ string_of _int i
LitC(c) -> "LitC " ~ string_of _int (int_of char ¢)
LitB(b) -> "LitB " ~ string_of _bool b
LitNull -> "LitNulll"

Drp(i) -> "Drp " ™ string of _int i
Bin(Ast_Add) -> "Add"

Bin(Ast.Sub) -> "'Sub"™

Bin(Ast_Mult) -> “Mul™

Bin(Ast.Div) -> "Div"

Bin(Ast.Equal) -> "Eql”

Bin(Ast._Neq) -> "Neq"

Bin(Ast.Less) -> "'Lt"

Bin(Ast.Leq) -> "Leq”
Bin(Ast.Greater) -> "'Gt"

Bin(Ast.Geq) -> "'Geq"”
Bin(Ast.BoolAnd) -> "And"
Bin(Ast.BoolOr) -> "Or"”

Lod -> "Lod"
Ldh -> "Ldh"
Str -> "str”
Lfp -> "Lfp"

Sfp -> "Sfp”

bytecode.ml

Sth -> "Sth"

Cnd -> "Cnd"”
Jsr(i) -> "Jsr "
Ssp -> "'Ssp”

Rsp -> "Rsp™
Ent(i) -> "Ent "
Rts(i) -> "Rts "
Bne(i) -> "Bne "
Beq(i) -> ""Beq
Bra(i) -> "Bra "
HIt -> "HIt"

let string _of prog p

string_of _int p.num _globals »
let funca =

> > > > >

string_of_int

string_of_int
string_of_int
string_of_int
string_of _int
string_of _int

Array.mapi
(fun 1 s -> string_of _int 1 ~ "

" global variables\n™ ~

N string_of_stmt s) p.text

in String.concat "\n" (Array.to_list funca)

compile.ml

(* Written by Erica Sponsler and Nate Weiss *)

open Sast
open Bytecode

module StringMap = Map.Make(String)

(* Symbol table:

type env = {

}

function_index :
global_index
node_heap_index :
local _index

number_of locals : int; (* number of locals *)

type glh = Glob | Loc | Heap

let

* val enum :

let

let

let

let

let

size_of = function
Ast. IntType ->
Ast.CharType ->
Ast.BooleanType ->
Ast.VoidType ->
Ast_NodeType() ->
Ast_NullType ->

int -=> "a list -> (int * "a) list *)
rec enum stride n = function

0 ->10

hd::tl -> (n, hd) :: enum stride (n+stride) tl

snd = function
x, y) >y

fst = function
X, y) -> X

inFunc = false

rec remove_print = function

1 -> 11:
hd::tl -> if((compare "print"” hd.ffname) ==

remove_print tl))

let

let

rec find _base type env = function
Id s ->
(try let id_pair
(snd id_pair)
with Not _found -> try let id_glob pair =
(snd id_glob_pair)

with Not_found -> raise (Failure (“undeclared variable

Unop(l,op) -> (Find_base_ type env (fst 1))

rec find_this_type base type = function

Information about all the names in scope *)

(int * Ast.obj type) StringMap.t; (* Index for each function *)
- (int * Ast_obj type) StringMap.t;
(int * Ast_obj_ type) StringMap.t; (* "Address'™ for node storage *)
- (int * Ast.obj_ type) StringMap.t;

(* "Address"™ for global variables *)

(* FP offset for args, locals *)

) then (remove_print tl) else (hd :: (

= (StringMap.find s.vvname env.local_index) in

(StringMap.find s.vvname env.global _index) in

N s.vvname)))

compile.ml

Id s -> (match base_ type with
Ast._NodeType(t) -> t
| _ —> raise (Failure "base type is not a node in find_this_type 1d"™))
| Unop(l,op) -> (match base_type with
Ast._NodeType(t) -> (match op with
ValueOf -> (find_this_type t (fst 1))
| Child(exp) -> (find_this_type base type (fst I)))
| _ -> raise (Failure "base type is not a node in find this type 1d™))

let find _type env I =
(find_this_type (find_base type env 1))

let heap_glob_or_loc env = function
Id s ->
(try (ignore (StringMap.find s.vvname env.local_index));

Loc
with Not _found -> try (ignore (StringMap.find s.vvname env.global index));

Glob
with Not_found -> raise (Failure (“undeclared variable "™ ”~ s_vvname)))

| Unop(l, op) -> Heap

(* val string_map_pairs StringMap "a -> (int * "a) list -> StringMap "a *)
let string_map pairs map pairs =
List.fold_left (fun m (i, (n, t)) -> StringMap.add n (i, t) m) map pairs

