9/28/11

Project Proposal

COMS4115 Fall 2011 Project Proposal

Setup: A Language for Operating on Sets

Adam Weiss Andrew Ingraham lan Erb Bill Warner

ajw2137@columbia.edu aci2llO@columbia.edu ire2l102@columbia.edu whw2108@columbia.edu

1. INTRODUCTION AND MOTIVATION
Setup defines a syntax for operating on finite sets. Setup provides mtuitive notation for quickly and clearly
defining sets, as well as performing rudimentary set operations on user-defined sets. Setup also defines a notation
for for functions which take literals and sets as parameters.

Setup provides a level of abstraction to the user which makes set manipulation more intuitive. We anticipate
users will solve simple set-oriented problems like schedule, rudimentary databases, and probability problems.

2. LANGUAGE FEATURES

2.1 DartaA Typrs
Literals / Atoms
o Integers -- [0-9]+
o Float -- Integer.[Integer]+ uses the 32 bit IEEE range
e Character -- A - z no punctuation or white space
e Strings -- [Character]+
e Symbols -- Globally unique names that may be members of Sets or Tuples

Sets : homogeneous, all elements of the same type, unique values
Tuples or Lists : ordered lists, heterogeneous, can be of mixed type, duplicate values permitted

2.2 KEYWORDS AND OPERATORS

Setup allows for the usual four operations {+, - , *, / } on integer and float types, as well as the following
operators for set types:

intersect N computes the intersection of the sets to the left (Ihs) and right (rhs) of it

union U computes the union of Ths and rhs
minus - returns lhs with any members of ths removed
cross X returns the cartesian product of Ths and rhs

in S iterates over members of rhs

not ~ returns complement
IS| returns number of elements in S as an int
1= = assignment

https://docs.google.com/View?docID=0AQxKwN-etBzDZGY2dDhzZNmNfMTFm...

1/4

9/28/11 Project Proposal

operates only on numeric sets and returns sum of elements

sum - (done coordinate-wise) in the set

arranges cross product pairings from sets on the left and
right

range operator applies to integers and characters

and

{} denotes a set of elements

denotes an ordered list, or tuple. the cross product of two

0 sets 1s a set of tuples.

where, as in SQL. in a Setup clause, the expression to the
left of of | declares variable names and their structural
relationships, while the expression on the right binds
variables to values

begins a comment. comments begin with -- and end with a
new line

converts lhs and rhs to string representation and returns their
concatenation. (all types have a string representation)

wildcard is a placeholder that accepts any value without
binding it to a variable name or checking its type

; statement terminator

in function declarations, groups input arguments and
statements in function body

[]

3. FUNCTIONS

We anticipate functions having no side effects on their arguments. Functions accept as arguments literals and their
containers (i.e., sets. sets of sets).

3.1 FuNCTION SYNTAX

3.1.1 Definition

function FuncName [set X, int c¢] returns set

[
statement;
statement;
return ret;

]

3.1.2 Invocation

FuncName [Week, 7];

4. SAMPLE CODE

https://docs.google.com/View?docID=0AQxKwN-etBzDZGY2dDhzZNmNfMTFm...

2/4

9/28/11

https://docs.google.com/View?docID=0AQxKwN-etBzDZGY2dDhzZNmNfMTFm...

Project Proposal

4.1 SEr INITIALIZATION

4.1.1 Initialization using literals and tokens:

Hours := { 1 24 };
Weekdays := {Mo Tu We Th Fr};
Weekend := {Sat Sun};

4.1.2 Initialization Built-in Operators:

FullWeek := Weekdays union Weekend;
-- {Mo Tu We Th Fr Sat Sun}

Weekdays cross Hours;
(Mo 2) (Fr 24)}

WeekdayHrs :=
-- {(Mo 1)

4.1.3 Initialization Using Relations:

WeekdayHrs := {(x y) |
-— {(Mo 1) (Mo 2) (Fr 24)}
TokenWeekdayHrs := {“day”. str(x)
Hours};
-- {dayMo-hrl dayFr-hr24}
MondayHrs := (Mo *) in WeekdayHrs;
-— {(Mo 1) (Mo 2) (Mo 24)}
Hours := {x | (* x) in WeekdayHrs};
-- {1 24}
TreeWeek := { (d {h}) |
-- { (Mo {1 241) (Fr {1

4.2 SAMPLE PROGRAM

Users may want to use Sefup to solve problems related to probability. The following program computes the
expected value of a roll of a fair dice. It can be extended simply to solve harder problems relating to conditional

probability and random walks.

x in Weekdays and y in Hours};

"-hr” str(y)

d in Weekdays and h in Hours }

241)}

X 1in Weekdays and y in

function ExpVal [set S]

[
Temp := {x*y | (x y) in S};

return sum Temp;

Pips {1 2345 6};

Prob := { 1/6 };

Dice := Pips cross Prob; -— {(1 1/6) (6 1/6)}
print ExpVal [Dice 1; -- 3.5

3.5

3/4

9/28/11 Project Proposal

https://docs.google.com/View?docID=0AQxKwN-etBzDZGY2dDhzNmNfMTFm... 4/4

