Lattakia

Language Reference Manual (v1.0/2011)

Heba Elfardy <hme2110@columbia.edu>
Dara Hazeghi <dmh2186@columbia.edu>
Wael Salloum <wss2113@columbia.edu>

Li Yifan <yl2774@columbia.edu>

Contents

1. INETOAUCTION. oottt eessee s ssses s s s bR R R R R s AR b b s 4
R U L (ol TP 5
TR = ¢ Uor= 1 I o 0) 0 174=5 41 () o 1O OSSR 7
s T 010) 4000 1<) 11 3PP 7
TR 6 155 a4 (=5 OO 7
(o (€2 A7) oo C OO RTRT T 7
(0 TR 010 4 1]) o LTSRS 7
T 4 1= PP 9
N 7= (o 9
4. 1.1 SEQUENCE LALLICES w.ouveueueuerrerrieseisessessssessessesses s ses s ses s bbb bbb 9
4.1.2 AILETNATIVE LATtICES .iuuiereeeesreeeesreessesseesseseessesssessessssssesssssssesssssssssessss bbb s bbb 10
4.1.3 NAMEA VATTADIES: .ttt eses e sses s s s bbb 10
a. Independent V.S. Dependent Variables: ... eneseseesesssessssssssesssessssssssssessssssesssssssans 10
b. Constrained V.S. Unconstrained Variables: ... enncneseeseeseeseessesssssesssessesssessessssssesees 11
4. 1.4 LADELS oottt ree e e s s s s R AR R AR R AR 11
N 7= D U (o) OO 11
4.2 INUINIDETS .cceteeeueeerereessesseessesssessesssesseessesss s esse s s s s s R £ R s RS AR E AR s 13
0 R o =T T 13
4.2.2 REAI NUIMDETSooeeeeeeeereeeeseeeesseessessees s ees s s ss s s s 13
G T o 0P 13
4.4 BOOLEAMSoorvueueenrereeuseseesseessessesssesseesse s s esse e s s s R R s AR R AR R AR R AR 13
4.5 REGUIAT EXPIOSSION c.uceucuieureeeesreeseesseessesseessesseessessssssesssessessss s s sss s s s s s 13
5. EXPreSSIONS aNd OPEIatOrS. . ..o cueereeeesresseessesssesseessesssessesssessesssessssssesssessessssssessssssssssssssessssssessssssesssesssssssssssssssas 15
5.1 ATItNIMETIC @XPIESSIONS .uvceueueereureeseesseesresseessseseessssssesssessessesssesssessesss s s s s s b e s s s s bbbt 15
L0 0T a0 o T=) ¢ U0) PP 16
5.2 SEIIN G EXPTESSIONS ..o ruucureeurerseesresseessesssessesssessesssesseessesssesssessesseessesseesseE s AR AR s R R e R R AR s R s R R bbbt 16
5.3 BOOIEAN EXPIESSIONS .coueeueurceurerseesresseessesssessesssesseessesssesssessessesssasssessasssessasssssssesssssssssesssesssessasssessasssessssssssasessesas 16
5.4 COMPATISON EXPIESSIONS weeueureereusersresseesresseessesseessesssessssssessesssesssessasssessasssssssesssssssssesssessssssesssesssssssssssssssasssssas 17
5.5 ASSIGNIMENT EXPIESSIONS ...eueueereueeseesseessesseessesseessssssessesssessesssesssessesssessasssssssessssssessesssessssssesssessasssessssssssasessnsas 18
5.6 EVAlUAtiON EXPIrESSIONS. ...cuiirieceureeeesseessesseesseeeessesssessssssessesssesssessssssssssssss s ssssssssssssssssssssassssssssssssssssssssssssneas 19
5.6.1 EVAlUQLION: 7 EXPTESSION ..ceueereureereereereereessseseesssesesssessesssssssssssssssssssssssss s ssssssssssssssssssssassssssssssssssssssassssnsas 19

5.6.2 Preventing OptimiZation: ” @XPIreSSION ... eneneeseensesssesssssesssssesssas 19

5.6.3 APPLiCAtioN: NAME (IALLICE) ...cueereereereereerreereesreesesseessessesssessessesssssssssss s sssssssss s s sessss s sasessnsas 20
5.7 Alternative eXpression: eXpreSSiOn | @XPIreSSION ... oeeseessessseas 20
5.8 Sequence exXpression: eXPreSSiON ; EXPIESSION ... eeenseessessesssessssssssssssesssssssssssssssssssssssssssssesas 20
5.9 Concatenation eXpression: expreSSiON ~ EXPIESSION.....ureeseessesseessessesssesssessessesssssssssssssssssssseeas 21
5.10 Labeling eXpreSSions: [ADEI: VAIUE ... eeeereeeereeseeseeseeseessessessssssessseas 21
5.11 Conditional eXpreSSionS: [CONAIEION] ... eoeneeereereereeseeseesesssessesssesssessssesssesssssessssssssssssssssssssesseas 21
5.12 EQCh @XPIeSSIONS: @UCKH X .rvureureereereeretreesseeseessessesssesssssessssssssssssssssssssss s ssssssssssssss s st ssssss s sssssssssnsas 22
5.13 Parenthetic eXpreSSiONS: ((A; D) €)oo eneneesesneessessesssssssssssssssesssssssssssssessssssassssssssssssssssssasssesas 22
5.14 Braces eXPreSSIONS: X{IMAEXuwrreneereeneessersesssesssssssssesssessssssssssssssssssssssssssssssssssssssasssssssssssssssssssasssssas 22
5.16 ACCESSOT EXPIESSIONS: . eeeeierceureesresseessesseesseeseessesssesssessesseessesssessesss bR bbb R bR s e R bbbt 23
5.17 HaSh @XPIrESSIONS: H...oeureeceereeeeureesesseesessesssssssessssssesssessessesssassssssesss s s bbb s s s s s e 23
LT D TTe) B2 =1 () L 24
7. AHTIDULES QN0 KEYWOTAS .coueeieeceereereeseesseeeessessesseesssseessesssessesssesssssse s s s s s s st snsas 24
8. BUilt-in LIDrary FUNCHONS ..ottt seessesesssessss s ses s s s s sssss s 27
9. RULE AP PIICALION couriereueeeeereeeesseessesseessesessse s s ssses s s esss s s s s s bR s a AR R bbb s s 28
B0 TR0 0 (=N 28
9.2 Example: Part-of-Speech (POS) TAZEEToorerrereereereeseessesseessesssessesssesssessesssssssssssssssssssssssssssesssssssans 28
10, EXAIMPLES couceeereeceeseeeesseeseeeesseeeessess s e s ssse s s bR R £ R s AR st 30
10.1 Object-Oriented Programmingc..oeeceereensesseesseseessesssessssssessssssesssssssssssssssssssssssssssssssessssssssssssssesees 30
10.2 Collections (Advanced Data SIIUCLUTES)ouuremeeeesrersesseessessesssesssessessssssesssssssesssssssssssssessssssssssessees 32
0O LN ¢ | £ T 32
B Ul - Vo 1o B0 1D =Y 0 =TS 32
0O T o - T T L o] (=N 33
110.2.4 SOES: ovuiruiruseesseesses s sess s es s REERRS R S RS RR R R R R R R R R R 33
L0, 2.5 TUPIES: weeereeeeereeretseesseeeesseesses e s ees s s esse s bR AR R AR AR 33
BT ST 1 T 1N 33
110.2.7 GIaP RS ettt ees et s s s s bR R AR R AR 34
APPENAIX A — SYNTAX SUIMNIMATY w.oueurieeesrereesseesreesesssesssessesssessesssessesssessssssssssesssssssssssssssssessssssessssssasssessasssessessssssssssnsas 36
APPENAIX B = THE SCANMET ...erieeetceereeeesreeeesseesseeseesssesessesssesssessessssssesssssssssse s s bbb s s ses s s b sneas 39

