
CLAM: The Concise Linear Algebra Manipulation Language

Jeremy Andrus and Robert Martin and Kevin Sun and Yongxu Zhang
{jca2119, rdm2128, kfs2110, yz2419}@columbia.edu

Columbia University
COMS W4115: Programming Languages and Translators

November 1, 2011

Language Reference Manual

1 Introduction

The CLAM programming language is a linear algebra manipulation language specifically targeted for
image processing. It provides an efficient way to express complex image manipulation algorithms through
compact matrix operations. CLAM programs are first compiled into a ”C“ module which is further
compiled into a machine binary by an existing This reference is inspired by the C reference manual [1].

2 Lexical Conventions

2.1 Tokens

The tokens in CLAM are broken down as follows: We have reserved keywords, identifiers, constants,
control characters, and operators. The end of a token is defined by the presence of a newline, space, or
tab character (whitespace), or by the presence of a character that cannot possibly be part of the current
token.

2.2 Comments

Comments are demarcated with an opening /* and closing */, as in C. Any characters inside the comment
boundaries are ignored. Comments can be nested.

1

2.3 Keywords

The reserved keywords in CLAM are:

Image Import Int8 Uint8
Kernel Export Int16 Uint16
Channel Angle Int32 Uint32
Calc Float

2.4 Identifiers

Identifiers are composed of an upper or lower-case letter immediately followed by any number of additional
letters and/or digits. Identifiers are case sensitive, so “foo” and “Foo” are different identifiers. Identifiers
cannot be keywords, and underscores are disallowed.

2.5 Constants

In CLAM there are 3 types of constants: numeric constants, calculation constants, and string literals.

2.5.1 Numeric Constants

Integers are repesented by a series of number characters.

Angles are represented by a series of number characters with an optional period character, followed by a
lower-case “a”.

Floats are represented by a series of number characters with an optional period character, followed by a
lower-case “f”.

2.5.2 Calculation Constants

Calculation constants are represented by an opening curly brace, followed by a series of numeric-
expressions separated by whitespace or comma characters. The comma characters represents the division
between the rows of the matrix. Each row must have the same number of numeric-expressions, but the
matrix need not be square.

A calculation constant may also have an optional fraction preceding it, which indicates that every
value in the matrix should be multiplied by that fraction. The fraction will be expressed as an open-
ing bracket character, a numeric-expression representing the numerator, a forward-slash character, a
numeric-expression representing the denominator, and a closing bracket character.

{ numeric-expr numeric-expr . . . , numeric-expr numeric-expr . . . }
[numeric-expr / numeric-expr]{ numeric-expr numeric-expr . . . , numeric-expr numeric-expr . . . }

2

The following is an example of a calculation constant.

Calc sobelGy := [1 / 9]{1 3 1 , 2 -5 2 , 1 3 1 }

2.5.3 String Literals

String constants are demarcated by double quote characters or single quote characters. Consecutive
string constants will be automatically appended together into a single string constant.

"string-constant"

3 Meaning of Identifiers

3.1 Basic Types

There are four basic types defined by the CLAM language. Type identifiers always begin with an upper-
case letter followed by a sequence of zero or more legal identifier characters. The list of built-in types is
as follows:

Channel

Image

Calc

Kernel

3.1.1 Atom Types

The Channel and Calc built-in types may be further modified to specify individual element, or “atom”
types. This specifies either the type of each element of the matrix which makes up the Channel, or the
type of the resulting calculation performed by a Calc object. An atom-type identifier is denoted using the
< and > characters immediately following the identifier of the object whose atom type is being specified:

basic-type identifier<atom-type>

Legal atom-types are as follows:

Uint8
Uint16
Uint32
Int8
Int16
Int32
Angle

3

3.2 Type Qualifiers

Discuss the use of the @ symbol to denote a special matrix which when used in calculation does not
produce in a discrete channel in the result.

Discuss the use of another symbol which tells the matrix composition that calculation must finish before
proceeding (i.e. it actively inhibits parallel execution of convolution - probably useful if a subsequent
calculation requires a neighborhood of previously calculated values).