(** Translate a program in SAST form into a bytecode program. Throw an
exception if something is wrong, e.g., a reference to an unknown
variable or function *)

let translate (globals, functions) =

(* Allocate "addresses'™ for each global variable *)
let global_indexes = string_map_pairs StringMap.empty (enum (List.map (fun v -> (v.vvname,
v.vvtype)) globals)) in

(* Assign indexes to function names; built-in "print” is special *)
let built_in_functions = StringMap.add “print” (-1, Ast.IntType) StringMap.empty in
let function_indexes = string _map_pairs built_in_functions

(enum (List.map (fun ¥ -> (F.ffname, f.fFtype)) (remove print functions))) in

(* Translate a function in SAST form into a list of bytecode statements *)
let translate env fdecl =
(* Bookkeeping: FP offsets for locals and arguments *)
let num_formals = List.length fdecl.fformals
and num_locals = List.length fdecl.flocals
and local_offsets = enum (List.map (fun v -> (v.vvname, v.vvtype)) fdecl.flocals)
and formal_offsets = enum (-1) (-2) (List.map (fun v -> (v.vvhame, v.vvtype))
fdecl . fformals) in
let env = { env with local_index = string_map_pairs
StringMap.empty (local _offsets @ formal offsets); number_of locals = num_locals } in
let loc_env = env in
let rec 1 _value helper lenv = function
Id s ->
(try let id _pair = (StringMap.find s.vvname lenv.local_index) in
[Litl (Ffst id_pair)] @ [Litl 1 @ [Lfp]

compile.ml

with Not _found -> try let id_glob pair = (StringMap.find s.vvname lenv.global index) in
[Litl (Ffst id_glob_pair)] @ [Litl 1 @ [Lod]
with Not_found -> raise (Failure (“undeclared variable ™ ~ s_vvname)))
| Unop(l, op) -> (match op with
ValueOf -> (I_value _helper lenv (fst 1)) @ [Litl (-1)] @ [Ldh]
| Child(exp) -> (1 _value_helper lenv (fst 1)) @ (simple_expr lenv (fst exp)) @ [Ldh])

and

I_value lenv lval from = (match lval with
Id s ->
(try let id_pair = (StringMap.find s.vvname lenv.local_index) in
[Lit]l (Fst id_pair)]
with Not_found -> try let id_glob pair = (StringMap.find s.vvname lenv.global index) in
[Litl (fst id_glob_pair)]
with Not_found -> raise (Failure ('undeclared variable "™ ™ s_vvname)))
| Unop(l, op) -> (match op with
ValueOf -> (I_value _helper lenv (fst 1)) @ [Lit]l (-1)]
| Child(exp) -> (1_value_helper lenv (fst 1)) @ (simple_expr lenv (fst exp))))

and

simple_expr lenv = function
Literal ¢ -> (match c with
Ast.Integer(i) -> [Litl i]
| Ast.Character(ch) -> [LitC ch]
| Ast.Boolean(b) -> [LitB b]
| Ast_Null -> [LitNull]
)
| Binop (el, op, e2) -> (simple_expr lenv (fst el)) @ (simple_expr lenv (fst e2)) @ [Bin
op]
| Assign (I, e) —-> (simple_expr lenv (fst e)) @ (I_value lenv (fst 1) (Assign(l,e))) @ (
match (heap_glob _or_loc lenv (fst 1)) with
Glob -> [Str]
| Loc -> [STp]
| Heap -> [Sth])

| Call (fname, actuals) -> (try
(List.concat (List.map (fun a -> (simple_expr lenv (fst a))) (List.rev actuals))) @ (match
fname.ffname with
“"print” -> (match (List.hd fname.fformals).vvtype with
Ast.IntType -> [Jsr (-1)]
| Ast.BooleanType -> [Jsr (-2)]
| Ast.CharType -> [Jsr (-3)]
| _ —> raise (Failure (“'Cannot print this type.")))
| _ -> [Jsr (fst (StringMap.find fname.ffname env.function_index)) 1)
with Not_found -> raise (Failure (“undefined function " ~ fname.ffname)))
| Neg(e) -> [Litl O] @ (simple_expr lenv (fst e)) @ [Bin Ast.Sub]
| Bang(e) -> [Litl 1] @ (simple_expr lenv (fst e)) @ [Bin Ast.Sub]
| Node(e) -> (simple_expr lenv e) @ [Cnd]
| Lvalue(l) -> (I_value lenv (fst 1) (Lvalue(l))) @ (match (heap_glob_or_loc lenv (fst I))
with
Glob -> [Litl 8] @ [Lod]
| Loc -> [Litl 7] @ [Lfp]