APPENAIX C = ThE PATSET ..eueeieeeeeereteessesees e sesessssssesssesse s sssse s s ssss s s bbb s s s s 40

1. Introduction.

This manual describes the Lattakia programming language. Lattakia is a compact functional
language built around the word lattice structure. Word lattices are a special case of lattices
(partially-ordered sets). In Lattakia, both program code and data are stored in these lattices.
Standard programming constructs such as conditionals, loops and functions all lend themselves to
this representation.

Word lattices are powerful representation models. For example in Natural Language Processing
(NLP), they are commonly used in applications where there is ambiguity (uncertainty) in the
meaning (or interpretation) of a word, such as in automatic speech recognition, machine
translation, language and/or dialect identification, language models, paraphrasing (e.g. in
information retrieval and question answering) as well as many other applications.

Despite their importance, researchers tend to avoid using word-lattices because of the inherent
difficulty in implementing them. Only recently have some NLP tools such as Moses and SRILM
started to support word lattices natively by accepting them as input. However, their application is
not limited solely to this domain. Lattakia is designed to make the processing of such complicated
data structures more convenient as well as providing the required functionality for developing
general-purpose programs.

wettbewerbsbedingten

einen bedingten

wetthewerbs

An example of a word lattice from Moses, http://www.statmt.org/moses/?n=Moses.WordLattices

2. Lattices

Conceptually, lattices may be thought of as a specialized type of graph. Each lattice has a start and
an end node. The arcs in between are the expression in the lattice. The nodes are the position in
the execution of the lattice. Each arc that is traversed corresponds to the evaluation of the
expression associated with that arc.

Lattices are divided into two categories: sequence lattices and alternative lattices. Sequence
lattices have many nodes, but only a single arc from one to the next. Alternative lattices
meanwhile have only two nodes but potentially many arcs in between them. One corresponds to a
sequence of expressions or statements, the other to a collection of alternatives.

O—CO—0

Sequence Lattice (seqglat) Alternative Lattice (altlat)

O

Lattice (combination of seqglat and altlat)

In Lattakia, there is no significant distinction between code and data. Both are represented as
lattices. Executing code is simply a matter of evaluating each expressions in a lattice sequentially.
These expressions correspond to the standard programming constructs - arithmetic, simple
variable assignment and the like. Lattices may be composed of other lattices indefinitely, which
allows for creating and operating upon complex data structures.

As a functional language, every valid expression in Lattakia can be evaluated. However, Lattakia
also features delayed evaluation to allow for dependent variables. Dependent variables are
variables bound to expressions that reference other variables. Thus when those other variables
change, the result of evaluating the dependent variable will change as well.

[x>1] (lety =fib(x - 2); let z =fib(x - 1); y + 2);

[x=0IIx==1]1;

Lattice for a simple Fibonacci number calculator

Because all data and code are contained within lattices, being able to access components of lattices
is important. Lattakia has several operators to allow such access. The ability to label nodes within
a lattice provides easy access to those expressions outside.

Scoping is done at the lattice level. Labels have global scope. Variables have lattice scope. As a
result, variables are not visible outside the lattice where they are first bound, while labeled
expressions can be accessed both from inside the same lattice, and from anywhere else.

3. Lexical conventions

There are four basic kinds of tokens: identifiers, keywords, constants, and expression operators.

In general blanks, tabs, newlines, and comments as described below are ignored except as they
serve to separate tokens. At least one of these characters is required to separate adjacent
identifiers, constants, and certain operator pairs.

a. Comments
The language has both single-line and multi-line comments. Commented lines start with

double-periods “..” and end when a newline is encountered while multi-line comments start
and end with double-asterisks “**”.

b. Identifiers
An identifier is a sequence of letters, digits and underscores; the first character must be a
character. Identifiers are case-sensitive.

c. Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

General keywords: let this elsel return
Constant keywords: true false nil epsilon
Attribute keywords: length count clone labels

d. Constants
There are several kinds of constants, as follows:

- Integer Constants:
An integer consists of a sequence of digits and an optional minus sign preceding the first
digit to indicate that the integer is negative.

- Float Constants:
A floating constant consists of an integer part, a decimal point, a fraction part and an
optional minus sign preceding the first digit of the integer part.

- String Constants:
A string is a sequence of characters surrounded by double quotes “ " ”. String constants
start and end with double-quotations and cannot contain double or single quotes.

- Regular Expression Constants:
A regular expression constant is a sequence of characters surrounded by two forward

slashes “ / ”. Regular expressions use the same wild cards used in Java.

- “Java-Code” Constants:

1 The ‘else’ keyword is not implemented currently but reserved for future implementations.

o~

AJava-code constant is a sequence of characters surrounded by two grave accents
code is not processed; instead, it's passed as is to the generated code.

.Java

4. Types

Lattakia is a functional language. As with all functional languages, every expression in Lattakia
must be possible to evaluate. Depending on which operators and operands appear in the
expression, the type of this expression may be a lattice (sequence or alternative), a number
(integer or real), a string, a boolean value or a regular expression. The types of these expressions
are implicit (there are no explicit type ‘casts’). At evaluation time, for an expression to be valid,
the types of the operands must be compatible with each other and with the operator being used.
Likewise, if the type of an expression cannot be inferred, the expression cannot be valid.

In Lattakia, there are atomic and composite types. Atomic types include numbers, string, booleans
or regular expressions, whereas sequence lattices and alternative lattices are composite types.
Fundamentally, composite types may be composed of other atomic or composite type expressions,
whereas atomic types are composed only of their own expression types.

4.1 Lattices

Lattices are used to describe structured data and code. From the “code” perspective, a sequence
lattice is a sequence of statements while an alternative lattice is a branching statement. From the
“data” perspective, a sequence lattice is analogous to an array/list structure in common
programming languages while an alternative lattice is analogous to a value of a variable in those
languages and this allows variables in Lattakia to hold multiple values at the same time. As such,
those variables have special treatment in Lattakia.

4.1.1 Sequence Lattices

Sequence lattices (seqlats) represent ordered sequences of data and code. Syntactically, a seqlat is
the concatenation of one or more alternative lattices (altlats). Alternative lattices may be labeled.
Sequence lattices are processed in order - one element at a time.

The primary operations supported by the seqlat are construction, access and application. Seqlats
are constructed by stringing together some number of altlats separated from each other by
semicolons (;). Each element in a seqlat may be given a label - a name to access it by. An altlat is
assigned to a label using the colon (:) operator. Labels correspond to names on the nodes while
altlats correspond to code on the arcs.