4 Objects and Definitions

An object in CLAM is either a named collection of Channels, called an Image, or a named collection
of calculation basis, called a Kernel. A Channel is a mathematical matrix of numeric values whose
individual components are not directly accessible via CLAM language semantics – Channel values are
manipulated via the convolution operator (see 5.5). A calculation basis, known as a Calc, is a collection
of either calculation constants (see 2.5.2) or calculation expressions (see 5.6), or both.

4.1 Image objects

An Image is a collection of named Channels. Channels can be dynamically added using the channel
composition operator (see section 5.8.3, or by assigning to a previously undeclared Channel name.

For example, to create a gray-scale image from a single, pre-existing Channel:

Image outImg;

outImg:Red = calcImg:G;

outImg:Green = calcImg:G;

outImg:Blue = calcImg:G;

4.2 Kernel objects

A Kernel is an ordered collection of calculation basis which is used by the convolution operator (see
section 5.5). Each calculation basis can be either a calculation constant (see 2.5.2) or a calculation
expression (see 5.6). A Kernel is composed either using the composition operator (see section 5.4.1), or
the |= assignment operator (see section 5.8.3).

To see how a Kernel is used in calculation, see section 5.5.

5 Expressions

5.1 Primary Expressions

identifiers, constants, strings. The type of the expressions depends on the identifier, constant or string.

4

5.2 Unary Operators

There are two unary operators in CLAM, and they are only used with a numeric-valued operand such as
a numeric constant (see 2.5.1). These expressions are grouped right-to-left:

+numeric-expression
-numeric-expression

5.2.1 + operator

This operator forces the value of its numeric operand to be positive. The resulting expression is of numeric
type with a value equal to the absolute value of the numeric operand.

5.2.2 - operator

This operator forces the value of its numeric operand to be negative. The resulting expression is of
numeric type with a value equal to the negative of the numeric operand.

5.3 Channel/Calc Expresions

Channel and Calc types are the basis of Image and Kernel objects respectively. There are several
operators that manipulate Channels and Calcs.

5.3.1 : operator

Extract or use an individual Channel in an image.

image-identifier:channel-identifier

The resulting expression has a type corresponding to the extracted Channel.

5.3.2 $() operator

This operator forces the evaluation of a previously defined Image Channel. It is generally used in the
context of a convolution operation.

$(channel-expression)

The resulting expression has a type corresponding to the calculated Channel.

5

5.4 Composition Operators

These operators compose an Image from one or more Channels. All channel composition operators are
left-to-right associative.

5.4.1 | operator

Compose two (or more) Channels or Calcs. The resulting expression is a multi-channel-expression, or
multi-calc expression, and can be assigned to either an Image or a Kernel object respectively.

channel-expression | channel-expression
multi-channel-expression | channel-expression
calc-expression | calc-expression
multi-calc-expression | calc-expression

Note that Channels and Calcs are appended in order, and subsequent operations may rely on this order.

5.5 ** operator

MISSING: Talk about the core of our language. . . the convolution operator

5.6 Escaped “C” Expression

MISSING: Talk about the #[...]# operator.

5.7 I/O Expressions

5.7.1 imgread expression

The imgread expression reads in an Image object from a known image format located on the file system.
The expression results in an Image object which can be assigned using the = operator (see section 5.8.1).
The resulting Image object has 3 Channels named Red, Green, and Blue. Each of the channels correspond
to the red, green, and blue image data read into the Image object. This expression is invoked as a “C”
style function, and expects 1 parameter: the path of the image file to read.

imgread(string-constant)

5.7.2 imgwrite expression

The imgwrite expression writes out an Image object to a known image format. It requires that the
Image object has at least 3 named Channels: Red, Green, and Blue. This expression has no type (null

6

type), and is invoked as a “C” style function. It expects 3 parameters: the first parameter is an Image

identifier, the second is the image format, and the the third is the path to which the image should be
written.

imgwrite(image-identifier , string-constant , string-constant)

5.8 Assignment Expressions

5.8.1 = assignment operator

Assigns the value of the right operand to the left operand, copying data as necessary. The types of both
operands must match.