compile.ml

| Heap -> (*[Litl 4] @*) [Ldh])
| Noexpr -> []

in let rec stmt lenv = function
Block (vars, sl) -> if (inFunc)
then ((ignore (inFunc = false)); (List.concat (List.map (fun a -> (stmt lenv a)) sl)))
else let new_env = {lenv with local_index = (string_map_pairs lenv_local_index (enum (lenv
-number_of_locals + 1) (List.map (fun v -> (v.vvname, v.vvtype)) vars))); number_of_locals

lenv_number_of locals + (List.length vars) } in [Litl (List.length vars)] @ [Ssp] @ List.
concat (List.map (fun a -> (stmt new_env a)) sl) @ [Rsp]

| Expr e -> (simple_expr lenv (fst e)) @ [Drp (size_of (snd e))]

| Return e -> (simple_expr lenv (fst e)) @ [Rts num_formals]

| If (p, t, F) —> let t~ = (stmt lenv t) and f* = (stmt lenv) in
(simple_expr lenv (fst p)) @ [Beq(2 + List.length t")] @
t" @ [Bra(l + List.length)] @ f*

| While (e, b) ->

let b" = (stmt lenv b) and e" = (simple_expr lenv (fst e)) in

[Bra (1+ List.length b")] @ b" @ e" @

[Bne (-(List.length b" + List.length e®))]

in ((ignore (inFunc = true));[Ent num_locals] @ (* Entry: allocate space for locals *)
(stmt loc_env (Block([](*fdecl.fformals*), fdecl.fbody))) @ (* Body *)
[Litl O; Rts num_formals]) (* Default = return 0 *)

in let env = { function_index = function_indexes;
global_index = global_indexes;
node_heap_index = StringMap.empty;
local_index = StringMap.empty;
number_of locals = 0} in

(* Code executed to start the program: Jsr main; halt *)
let entry_ function = try
[Jsr (fst (StringMap.find "root"” function_indexes)); HIt]
with Not_found -> raise (Failure (‘'no \"main\" function - sincerely, compile.ml'))
in

(* Compile the functions *)
let func_bodies = entry_function :: List.map (translate env) functions in

(* Calculate function entry points by adding their lengths *)
let (fun_offset list,) = List.fold left

(fun (0L,1) F > (G -: 1, (i + List.length ¥))) ([1,0) func_bodies in
let func_offset = Array.of _list (List.rev fun_offset_list) in

{ num_globals = List.length globals;
(* Concatenate the compiled functions and replace the function
indexes in Jsr statements with PC values *)
text = Array.of _list (List.map (function
Jsr i when i1 > -> Jsr func_offset. (i)
| as s -> s) (List.concat func_bodies))

execute.ml

(* Written by Erica Sponsler and Nate Weiss *)

open Ast
open Bytecode

(* Stack layout just after "Ent":

<-- SP
Local n
Local O
Saved FP <-- FP
Saved PC
Arg O
Arg n *)
module NodeMap = Map.Make(String)
type node = {
value: int;

children: int list;

}

type env = {
stack: int array;
node_heap: (nhode) NodeMap.t;
globals: int array;
saved_sp: int array;

}

let rec modify_ith_element new_val i target list =
if i==target then (match list with
[T —> new_val :: []
| hd::tl -> new_val :: tl)
else (match list with
hd::tl -> hd :: (modify_ith_element new_val (i+1) target tl)
| _ —> raise (Failure (“lInvalid List™)))

let execute_prog prog =

let rec exec fp sp hp sc pc env = match prog.text.(pc) with
(G Lit i -> stack.(sp) <- 1 ; exec fp (sp+l) (pc+l)*)
Litl i -> env.stack.(sp) <- i1 ; exec fp (sp+l) hp sc (pc+l) env
| LitC ¢ -> env.stack.(sp) <- (int_of _char c) ; exec fp (sp+l) hp sc (pc+l) env
| LitB b -> env.stack.(sp) <- if b then else ; exec fp (sp+1l) hp sc (pc+l) env
| LitNull -> env.stack.(sp) <- (-1) ; exec fp (sp+1l) hp sc (pc+l) env
(* | Drp -> exec fp (sp-1) (pc+l) *)
| Drp 1 —> exec fp (sp-1) hp sc (pct+l) env
| Bin op -> let opl = env.stack.(sp-2) and op2 = env.stack.(sp-1) in
env.stack.(sp-2) <- (let boolean i = if i1 then else in
let bl = (opl == 1) in
let b2 = (op2 == 1) 1in
match op with
Add -> opl + op2