Example: (the code below is a seqlat itself)

lat0 = (); .. an empty lattice (of a single epsilon transition)
latl = (1; 3; 2); .. a lattice of three elements
print(latl[0]); .. prints the first element in latl

4.1.2 Alternative Lattices

Alternative lattices (altlats) are lists of alternatives. Each altlat is a sequence of one or more atoms
each is preceded by an optional condition. Alternative lattices are processed sequentially one
order at a time. Unlike sequence lattices though, elements are only processed if their condition is
satisfied.

Like seqlats, altlats support construction operations. They are constructed by stringing together
some number of atoms, separated by the bar (|) symbol. Each element may have a condition
which is a preceding expression of boolean type, placed between square brackets (“[“ and “]”). In
evaluation, the condition of each atom is evaluated and if true, that atom will be evaluated.

4.1.3 Named variables:
Named variables are defined when assigned a value by either the colon (“:”) or the equal (“=”
operators and their type is determined based on the right-value expression. Variables defined

«.n

using “:” are labels and are accessible outside the lattice as opposed to local variables that are
defined using “=". The value assigned to a label is an altlat while the local variable is assigned and
expression except for constrained local variables (explained below) that are assigned altlats. A
lattice surrounded by parentheses (“(” and “)”) is an expression in Lattakia; thus, to assign a seqlat
to a variable or an altlat to an unconstrained local variable, they should be enclosed by

parentheses.

Example:
a = 5; .. an integer variable with the value 5
x = (3| 7| 2); .. an integer variable that can be 3, 7 or 2
isImportant = ([x >= 75] false | [x < 75] true);
isEmptyStack = ([stack==epsilon] true | false);

In this example, isimportant and isEmptyStack are variables while they are functions in other
programming languages. ‘X’ is called an “independent variable” while ‘isImportant’ is called a
“dependant variable” for it depends on X’.

a. Independent V.S. Dependent Variables:
Variables in Lattakia must be in one of these two types:
1. Independent Variables (analogous to variables in common programming languages):
variables that hold values; i.e., they do not depend in their values on any other variable.

x =5 * 4;
y = rand() % 10; .. rand() returns a value
z = ?xX + ?y;

2. Dependent Variables (analogous to functions in common programming languages):
variables that hold code that contains another variable; i.e. they depend in their values on

at least one variables.
w =5 * x; .. 'w’ is a function of ‘x’

10

The value of ‘W’ is ‘5 * x’ and not the value of 5 times the value of ‘X’; i.e., ‘X’ is not evaluated
and ‘5 * ¥’ is not evaluated. Later, when ‘w’ is evaluated then ‘%’ is evaluated and ‘5 * x’ is
evaluated, and the value is returned. Note that ‘w’ does not hold the value after evaluation;
i.e. this process repeats every time ‘w’ is evaluated. The type of ‘W’ is dependent on the

type of X’.

b. Constrained V.S. Unconstrained Variables:
Variables in Lattakia must be in one of these two types:

1. Constrained Variables (analogous to functions with parameters in common programming
languages): variables that are subject to constraints (parameters) and the lattice they hold
may change when provided different constraints. Constrained variables are defined by
specifying an identifier followed by a caret (“*”) and a constraints list. A constraint list is a
semicolon-separated list of identifiers, each is optionally proceeded with a “?” sign

(analogous to passing parameters by value) and optionally followed by a “=” and an altlat
(analogous to default value parameters).

£f%(n) = 1; .. An independent constrained (by n) variable
y*(x) =5 * x; .. A independent constrained variable.
z"(x) = x * y; .. A dependent (on y) constrained (by x) variable.

2. Unconstrained Variables (analogous to variables or functions with no parameters in

common programming languages): variables that are not subject to constraints:
u=1; .. An independent unconstrained variable.
w=3x+ 1; .. A dependent unconstrained variable.
To access the data hold by an unconstrained variable you just use its name. To access the data hold
by a constrained variable you need to specify the constraints:

z7(x) = x *y;
Yy = 3;
w = 2(3); .. now ‘w’ is 3+5 = 8

4.1.4 Labels

A seqlat may have only one type of labels: either variable labels or hash-key labels:
- Avariable label can be a constrained and an unconstrained variable.
- A hash-key label starts with the hash (“#”) operator followed by a string, a number, an
ID, or an altlat surrounded by parentheses. The ID and the altlat must evaluate to a
string or a number and their value is used as the hash-key label.
Labeled elements can be accessed through the use of the dot (.) operator.

Example:

a = (x: 1; increaseXBy“"(a): x += a; 3);
a.x = 3;
a.increaseXBy(2);

4.1.4 Evaluation

The following pseudo code explains the evaluation of a seqlat (see Appendix B for the CFG of the
language).

// Evaluate seqlat
For each element in the seqlat
// Evaluate label
Label (if exists) is evaluated if needed (when proceeded by #)
and put it in a the Symbol Table
// Evaluate altlat
For each alternative in the altlat
If (condition satisfied)
// Evaluate atom
if (atom is “expression”)
evaluate expression
else if (atom is “RETURN expression”)
Stop execution
Evaluate expression
Return evaluated expression
else if (atom is “LET expression”)
Evaluate expression // for its side-effect
Evaluate to epsilon

When encountering a label or a local variable definition, this variable is put in the Symbol Table
along with it's type.

The following code explains the evaluation of an expression:
Constants are Evaluated to themselves

For binary and unary operations:
Evaluate expression operands recursively
Evaluate the operation on the result

For assignment operators:
Value = Evaluate the r-value expression
Optimize Value unless otherwise specified
Access the l-value
Put Value in l-value

For lvalue expression
Access lvalue

Evaluate lvalue’s lattice

For “? (lattice)”
Evaluate seqlat

12

For “* (lattice)”
Value = Evaluate seqlat
Don’t optimize Value

Accessing lvalue expressions is done by the following operators: () [] {} . @ #
All evaluations needed to get to lvalue’s lattice are performed.

4.2 Numbers

Numeric types follow the same model as numeric types in other languages. Integer and real
number types follow the rules for integer and real number arithmetic and support the same set of
standard arithmetic operators. If a numeric operator is given two integer operands, the type of
the result will be integer. If one or more operands are a real number, the result will be of type
real.

4.2.1 Integers
Integers in Lattakia are used for whole number operations. In the few cases where integer

operands and an integer operator result in a real (non-integer) result, the result of the expression
will be automatically truncated to just the whole number portion.

4.2.2 Real Numbers

Real numbers in Lattakia follow the rules of the float type in other languages.

4.3 Strings

Strings in Lattakia are an atomic type. Their function is to represent textual data. They are
immutable. As such, they cannot be modified. Instead, in cases where a modified version of a
string is needed, a new one must be constructed. In addition to construction, operations applying
to strings include searching, replacing and concatenation.

4.4 Booleans

Booleans are different from the other basic types in that boolean operators accept most types.
Booleans are used to represent conditions which may be either true or false. While equality and
non-equality operators apply to any type of operand, comparison operators (less than, greater
than, etc.) apply to all atomic types.

4.5 Regular Expression

Regular expressions are data types. Their representation in Lattakia is analogous to their

“w_n

representation in Java. Their operations are only “=" and “==";

14

5. Expressions and Operators

The expression is the basic building block of the language. To compose complex expressions,
Lattakia includes a large range of operators, both for atomic types and for lattices.