5.8.2 := assignment operator

Assigns a calculation constant (see section 2.5.2), or escaped “C” expression (see section 5.6) to a Calc

object.

5.8.3 |= assignment operator

Add a Channel or a Calc object to an Image or Kernel object. Assignments using this operator are
ordered by statement order, and subsequent operations can rely on this order.

Note that a Calc object assigned to an Image object must be evaluated using the $() operator (see
section 5.3.2) before being using in calculation or further assignment.

6 Statements

Statements in CLAM always end in a semi-colon. No statement can return a value. All statements either
declare a variable, define or modify the definition of a variable, or execute some calculation based on
previously declared variables with the result stored in previously declared variables.

7 Program Definition

A program in the CLAM language is simply a sequence of statements which are executed in order.

7

8 Scope Rules

All identifiers in the CLAM language are global, except for the identifiers prefixed with an @ symbol,
which can only be accessed by their own calculation.

In an escaped C block that defines a channel, the existing channels for an image will be in scope when
the block is executed. Because this block will be executed on every pixel, the name of the channel will
bind to the current pixel value for that channel. These bindings will be resolved when the channel is
calculated; not when it is defined.

9 Declarations

All variables must be declared before they can be used. However, variable declarations can be made at
any point in a program. Variables become usable after the end of the semi-colon of the statement in
which its contained.

10 Grammar

MISSING: explicitly spell out all the above rules in a concise way.

11 Examples

The following example implements a Sobel image filter using the CLAM language.

1 /* read an image into the ’srcimg ’ variable */

2 Image srcimg = imgread("someimage.jpg");

3
4 /* define a luninance channel for this image

5 * (Red, Green, and Blue channels are implicit from imgread)

6 * No type specification with <> defaults to Uint8 */

7 Calc Lum := #[(3* Red + 6* Green + 1*Blue)/10]#;

8 srcimg |= Lum;

9
10 /* Kernel definitions are ordered i.e. the channels

11 * are calculated in the order they are defined */

12 Calc sobelGx <Uint8 > := [1 / 1]{ -1 0 +1 , -2 0 +2 , -1 0 +1 };

13 Calc sobelGy <Uint8 > := [1 / 1]{ +1 +2 +1 , 0 0 0 , -1 -2 -1 };

14 Calc sobelG <Uint8 > := #[sqrt(sobelGx*sobelGx + sobelGy*sobelGy)]#;

15 Calc sobelTheta <Angle > := #[arctan(sobelGy/sobelGx)]#;

16
17 Kernel sobel = @sobelGx | @sobelGy | sobelG;

18 sobel |= sobelTheta;

19
20 /* Convolution - resulting image will have the same number

21 * of channels as the filtering kernel. */

8

22 Image edges = $(srcimg:Lum) ** sobel;

23
24 /* compose an output image which is a grayscale of

25 * edge gradient magnitude */

26 Image output;

27 output:Red = edges:sobelG;

28 output:Green = edges:sobelG;

29 output:Blue = edges:sobelG;

30
31 imgwrite(output , "jpg", "edges_of_someimage.jpg");

9

References

[1] B. W. Kernighan and D. Ritchie. The C Programming Language, Second Edition. Prentice-Hall, 1988.

10

	Introduction
	Lexical Conventions
	Tokens
	Comments
	Keywords
	Identifiers
	Constants
	Numeric Constants
	Calculation Constants
	String Literals

	Meaning of Identifiers
	Basic Types
	Atom Types

	Type Qualifiers

	Objects and Definitions
	Image objects
	Kernel objects

	Expressions
	Primary Expressions
	Unary Operators
	+ operator
	- operator

	Channel/Calc Expresions
	: operator
	$() operator

	Composition Operators
	| operator

	** operator
	Escaped ``C'' Expression
	I/O Expressions
	imgread expression
	imgwrite expression

	Assignment Expressions
	= assignment operator
	:= assignment operator
	|= assignment operator

	Statements
	Program Definition
	Scope Rules
	Declarations
	Grammar
	Examples