execute.ml

Sub -> opl - op2

BoolAnd -> boolean (bl && b2)
BoolOr -> boolean (bl || b2)) ;
exec fp (sp-1) hp sc (pc+l) env
| Lod -> env.stack.(sp-2) <- env.globals.(env.stack.(sp-2)) ; exec fp (sp-1) hp sc (pc+l) env
| Str -> env.globals.(env.stack.(sp-1)) <- env.stack.(sp-2) ; exec fp (sp-1) hp sc (pc+l) env
| Lfp -> env.stack.(sp-2) <- env.stack.(fptenv.stack.(sp-2)) ; exec fp (sp-1) hp sc (pc+l) env
| Sfp -> env.stack. (fptenv.stack.(sp-1)) <- env.stack.(sp-2) ; exec fp (sp-1) hp sc (pc+l) env
I
(

I

| Mult -> opl * op2

| Div -> opl / op2

| Equal -> boolean (opl = o0p2)
| Neq -> boolean (opl !'= op2)
| Less -> boolean (opl < o0p2)
| Leqg -> boolean (opl <= op2)
| Greater -> boolean (opl > op2)
| Geq -> boolean (opl >= o0p2)
I

I

Ldh -> (try let node val = (NodeMap.find (string of _int env.stack.(sp-2)) env.node heap) in
match env.stack.(sp-1) with
(-1) -> env.stack.(sp-2) <- node_val.value ; exec fp (sp-1) hp sc (pc+l) env
| _ -> env._.stack.(sp-2) <- (List.nth node_val_children env.stack.(sp-1)) ; exec fp (sp-1) hp
sc (pc+1) env) with Not found -> raise (Failure (“"Failed to find node in Ldh™)))
| Sth -> (try let node val = (NodeMap.find (string_of _int env.stack.(sp-2)) env.node_heap) in
(match env.stack. (sp-1) with
(-1) -> let new_heap = (NodeMap.add (string_of_int env.stack.(sp-2)) {node_val with value
= env.stack. (sp-3)} env.node_heap) in exec fp (sp-2) hp sc (pc+l) {env with node_heap =
new_heap}
| _ —> let new_node = {node_val with children = (modify_ith_element env.stack.(sp-3) env.
stack.(sp-1) node_val._children)} in let new_heap = (NodeMap.add (string_of_int env.stack.(sp
-2)) new_node env.node heap) in exec fp (sp-2) hp sc (pc+1l) {env with node heap = new_heap})
with Not_found -> raise (Failure (“"Failed to find node in Sth™)))
| Chd -> let new_heap = (NodeMap.add (string_of _int hp) {value = env.stack.(sp-1); children =
[1} env.node_heap) in
env.stack.(sp-1) <- hp ; exec fp sp (hp+1l) sc (pc+l) {env with node_heap = new_heap}
| Jsr(-1) -> print_endline (string_of _int env.stack.(sp-1)) ; exec fp sp hp sc (pc+l) env
| Jsr(-2) -> print_endline (if (env.stack.(sp- == 1) then "true" else "false™) ; exec fp sp
hp sc (pc+l) env
| Isr(-3) -> print_endline (Char.escaped (char_of_int env.stack.(sp-1))) ; exec fp sp hp sc (

pc+1l) env
| Jsr i -> env.stack.(sp) <- pc + ; exec fp (sp+1l) hp sc i1 env
| Ssp -> env.saved_sp.(sc) <- sp ; exec fp (sp + env.stack.(sp-1) - 1) hp (sc+l)

(pc+1) env
| Rsp -> Ilet new_sp = env.saved sp.(sc-1) in exec fp new_sp hp (sc-1) (pc+l) env

| Ent i -> env.stack.(sp) <- fp ; exec sp (sp+i+l) hp sc (pc+l) env

| Rts i -> let new_fp = env.stack.(fp) and new_pc = env.stack.(fp-1) in
env.stack.(fp-i-1) <- env.stack.(sp-1) ; exec new_fp (fp-i) hp sc new_pc env

| Beqg i -> exec fp (sp-1) hp sc (pc + if env.stack.(sp-1) = then 1 else 1) env

| Bne i -> exec fp (sp-1) hp sc (pc + if env.stack.(sp-1) = O then i else 1) env

| Bra i -> exec fp sp hp sc (pc+i) env

| HIt o)

in let env = { stack = Array.make -1);

node_heap = NodeMap.empty;
globals = Array.make prog.num _globals (-1);
saved_sp = Array.make -}

execute.ml

in exec

env

	AGRAJAGFinalReportFinal
	agrajag_code
	Makefile
	agrajag
	scanner
	ast
	parser
	sast
	semantics
	interpret
	bytecode
	compile
	execute