For operators dealing with atomic type expressions, operands are simply the results of evaluating
the respective expressions. Operands in lattice expressions are not evaluated save where
explicitly noted.

Lattakia relies on the notion of delayed evaluation, so that actual evaluation of expressions
(according to the rules below) does not occur until explicitly required. However, while the

expressions themselves are not evaluated, they are checked for valid operand types and any
errors reported.

5.1 Arithmetic expressions
Arithmetic operators supported by Lattakia include addition, subtraction, multiplication, division,
remainder, negation and positive. These operators require numeric operands. Behavior is not

defined in case of an overflow or underflow. Operands must be of integer or real number type. If
both operands are integers, the result is of integer type. Otherwise, the result is of real number

type.

Standard arithmetic operators in Lattakia are right associative. Precedence is determined using
standard arithmetic rules.

5.1.1 Addition: expression + expression

The result is the sum of the two operands.

5.1.2 Subtraction: expression - expression

The result is the difference between the first and second operands.

5.1.3 Multiplication: expression * expression

The result is the product of the two operands.

5.1.4 Division: expression / expression

The result is the quotient of the two operands. The second operand must be non-zero.

5.1.5 Remainder: expression % expression

The result is the remainder of the two operands. The second operand must be positive.

Unary Operators
5.1.6 Negation: - expression

The result is the negation of the operand.

3*45;
2-3;
4/3;
3% 2;
- (-5);

.. The lines evaluate to 13.5; -1; 1; 1 and 5 respectively

5.2 String expressions

String operators in Lattakia include concatenating and matching. All operands must be string
expressions. The result of these operations is of type string.

5.2.1 Concatenation: expression + expression

The result is a new string consisting of the first operand concatenated with the second operand.
Note that this usage of the '+' operator has nothing semantically to do with addition.

5.2.2 Matching: /expression/

The result is a new string consisting of the portion of the first operand that matches the second
operand. Regular expression matching is performed.

"hello" + " there";
/gre*n/;

.. The lines evaluate to "hello there" and "green" respectively.

5.3 Boolean expressions

Boolean expressions in Lattakia include equality, non-equality, logical negation, logical or and
logical and. Equality and non-equality require two operands of the same type of expression.
Logical negation requires one operand of boolean type. Logical or and logical and require two
operands of boolean type. The result is of boolean type.

16

5.3.1 Equality: expression == expression

If the operands are atomic, the result is true if the two expressions evaluate to the same value and
false otherwise. If the operands are lattices, the result is true if the corresponding elements in
each lattice are equal, and false otherwise.

5.3.2 Non-equality: expression != expression

The result is evaluated to be the result of /(expression == expression). (See 5.3.3 for /(expression))
5.3.3 Logical Negation: /expression

The result is true if the operand is false, and false otherwise.

5.3.4 Logical Or: expression [[expression

The result is true if either operand is true, and false otherwise.

5.3.5 Logical And: expression && expression

The result is true if both operands are true, and false otherwise.

2 == ;

(2;3; (4;5)) = (1+1; (4; 6-1));
true && false;

Ifalse;

.. The lines evaluate to false, false, false and true respectively.

5.4 Comparison expressions

Comparison operators in Lattakia include less than, less than or equal, greater than and greater
than or equal. Comparison expressions require their operands to be of the same atomic type, save
for numeric types where mixing and matching of integer expressions and real number expressions
are allowed. The resultis of boolean type.

5.4.1 Less than: expression < expression

If the operands are string expressions, a lexicographical comparison is made, and the result is true
if the first operand is lexicographically before the second operand. Otherwise the result is false.

If the operands are boolean expressions, the result is true if the first operand is false and the
second one is true, and false otherwise.

[f the operands are numeric expressions, the result is true if the numeric comparison is true, and
false otherwise.

5.4.2 Less than or equal: expression <= expression

The result is equal to the result of (expression < expression) || (expression == expression).
5.4.3 Greater than: expression > expression

The result is equal to the result of /(expression <= expression).

5.4.4 Greater than or equal: expression >= expression

The result is equal to the result of /(expression < expression).

2<3
llabcll <: llabb"
true < false

.. The lines evaluate to true, true and false respectively.

5.5 Assignment expressions

Simple assignment for expressions in Lattakia means binding a name to an expression. In
particular, no evaluation is carried out. Combined assignment works much the same way.
Evaluation is delayed except for constant expressions whose values cannot change (i.e.
expressions that don't contain variables). There is an additional operator to force evaluation prior
to assignment. The name bound to the expression receives the same name as the expression.
Assignment expressions are left associative.

5.5.1 Simple assignment: lvalue = expression

The result of this expression is the second operand. In addition, the first operand is bound to the
second operand. Subsequent references to the first operand will retrieve the second operand.
Ivalue has several options, the most common of which is a name (ID), although it can also be an
accessor for a lattice or several other more complicated expressions.

5.5.2 Combined assignment: Ivalue op= expression

The result of this expression is the same as writing:
lvalue = lvalue op expression.

Valid options for op are: +, -, *, /, |, ~and ?

18

5.5.3 Prefix inc/decrement: ++Ivalue and --lvalue

These expressions are equivalent to writing:
Ivalue += 1 and lvalue -= 1 respectively.

5.5.4 Postfix inc/decrement: lvalue++ and Ivalue--

The result is the current expression in Ivalue. The expression Ivalue is then either incremented or
decremented.

X =3;

X +=2;

//x=5
y=2|1
yl=3;
//y=(@2]1]3);

.. The combined assignment operators expandtox=x+2andy=y | 3.

5.6 Evaluation Expressions

There are two types of evaluation expressions. In both cases, the result is not simply the
expression itself; it is the result of recursively evaluating the expression according to the rules of
the operands.

5.6.1 Evaluation: ? expression

The result is simply the result of evaluating the operand.

X =3;

// xis set 3 because 3 is a constant expression

y=x

// v is bound to x

X++;

// note that y will have the same value as x when evaluated
y =7x;

X++;

// xis 5 here, buty = 4;

.. The 7 in the second case causes y to be bound to the result of evaluating the expression x
is
.. bound to.

5.6.2 Preventing Optimization: * expression

Before assignment, the r-value lattice is optimized to the minimal lattice. Optimization means
removing all epsilon transition from the seqlat, removing all nil transitions from the altlat,
merging inner seqlats into the outer seqlat, and merging inner altlats into outer altlats. Using the
caret operator prevents optimization from taking place.

X =
Y:

2; 3|4|5; 1; 3)

31(4]5)); (1;3)); .. x is (1;
“((1; 2; 3|(4]5))5 (1;3))

2;
2; 3](4]5)); (1;3)); .. y is

~e ~o

((1
"1

5.6.3 Application: name (lattice)

We have three overloaded meanings of application that is identified via type checking.

1. If “name” is a constrained variable (function) (this means “lattice” is a list of actuals),
replace these actuals in the constraints (parameters) of the function in the code lattice
associated with this function and execute the lattice.

2. If “name” is a data lattice and “lattice” is a rule lattice (it has an “@” operator in it), then
loop through this data lattice and apply the rules on it. Rules application is described in
section 9.

3. Else (If “name” is a data lattice and “lattice” is not a rule lattice), (this is analogous to
constructors in OOP), create a copy of “name”, and then, for every variable in “lattice”, if
“name” has the same variable, assign “lattice” variable value to “name” variable.

Ex. Function call:
sum((1; 2; 3; 4); 1);

.. This applies a function named sum to a lattice consisting of 2 elements. The first element
is
.. the lattice (1; 2; 3; 4). The second element is the integer value 1.

5.7 Alternative expression: expression [expression

The result is a new alternative lattice with two alternatives, one for each operand. Condition
expressions can be used to select among the alternatives.

options=1|2|3]4]|5;
moreoptions = options | 6;

.. This creates two altlats, one with 5 possible values (alternatives), the other with 6.

5.8 Sequence expression: expression ; expression

The result is a new sequence lattice where the second operand is tagged onto the end.

sequences = (1; 2; 3);
longer = sequence; 4;

20

| .. This creates two seqlats, one with contents 1; 2; 3, the other with contents 1; 2; 3; 4.

5.9 Concatenation expression: expression ~ expression

The result is a new sequence lattice created by concatenating the two operands.

stmtl = (1; 2; 3; 4);
stmt2 = (5; 6; 7; 8);
stmt = *(stmtl ~ stmt2);

.. This creates a new seqlat with contents (1; 2; 3; 4); (5; 6; 7; 8);
.. This is a sequence of 2 seqlats, each with 4 integers for arcs

5.10 Labeling expressions: label: value

Labels are quite similar to labels in other programming languages; names assigned to be used
later. They represent handles or names of the nodes. Using a label you can access the variable that
follows this label. Labels provide a neat way of accessing values inside a variable/lattice.
Accessing a label can happen either:
a. from inside the lattice where it is defined; so you just use the label’s name
b. from outside the lattice where the label is defined and in this case you need to use the dot
operator (defined later in this section)

ex.
student = (name: “tiffany”;
age: 20);
x = student.age;
.. returns 20

5.11 Conditional expressions: [condition]

These are conditions on certain paths in the lattice. Conditions are enclosed in brackets and can
contain comparison and logical operators.

ex.1

max(a; b) = [a>b] action1| [a<b] action2]| action3

.. This indicates that if the first condition is satisfied, action 1 is performed, and if the
.. second condition is satisfied action 2 is performed and in all cases action 3 is also ..

.. performed.

ex. 2
max(a; b) = [a>b] action1]| [a<b] action2]| else action3

In this example because of the use of the keyword else, action3 is only performed if both first and
second conditions are false.

5.12 Each expressions: each x

The default behavior when applying any operation on an altlat is to apply the operation to the first
path that has a satisfied condition. ‘each’ overrides this behavior. Using each we instruct the
program to apply the operation of all paths in the altlat

ex. 1.

x=(5]3);y=(8]2]1); condition [x < each y];

.. Result: false since the first value of x (5) is compared to all value in y i.e. 8,2, and 1

.. so the operation yields false.

.. However the result of [x< y] is true because the first value of the altlat x which is 5 .. is less
than the first value of the altlat y which is 8.

ex 2.
z=-each(x) +y
.resultis = (x{0}+y{0} | x{1}+y{0});

5.13 Parenthetic expressions: (a; b; c)

Parentheses are used to surround elements of a lattice. These elements can be constants,
expressions, conditions or code-statements. In the latter case a semicolon terminates each
statement. A semicolon after the last constant or statement is optional.

ex 1. const = (1;2|3;4);

ex 2. code = (a++;b=a;)

ex 3. expr = [b==4 | (b!=4; b%2==0)]

.This expression corresponds to “&&” in C++ (i.e. b != 4 && b%2==0)

5.14 Braces expressions: x{index}

Braces are used to access a particular alternative of an altlat using its index.

ex.
student = (“alice”|"tiffany”)
student{0} ..returns alice

5.15 Brackets expressions: x[index]

Brackets are used to access a particular element of a seqlat using its index.

ex.
courses = (PLT; MT)
courses[0] .returns PLT

22

5.16 Accessor expressions: *’

The dot operator is used to access labels and properties inside a certain lattice.

ex.
student = (name: “alice”; age: 23; major: “CS”; “MATH");

student. name ..returns alice

student.major ..returns CS;MATH

student.major{0} ..returns CS

student.major.count ..returns the count of alternatives in the major field which is 2
..(Count is a built-in property of alt-lat)

5.17 Hash expressions: #
The hash is used in:

a. Function-declaration.

ex. getMax”(a,b); ..defines a function getMax that takes 2 arguments.
getMax(a,b); ..calls the previously defined function getMax and passes
the variables a and b to it.

b. Accessing elements of a previously created hashtable.

ex. myHash = (key1 = valuel;
key2 = value2|value3;
key3 = value4);
.Then using myHash#key?2 returns the value of key2 which is
“value2|value3”

6. Declarations

The only declarator that we use is the function delarator. A function declarator is exactly the same
as the call to the function except for an added caret before the opening parenthesis that precedes
the first argument.

ex. func”(a; b; ¢) .. an example of a function declaration

There are no scope specifiers and no type specifiers. Each variable/lattice infers its type from the
value it gets bound with.

7. Attributes and Keywords

Reserved keywords and attributes are meant to facilitate the use of the language. Some of these
keywords such as true, false, this, return, else are borrowed from other programming languages
and are used in quite a similar fashion while others are meant to handle lattices and are not part of
languages that do not deal with lattices. Some keywords such as count and length also function as
attributes to sequence and alternative lattices (seqlat and altlat)

The list of reserved keywords (and attributes) and their use:

this
Refers to the current lattice/variable

let
Instead of returning the value of the current statement/expression (which is the default behavior),
let returns epsilon.

letx=y=3;
.. This assigns the value 3 to the variable y, assigns the value of y to the value of x and
instead of returning 3 returns epsilon

return
Terminates the execution of statements in the current code-lattice and returns the value of the
current statement.

24

ex. maxRead =
(
read(a; b); // reads a and b; then
// evaluates to epsilon.
let answer =
[a>b] a | [a<b] b
otherwise NIL;
return answer;
answer= -1 .. unreachable code

)

true
Similar to other programming languages, true indicates that a particular condition or value of
variable is true.

false
Similar to other programming languages, true indicates that a particular condition or value of
variable is true.

NIL

‘NIL’ is a broken arc that you cannot pass through.

In a seqlat you can’t drop NIL and it means that this seqlat is broken and cannot be evaluated. In
this case NIL is returned (similar to throwing exceptions).

In an altlat, a path that contains NIL can be dropped because there are other alternative paths.
However when evaluating an altlat, if NIL is the only accepted path, then it is part of the seqlat that
holds this altlat.

epsilon

‘epsilon’ is an empty transition or a transition whose condition is always true.

In a seqlat, you can drop the epsilon and merge its endpoints.

In an altlat epsilon is not dropped because it corresponds to an alternative whose condition is
always true.

labels

Retrieves all the labels in a particular lattice.

ex. student = (name: “tiffany”;
age: 20);

x = student.labels;

.. returns name; age

length
Returns the number of elements in a seqlat.

grades = 100;85;50;35
result = grades.length; .returns 4

count
Returns the number of alternative in an altlat.

grade = A|B|C
result = grade.count; .returns 3

clone
Returns a deep copy of a specific lattice.

majorl = “CS” | “MATH?”;
lat = (name:"tiffany”; age: "20”;major:major1)
clonedLat = lat.clone()

..clonedLat = (name:"tiffany”; age: "20”; major: “CS” | “MATH")

26

8. Built-in Library Functions

The standard library for Lattakia consists of 3 built-in functions, used for input, output and
iteration.

8.1 Read: read(arg1; arg2; ...)
The read function is used for constructing lattices from user input. It receives an arbitrary

number of arguments. Each argument is a name or lvalue, to which the corresponding input value
will be bound. The reading is done from standard input.

read(x;y;z);
// user then types 1; (2 | 3; 4); "hi"

.X=1,y=(2]3;4),and z = "hi"

8.2 Print: print(expression)

The print function is used to display output. It receives a single argument consisting of an
expression, which it evaluates and displays to the standard output. Print returns epsilon.

X = true;
y = false;
print(((x || y); (x && y); 1x));

.. displays 'true; false; false’

8.3 Loops:

In the following, ‘codeLattice’ is a lattice of code (i.e. a piece of code):
while(satisfiedCondition; codelattice);
until (unsatisfiedCondition; codelattice);
foreach(element; lattice; codeLattice); // for seqlats
foreach(alternativesLattice; codeLattice); // for altlats
for(firstOnce; endCondition; lastEach; codeLattice); // as in C++

For example, the foreach function is used to iterate over the elements in a sequence lattice. Each
item in the second argument is bound to the name used as the first argument, and the expression
that is the third argument is applied to it. Foreach returns epsilon.

letx = (1; 2; 3; 4);
foreach(y; x; print(y));

.. displays '1 2 3 4"

9. Rule Application

Syntax:

datalattice(rulelLattice);
Rule application is a process that loops through a dataLattice (seqlat) and, in each loop, applies the
ruleLattice. A ruleLattice is a lattice that contains the “@” operator in it. The “@” operator takes an
integer the represent the offset from the current counter of the loop, and returns datalattice[counter -
offset]. For example, @0 is the current element of the dataLattice.
Example: accumulator:

latl = (1; 3; 2);

latl(@0 += @-1); .. returns (1l; 4; 6)

9.1 Rules
When triggered (condition satisfied), apply action.

Syntax:
ruleName = condition action;

A condition can be of any type including regex. An action can be any statement.
rl [@0 > 3] @O0++;
r2 /he has a (.*) / => increase(@l);

latl = latl(rl); .. Code optimization: latl is changed and returned
latl(rl); .. latl is not changed. The result lattice is created and
returned.

To keep epsilons in the resulted lattice:
lat2 = "latl(rl)
and that’s because the optimization happens after the assignment. Now, this lattice is reserved.

A lattice rule:

rll = [@0>0; @l==2; @3+1<@-1] (@1=@0+@4; @2=epsilon; @-1--);
Variable @0 is the current variable in the ‘foreach’ function. @-1 is the previous variable (to the left of
@0); (when @O is the first variable, @-1 equals epsilon). @1 is the next varaible (to the right of @0);
(when @O is the last variable, @1 equals epsilon). Epsilon is neutral for all operations (0 for +; 1 for *;
true for && and flase for II).

9.2 Example: Part-of-Speech (POS) Tagger

Tome Q\'\es bl o\ Qvvena
Look at lattice 11 in the figure above. To create a Part-of-Speech (POS) Tagger for English, we need the
following:
1. Lexical Rules: E.g.,

28

1r1l
1r2

[@0 == “time”] (@0 = V|N|Adj);
[@0 == “flies”] (@0 = V|N);

Then we apply these rules like this:
12 = 11(1lrl | 1r2);
See 12 in the following figure:

Well, some of these paths are not possible in English (e.g., V VD N); thus we need the next set of
rules (Syntactic rules) to eliminate them.

2. Syntactic Rules:
srl = [@0==D; @1==N] (@QO0=NP; @l=epsilon);
sr2 = [@0==Adj; @1==N] (@0=NP; @l=epsilon);
These two rules will change “Determiner + Noun” and “Adjective + Noun” to “Noun Phrase”.

sr3 = [@-1==epsilon; @0==NP; @1==V; @2==NP; @3==epsilon] (@0; @1; @2);
This rule will apply to a full sentence. So if we go and say:

synRules = ((srl | sr2); sr3);

13 = 12(synRules);
Here “phrase rules” srl and sr2 apply first, then “sentence rules” sr3 apply.

The more English grammar rules you add, the more possible paths will be returned. For example the
following rules:

sr1l00 = [@0==Adj; @1==N; @2==V; @3==D; @4==N] (@0; @1; @2; @3; @4);
this rule interprets the sentence as in: “Fruit flies like an apple.”

srl0l1 = [@Q0==V; @1==N; @2==Adv; @3==D; @4==N] (Q@0; @1; @2; @3; @4);
this rule interprets the imperative sentence as in: “Time rehearsal like an actor!”

srl02 = [@Q0==N; @1==V; @2==Adv; @3==D; @4==N] (Q@0; @1; @2; @3; @4);
this rule gives the correct semantic interpretation.
These three rules will give three syntactically-correct paths in the output lattice. Other English grammar
rules will not apply to this sentence.

14 = 12(srl00 | srl0l | srl02);

To select the semantically-correct path, we need another set of rules that can be obtained, for example,
by training an English language model and then representing the resulted database as Semantic Rules.

10. Examples

Example 1 - determine and print out the greatest-common-divisor of two numbers using Euclid's
algorithm.

ged™(x;y) =
(
[y ==0]x]|
[y = 0] ged(y, x % y);
);
read(a; b);
print("gcd is ");
print(gcd(a; b));
.. displays the gcd of the two numbers entered by the user

Example 2 - use Quicksort to sort a list of user-entered strings alphabetically.

quicksort”(input) =
(
let (less = (); greater = ());
[input.length <= 1] return input | epsilon;

let pivot = lat[0];
let lat[0] = epsilon;

foreach(x; input; [x < pivot] less = (less; x) | greater = (greater; x));

(quicksort(less); pivot; quicksort(greater));

);

read(values);
let sorted = quicksort(values);
foreach(x; sorted; print(x));

. displays the user input, sorted from least to greatest

10.1 Object-Oriented Programming

Example 1 - Inheritance

30

Inheritance is simply the same as composition.
A car can be a Bus or an SUV:
Bus = (Car;

type: school | public | company;

);
Truck = Car ~
(
maxCapacity: epsilon;
);

Overriding members:

TiptronicCar = (car: Car;

transmit: (.. overriding ‘transmit’

car.transmit; ..calling parent’s ‘transmit’.

increaseMaxSpeed(transSpeed)

);
increaseMaxSpeed(amount): Engine.increaseMaxSpeed (amount);
maxSpeed: epsilon;

);

to be a member of this class.

.. In this example ‘increaseMaxSpeed’ is actually brought from another class (Engine)

Example 2 - Generalization

Cart = (

color: epsilon;

material: epsilon;

numWheels: epsilon;

);

Car = (Cart->(material=metal; numWheels=4);
engine: epsilon;

);

Motorcycle = (
engine: epsilon;
numWheels: 2;

);

Horse = (

numLegs: 4;

age: epsilon;

);

Vehicle = (
[type==c] Car |
[type==m] Motocycle;
[type==hc] (Horse; Cart->(material=wood));
type: c/m|hc;

);

v1 = Vehicle->(type=m);
vl.numWheels; .. equals 2

10.2 Collections (Advanced Data Structures)

Arrays, Lists, vectors, tuples, sets and matrices are supported in Lattakia. The structure of the
word-lattice supports them without any added complexity. In this section we give examples on
how to use these data structures.

10.2.1 Arrays:

ex.
array = (10; 3; 2; 8; -1);
array/[i]; .. the element of order (i+1). Index start from 0
array.length; .. the number of elements in ‘array’.
al = array; .. Creates a copy of ‘array’ and assign it to ‘al
a2= &array
.Both ‘a2’ and ‘array’ point to the same data

Adding and removing elements from an array are discussed in the following section: Stacks and
Queues.

10.2.2 Stacks and Queues:

Stacks and queues are defined in the language as lattices.

10.2.2.1 Stack:

push(lat; x) =lat =x ~ lat;
pop(lat) = (1at[0]; let lat[0] = epsilon);

10.2.2.2 Queue

enqueue(lat; x) = lat ~=x;
dequeue(lat) = pop(lat);

32

10.2. 3 Hash Tables:
A hash table is a lattice with a label on each node (except the last node); thus, the labels are keys in

the hash table and the variables are values.
The use of ‘|’ operator, which adds an alternative to a given value, solves the collision problem.

hash = (
X: Maﬂ;
y: Mb";
);

10.2.4 Sets:

Lattakia uses labels as set elements because they are unique inside a lattice.

color = (red:; blue:; yellow:;);

To check if an element exists in this set:

[defined
(color.red)
] (doSomething);
.defined(x) = [x==NIL] false | true;

10.2.5 Tuples:

Tuples are seqlats. The elements of the tuples are the variales inside the corresponding.

engine = (8; ‘V’; 300);
car = (
model: (‘Coupe’; ‘Bentley’);
color: red;
engine: (8, ‘V’,300)
);

.. Labels are not necessary

10.2.6 Trees:

Similar to previous data structures, a tree is just another lattice.
Adding an artificial “last node” and an epsilon transition from each leaf in the tree to this last node

is all what you need to do to create a tree.

The following notations are proposed for trees:

An atom is a tree. (atom; latl | lat2 | ... | l1atN) is a tree, where ‘atom’ is the parent and lat1 to latN
are children of ‘atom’ (in the exact order).

Note that the original tree’s nodes become lattice arcs Each sub-tree can be given an identifier
name using labels.

Statement: x = (y + 1) * z;
tree =
(l:l’
‘X, I
(:*;
(l+l;
Y|
lll
)|
‘Z,
)
);

10.2.7 Graphs:
To define a graph in Lattakia, one can do the following:

1. Add alattice node for each graph node (use graph node name as a label);

2. foreach node X’ in the graph,
foreach arc going from node ‘x’ to a node ‘y’ and labeled with label ‘W’,
add lattice arc: (w; y) to ‘x’ alternatives.

Graph to the left
represented as:
(
x: (2;y);
y: (4 2) | (23 w);
z (L;x) | (5:y);

path(a; b) = [a==b] 0 |
foreach (a; (
let (w; next) = a;
w + path(next; b)
));

34

minPath(a; b)) = [a==b] 0 |
foreach (a; (
let (w; next) = a;
w + min(path(next; b))

));

Appendix A — Syntax Summary

36

1. Expressions.

expr:

lvalue

{ altlat }

constant

expr infix_op expr
lvalue ++

lvalue --

++ lvalue

-- lvalue

- expr

I expr

lvalue assign_op expr
? (lattice)

A (lattice)

constant:

string_literal
number
“epsilon”
“nil”
“true”
“false”
regex_match
java_code

number:

lvalue:

name:

INTEGER
FLOAT

name
(lattice)
? name

A name

rest_of name

”thiS "

"this” . rest_of name
at_operation

at_operation . rest_of_name

at_operation:
@ integer
@ ID
@ (altlat)

rest_of name:
attribute
label
rest_of name . rest_of name
rest_of name (altlat)
rest_of name { lattice }
rest_of_name [lattice]

label:
ID
String_literal
number
1D
(altlat)

attribute:
"length”
"count”
"labels”
"clone”

infix_op:
* / %

Assignment operators all have the same priority, and all group right-to-left while all other
operators group left-to-right.
assign_op:
= 4= -= *= /= ?= ~= | =

2. Statements
lattice:
/*epsilon*/
labeled_altlat
labeled_altlat ; lattice

labeled_altlat:
altlat

name : altlat
name " (param_list) : altlat
name * (param_list) = altlat

param_list:

by_value_opt ID default_value_opt
param_list ; ID default_value_opt

by _value_opt:

/*epsilon*/
?

default_value_opt:

altlat:

atom:

/*epsilon*/
= altlat

atom
{expr} atom
altlat|altlat

expr
"return” expr
"let” expr

Operator Precedence from highest to lowest:

38

Name accessing operators:
@

O 10

Unary Operators

! — (unary minus) ++ -- ?
Arithmetic Operators:

* /%

+ - (binary minus)
Comparison Operators:

> < >= <=

A

= |I=

Logical Operators:
&& ||

Lattice Operators:

Assignment Operators
= += - *= /= ?= ~=

Appendix B — The Scanner
{ open Latparser }

rule token = parse
[1] { token lexbuf } (* Whitespace *)

".." { comment lexbuf }
"*¥*" { multi_line comment lexbuf }
{ LPAREN } { RPAREN }
{ LBRACE } { RBRACE }
{ LSQBRACKET } { RSQBRACKET }
{ PLUS } { MINUS }
{ TIMES } { DIVIDE }
{ PERCENT }
{ PIPE } { TELDA }
{ EXCLAMATION } { QUEST }
{ SEMI } { COLON } | { CARET }
{ AT } {DOT} | { HASH }
{ ASSIGN } "+=" { PLUS ASSIGN } | "-=" { MINUS_ASSIGN }
"x¥=" { TIMES ASSIGN } "/=" { DIVIDE_ASSIGN }
"?=" { QUEST ASSIGN} "~=" { TELDA ASSIGN } | "|=" { PIPE_ASSIGN }
"++" { PLUS_PLUS } "--" { MINUS_MINUS }
"==" { EQ } "t=" { NEQ }
"&&" { AND } “I'|" { OR }
{ LT } { GT }
"<=" { LEQ } ">=" { GEQ }
"else" { ELSE }
"return" { RETURN } "let" { LET } | "this" { THIS }
"true" { TRUE } "false" { FALSE }
"nil" { NIL } "epsilon" { EPSILON }
"length" { LENGTH } "count" { COUNT }
"clone" { CLONE } "labels" { LABELS }
eof { EOF }
(" 1)* as lxm { STRING LITERAL(1lxm) }
(r° N+ as 1lxm { JAVA_CODE(1lxm) }
(r° 1)+ as 1lxm { REGEX_ MATCH(lxm) }
()2 [- 1+ [-]+ as lxm { FLOAT(float of string lxm) }
()2 [-]+ as lxm { INTEGER(int of string 1lxm) }
[- - 10 - - - 1* as 1lxm { ID(1lxm) }
_ as char { raise (Failure("illegal character " " Char.escaped char)) }

and comment = parse
"\n" { token lexbuf }
| _ { comment lexbuf }

and multi_line_ comment = parse
"*%" f token lexbuf }
| _ { comment lexbuf }

Appendix C — The Parser

These CFGs are unambiguous, they have no shift/reduce nor reduce/reduce conflicts. Only one
gprec is used to solve the unary minus precedence issue: OCaml

%{ open Ast %}

$token LPAREN RPAREN LBRACE RBRACE LSQBRACKET RSQBRACKET EOF
$token PLUS MINUS TIMES DIVIDE PERCENT PLUS_ PLUS MINUS_MINUS
$token PIPE TELDA QUEST SEMI COLON DOT AT HASH CARET

$token ASSIGN PLUS_ASSIGN MINUS_ ASSIGN TIMES ASSIGN DIVIDE_ ASSIGN
$token TELDA ASSIGN PIPE ASSIGN QUEST_ASSIGN

$token AND OR EQ NEQ EXCLAMATION LT GT LEQ GEQ

$token EPSILON NIL TRUE FALSE

%token RETURN LET THIS LENGTH COUNT LABELS CLONE ELSE

$token <string> STRING_LITERAL
$token <string> JAVA CODE
$token <string> REGEX_MATCH
$token <string> ID

%token <float> FLOAT

$token <int> INTEGER

/* Assignment Operators: */
$right ASSIGN QUEST ASSIGN PLUS_ASSIGN MINUS_ ASSIGN TIMES ASSIGN DIVIDE_ ASSIGN
PIPE_ASSIGN TELDA_ASSIGN

/* Lattice Operators: */

%left SEMI

%left PIPE

%left TILDA

/* Logical Operators: */

%left OR

%left AND

/* Comparison Operators: */
%left EQ NEQ

%left LT LEQ GT GEQ

/* Arithmetic Operators: */
%left PLUS MINUS

%left TIMES DIVIDE PERCENT

/* Unary Operators: */

%left UNI_MINUS EXCLAMATION PLUS_PLUS MINUS_ MINUS QUEST CARET
/* Name Operators: */

%left LBRACE LSQBRACKET LPAREN
%left DOT

%left AT

%left HASH

$start lattice
$type <Ast.lattice> lattice

[
[

40

[F*=—=—=-= Defining Sequential Lattices =—=—=_=%/
/¥ =—=—=—m=—=—=—=—=—=—=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_—=_=_=_=% /
lattice:

/**/

| labeled_altlat
| labeled_altlat SEMI lattice

/¥ =—=—=—=—=—=—=—=—=—=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_—=_=_=_=% /
[*=—=—=—= Defining Alternative Lattices =—=_=-=%/
/¥ =—=—=—=—=—=—=—=—=—=_=% /
labeled_altlat: /* 'label: altlat' or ‘f"(x) = x++’' */
altlat /* '[condition] atom' */
| name COLON altlat /* 'label: [condition] atom' */
/* Constrained Variable Declaration: 'f"(x; y) = [condition] atom' */

| name CARET LPAREN param list RPAREN COLON altlat /*label*/
| name CARET LPAREN param list RPAREN ASSIGN altlat /*local CV*/

param_list: /* 'x=4; y=(3; 5); ?2z' */
by value_opt ID default value_opt
| param list SEMI by value opt ID default value opt
by_value_opt:
/**/
| QUEST

default_value_opt:
/*%/
| EQ altlat

altlat:
atom
| LSOBRACKET expr RSQBRACKET atom
| altlat PIPE altlat

label:
/* 'x' or any string or #5 or #-3.5 or #x or #([x > 0] 7 | y.#3.2) */
ID
| HASH STRING LITERAL
| HASH number
| HASH ID
| HASH LPAREN altlat RPAREN

atom: /* 'expr' or 'return expr' or 'f(x; y) = [condition] atom' */
expr
| RETURN expr
| LET expr

[*=—=—=—= Defining Expressions S—=—=-=%/
[=== =e=—=_=%/
expr:
/* Left-vValue Variable: */

lvalue
/* Constants: 5, "abc", -4.3 */

STRING_LITERAL

number

EPSILON

NIL

TRUE

FALSE

REGEX_MATCH /* /abc|d+/ */

JAVA CODE /* ~System.out.println("Hi"+S$myVar);~ */

/* Altlat Spread: For each alternative in this 'expr' altlat ('expr'

must evaluate to an alt lat): */
| LBRACE altlat RBRACE
/* Right-Value Arithmatic INFIX operators: */
expr PLUS expr
expr MINUS expr
expr TIMES expr
expr DIVIDE expr
expr PERCENT expr
/* Right-Value Logical INFIX Operators */
expr OR expr
expr AND expr
/* Right-Value Comparison INFIX Operators */
expr EQ expr
expr NEQ expr
expr LT expr
expr LEQ expr
expr GT expr
expr GEQ expr
/* Right-Value Lattice INFIX Operators */
| expr TILDA expr
/* Right-Value Arithmatic POSTFIX Operators */
| expr PLUS_PLUS
| expr MINUS_MINUS
/* Right-Value Arithmatic PREFIX Operators */
| PLUS_PLUS expr
| MINUS_MINUS expr
| MINUS expr $prec UNI_MINUS
/* Right-Value Logical PREFIX Operators */
| EXCLAMATION expr
/* Assignment Operators */
lvalue ASSIGN expr
lvalue QUEST_ASSIGN expr
lvalue PLUS_ASSIGN expr
lvalue MINUS_ASSIGN expr
lvalue TIMES_ASSIGN expr
lvalue DIVIDE_ASSIGN expr
lvalue PIPE_ASSIGN expr
lvalue TELDA_ASSIGN expr
/* Evaluation: */
| QUEST LPAREN lattice RPAREN
/* Optimization: This means: Don't optimize this lattice (expr).
| CARET LPAREN lattice RPAREN

42

[F*=—=—=—= Defining Left-Value Names =—=—=_=%/
/¥ =—=—=—=—=—=—=—=—=—=_=% /
lvalue:

name /* This lvalue is a name of a place in memory */
| LPAREN lattice RPAREN /* This lvalue is a lattice of names */
| QUEST name
| CARET name /* This means: Don't optimize this lattice (expr). */

/* Any name that represents a place in memory: */
/* e.g.: '@(this.x.y[z.#3.4]{w.#"str"[@-3].#@x.#(x.y[z.#([n>2] x+1 | 0)])}.length)'
*/
name:

rest_of name

| THIS

| THIS DOT rest of name
| at_operation
| at_operation DOT rest_ of name

rest_of name:
attribute

| label

| rest of name DOT rest of name

| rest of name LSQBRACKET altlat RSQBRACKET

| rest of name LBRACE altlat RBRACE
/* Applying a lattice to a lattice (application of rules or constraints): E.g.
function call, rule application */

| rest _of name LPAREN lattice RPAREN

attribute:
LENGTH
COUNT
LABELS
CLONE

at_operation:

AT INTEGER

AT ID

AT LPAREN altlat RPAREN

number:
INTEGER
| FLOAT

